pytorch/test/test_maskedtensor.py

909 lines
36 KiB
Python

# Owner(s): ["module: masked operators"]
import torch
from torch.testing._internal.common_utils import (
TestCase,
run_tests,
make_tensor,
parametrize,
instantiate_parametrized_tests,
)
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
ops,
)
from torch.testing._internal.common_methods_invocations import (
SampleInput,
binary_ufuncs,
reduction_ops,
unary_ufuncs,
)
from torch.masked import as_masked_tensor, masked_tensor, _combine_input_and_mask
from torch.masked.maskedtensor.core import _masks_match, _tensors_match
from torch.masked.maskedtensor.unary import NATIVE_INPLACE_UNARY_FNS, NATIVE_UNARY_FNS, UNARY_NAMES
from torch.masked.maskedtensor.binary import NATIVE_BINARY_FNS, NATIVE_INPLACE_BINARY_FNS, BINARY_NAMES
from torch.masked.maskedtensor.reductions import REDUCE_NAMES
def _compare_mt_t(mt_result, t_result, rtol=1e-05, atol=1e-05):
mask = mt_result.get_mask()
mt_result_data = mt_result.get_data()
if mask.layout in {torch.sparse_coo, torch.sparse_csr}:
mask = mask.to_dense()
if mt_result_data.layout in {torch.sparse_coo, torch.sparse_csr}:
mt_result_data = mt_result_data.to_dense()
a = mt_result_data.detach().masked_fill_(~mask, 0)
b = t_result.detach().masked_fill_(~mask, 0)
if not _tensors_match(a, b, exact=False, rtol=rtol, atol=atol):
raise ValueError("The data in MaskedTensor a and Tensor b do not match")
def _compare_mts(mt1, mt2, rtol=1e-05, atol=1e-08):
mt_data1 = mt1.get_data()
mt_data2 = mt2.get_data()
if mt_data1.layout != mt_data2.layout:
raise ValueError("mt1's data and mt2's data do not have the same layout. "
f"mt1.get_data().layout = {mt_data1.layout} while mt2.get_data().layout = {mt_data2.layout}")
mask = mt1.get_mask()
mask2 = mt2.get_mask()
if not _masks_match(mt1, mt2):
raise ValueError("mt1 and mt2 must have matching masks")
if mask.layout != mask2.layout:
raise ValueError("mt1's mask and mt2's mask do not have the same layout. "
f"mt1.get_mask().layout = {mask.layout} while mt2.get_mask().layout = {mask2.layout}")
if mask.layout in {torch.sparse_coo, torch.sparse_csr}:
mask = mask.to_dense()
if mt_data1.layout in {torch.sparse_coo, torch.sparse_csr}:
mt_data1 = mt_data1.to_dense()
mt_data2 = mt_data2.to_dense()
a = mt_data1.detach().masked_fill_(~mask, 0)
b = mt_data2.detach().masked_fill_(~mask, 0)
if not _tensors_match(a, b, exact=False, rtol=rtol, atol=atol):
raise ValueError("The data in MaskedTensor mt1 and MaskedTensor mt2 do not match")
def _create_random_mask(shape, device):
return make_tensor(shape, device=device, dtype=torch.bool)
def _generate_sample_data(
device="cpu", dtype=torch.float, requires_grad=True, layout=torch.strided
):
assert layout in {
torch.strided,
torch.sparse_coo,
torch.sparse_csr,
}, "Layout must be strided/sparse_coo/sparse_csr"
shapes = [
[],
[2],
[3, 5],
[3, 2, 1, 2],
]
inputs = []
for s in shapes:
data = make_tensor(s, device=device, dtype=dtype, requires_grad=requires_grad) # type: ignore[arg-type]
mask = _create_random_mask(s, device)
if layout == torch.sparse_coo:
mask = mask.to_sparse_coo().coalesce()
data = data.sparse_mask(mask).requires_grad_(requires_grad)
elif layout == torch.sparse_csr:
if data.ndim != 2 and mask.ndim != 2:
continue
mask = mask.to_sparse_csr()
data = data.sparse_mask(mask)
inputs.append(SampleInput(data, kwargs={"mask": mask}))
return inputs
def _fix_fn_name(fn_name):
if fn_name[-1] == "_":
fn_name = fn_name[:-1]
return fn_name
class TestBasics(TestCase):
def test_invalid_tensor_inputs(self, device):
data = torch.randn((3, 4), device=device)
mask = _create_random_mask((3, 4), device=device)
mt = masked_tensor(data, mask)
with self.assertRaisesRegex(TypeError, "data must be a Tensor"):
masked_tensor(mt, mask)
with self.assertRaisesRegex(TypeError, "data must be a Tensor"):
masked_tensor(0, mask)
with self.assertRaisesRegex(TypeError, "mask must be a Tensor"):
masked_tensor(data, mt)
with self.assertRaisesRegex(TypeError, "mask must be a Tensor"):
masked_tensor(data, 0)
def test_diff_layouts(self, device):
data = torch.randn((3, 4), device=device).to_sparse_coo()
mask = _create_random_mask((3, 4), device=device)
with self.assertRaisesRegex(TypeError, "data and mask must have the same layout"):
masked_tensor(data, mask)
def test_diff_dim(self, device):
data = torch.randn((3, 4, 5), device=device)
mask = _create_random_mask((3, 4), device=device)
with self.assertRaisesRegex(ValueError, "data.dim\\(\\) must equal mask.dim\\(\\)"):
masked_tensor(data, mask)
def test_diff_sizes(self, device):
data = torch.randn((3, 4), device=device)
mask = _create_random_mask((3, 3), device=device)
with self.assertRaisesRegex(ValueError, "data.size\\(\\) must equal mask.size\\(\\)"):
masked_tensor(data, mask)
def test_grad_warning(self, device):
data = torch.randn((3, 4), device=device, requires_grad=True)
mask = _create_random_mask((3, 4), device=device)
msg = "It is not recommended to create a MaskedTensor with a tensor that requires_grad."
with self.assertWarnsRegex(UserWarning, msg):
mt = masked_tensor(data, mask)
def test_add(self, device):
data = torch.arange(5.0, device=device)
mask = torch.tensor([True, True, False, True, False], device=device)
m0 = masked_tensor(data, mask)
m1 = masked_tensor(data, ~mask)
with self.assertRaisesRegex(ValueError, "Input masks must match."):
m0 + m1
_compare_mts(m0 + m0, masked_tensor(torch.tensor([0., 2, 0, 6, 0], device=device), mask))
def test_softmax(self, device):
data = torch.randn((3, 4), device=device) * 0.1
mask = torch.tensor(
[
[True, True, True, False],
[False, True, False, True],
[True, True, False, False],
],
device=device
)
mt = masked_tensor(data, mask, requires_grad=True)
masked_res = torch.softmax(mt, -1)
masked_res.sum().backward()
xinf = data.masked_fill(~mask, float("-inf")).detach().clone().requires_grad_()
tensor_res = torch.softmax(xinf, -1)
tensor_res.sum().backward()
_compare_mt_t(masked_res, tensor_res)
_compare_mt_t(mt.grad, xinf.grad, atol=1e-06)
def test_where(self, device):
data = torch.tensor([-10.0, -5, 0, 5, 10, 50, 60, 70, 80, 90, 100], device=device)
mask = data < 0
mx = masked_tensor(data, mask, requires_grad=True)
my = masked_tensor(torch.ones_like(data), ~mask, requires_grad=True)
masked_res = torch.where(mask, torch.exp(mx), my)
masked_res.sum().backward()
x = data.detach().clone().requires_grad_()
y = torch.ones_like(x, device=device, requires_grad=True)
tensor_res = torch.where(mask, torch.exp(x), y)
tensor_res.sum().backward()
_compare_mt_t(masked_res, tensor_res)
_compare_mt_t(mx.grad, x.grad)
_compare_mt_t(my.grad, y.grad)
def test_to_sparse(self, device):
for sample in _generate_sample_data(device=device):
data = sample.input
mask = sample.kwargs["mask"]
mt = masked_tensor(data.clone().detach(), mask, requires_grad=True)
sparse_mt = mt.to_sparse()
data.to_sparse().to_dense().sum().backward()
sparse_mt.to_dense().sum().backward()
_compare_mt_t(sparse_mt, data)
_compare_mt_t(mt.grad, data.grad)
def test_to_dense(self, device):
samples = _generate_sample_data(
device=device,
layout=torch.sparse_coo
) + _generate_sample_data(device=device, layout=torch.sparse_csr)
for sample in samples:
data = sample.input
mask = sample.kwargs["mask"]
mt = masked_tensor(data, mask, requires_grad=True)
dense_data = data.to_dense().detach().clone().requires_grad_(True)
dense_mt = mt.to_dense()
dense_data.sum().backward()
dense_mt.sum().backward()
_compare_mt_t(dense_mt, dense_data)
_compare_mt_t(mt.grad.to_dense(), dense_data.grad)
def test_to_dense_and_sparse_coo(self, device):
for sample in _generate_sample_data(device=device, layout=torch.strided):
data = sample.input
mask = sample.kwargs["mask"]
ms = mask.to_sparse_coo().coalesce()
mt = masked_tensor(data, mask, requires_grad=True)
mts = masked_tensor(data.sparse_mask(ms), ms, requires_grad=True)
converted = mt.to_sparse().to_dense()
converted.sum().backward()
converted2 = mts.to_dense()
converted2.sum().backward()
_compare_mts(converted, converted2)
_compare_mts(mt.grad, mts.grad.to_dense())
def test_to_dense_and_sparse_csr(self, device):
for sample in _generate_sample_data(device=device, layout=torch.strided):
data = sample.input
mask = sample.kwargs["mask"]
if data.ndim != 2:
continue
ms = mask.to_sparse_csr()
mt = masked_tensor(data, mask, requires_grad=True)
mts = masked_tensor(data.sparse_mask(ms), ms, requires_grad=True)
converted = mt.to_sparse_csr().to_dense()
converted.sum().backward()
converted2 = mts.to_dense()
converted2.sum().backward()
_compare_mts(converted, converted2)
_compare_mts(mt.grad, mts.grad.to_dense())
def test_invalid_sparse_layout(self, device):
data = torch.randn((3, 4), device=device).to_sparse_csc()
mask = _create_random_mask((3, 4), device=device).to_sparse_csc()
with self.assertRaisesRegex(TypeError, "data layout of torch.sparse_csc is not supported"):
masked_tensor(data, mask)
def test_invalid_sparse_coo_values(self, device):
v = torch.tensor([3, 4, 5], dtype=torch.float32)
i1 = torch.tensor([[0, 1, 1], [2, 0, 2]])
i2 = torch.tensor([[0, 1, 1], [2, 1, 2]])
t = torch.sparse_coo_tensor(i1, v, (2, 4), device=device)
mask = torch.sparse_coo_tensor(i2, torch.tensor([True, True, True]), (2, 4), device=device)
msg = "data and mask are both sparse COO tensors but do not have the same indices."
with self.assertRaisesRegex(ValueError, msg):
masked_tensor(t, mask)
def test_invalid_sparse_csr_values(self, device):
crow_indices1 = [0, 2, 3]
crow_indices2 = [0, 1, 3]
col_indices1 = [0, 1, 2]
col_indices2 = [1, 2, 3]
values = [2, 3, 4]
mask_values = [True, True, True]
t1 = torch.sparse_csr_tensor(
torch.tensor(crow_indices1, dtype=torch.int64),
torch.tensor(col_indices1, dtype=torch.int64),
torch.tensor(values),
size=(2, 4)
)
mask1 = torch.sparse_csr_tensor(
torch.tensor(crow_indices2, dtype=torch.int64),
torch.tensor(col_indices1, dtype=torch.int64),
torch.tensor(mask_values),
dtype=torch.bool,
size=(2, 4),
)
t2 = torch.sparse_csr_tensor(
torch.tensor(crow_indices2, dtype=torch.int64),
torch.tensor(col_indices1, dtype=torch.int64),
torch.tensor(values),
size=(2, 4),
)
mask2 = torch.sparse_csr_tensor(
torch.tensor(crow_indices2, dtype=torch.int64),
torch.tensor(col_indices2, dtype=torch.int64),
torch.tensor(mask_values),
dtype=torch.bool,
size=(2, 4),
)
msg = "data and mask are both sparse CSR tensors but do not share either crow or col indices."
with self.assertRaisesRegex(ValueError, msg):
masked_tensor(t1, mask1)
with self.assertRaisesRegex(ValueError, msg):
masked_tensor(t2, mask2)
def test_contiguous(self, device):
data = torch.randn((3, 3), device=device)
contiguous_data = data.clone()
mask1 = (contiguous_data > 0).bool()
not_contiguous_data = torch.as_strided(data.clone(), (2, 2), (1, 2))
mask2 = (not_contiguous_data > 0).bool()
contiguous_mt = masked_tensor(contiguous_data, mask1)
not_contiguous_mt = masked_tensor(not_contiguous_data, mask2)
contiguous_mt_sparse = masked_tensor(
contiguous_data.to_sparse_coo(), mask1.to_sparse_coo()
)
not_contiguous_mt_sparse = masked_tensor(
not_contiguous_data.to_sparse_coo(), mask2.to_sparse_coo()
)
self.assertEqual(contiguous_data.is_contiguous(), True)
self.assertEqual(not_contiguous_data.is_contiguous(), False)
self.assertEqual(contiguous_mt.is_contiguous(), True)
self.assertEqual(not_contiguous_mt.is_contiguous(), False)
error_msg = "MaskedTensors with sparse data do not have is_contiguous"
for t in [contiguous_mt_sparse, not_contiguous_mt_sparse]:
with self.assertRaisesRegex(ValueError, error_msg):
t.is_contiguous()
with self.assertRaisesRegex(ValueError, error_msg):
t.contiguous()
now_contiguous_mt = not_contiguous_mt.contiguous()
_compare_mts(not_contiguous_mt, now_contiguous_mt)
self.assertEqual(now_contiguous_mt.is_contiguous(), True)
self.assertEqual(now_contiguous_mt.get_data().is_contiguous(), True)
self.assertEqual(now_contiguous_mt.is_contiguous(), True)
class TestUnary(TestCase):
def _get_test_data(self, fn_name):
data = torch.randn(10, 10)
mask = torch.rand(10, 10) > 0.5
fn_name = _fix_fn_name(fn_name)
if fn_name in ["log", "log10", "log1p", "log2", "sqrt"]:
data = data.mul(0.5).abs()
if fn_name in ["rsqrt"]:
data = data.abs() + 1 # Void division by zero
if fn_name in ["acos", "arccos", "asin", "arcsin", "logit"]:
data = data.abs().mul(0.5).clamp(0, 1)
if fn_name in ["atanh", "arctanh", "erfinv"]:
data = data.mul(0.5).clamp(-1, 1)
if fn_name in ["acosh", "arccosh"]:
data = data.abs() + 1
if fn_name in ["bitwise_not"]:
data = data.mul(128).to(torch.int8)
return data, mask
def _get_sample_kwargs(self, fn_name):
fn_name = _fix_fn_name(fn_name)
kwargs = {}
if fn_name in ["clamp", "clip"]:
kwargs["min"] = -0.5
kwargs["max"] = 0.5
return kwargs
def _get_sample_args(self, fn_name, data, mask):
fn_name = _fix_fn_name(fn_name)
mt = masked_tensor(data, mask)
t_args = [data]
mt_args = [mt]
if fn_name in ["pow"]:
t_args += [2.0]
mt_args += [2.0]
return t_args, mt_args
@parametrize("fn", NATIVE_UNARY_FNS)
def test_unary(self, fn):
torch.random.manual_seed(0)
fn_name = fn.__name__
data, mask = self._get_test_data(fn_name)
kwargs = self._get_sample_kwargs(fn_name)
t_args, mt_args = self._get_sample_args(fn_name, data, mask)
mt_result = fn(*mt_args, **kwargs)
t_result = fn(*t_args, **kwargs)
_compare_mt_t(mt_result, t_result)
@parametrize("fn", NATIVE_INPLACE_UNARY_FNS)
def test_inplace_unary(self, fn):
torch.random.manual_seed(0)
fn_name = fn.__name__
data, mask = self._get_test_data(fn_name)
kwargs = self._get_sample_kwargs(fn_name)
t_args, mt_args = self._get_sample_args(fn_name, data, mask)
mt_result = fn(*mt_args, **kwargs)
t_result = fn(*t_args, **kwargs)
_compare_mt_t(mt_result, t_result)
class TestBinary(TestCase):
def _get_test_data(self, fn_name):
fn_name = _fix_fn_name(fn_name)
data0 = torch.randn(10, 10)
data1 = torch.randn(10, 10)
mask = torch.rand(10, 10) > 0.5
if fn_name in ["bitwise_and", "bitwise_or", "bitwise_xor"]:
data0 = data0.mul(128).to(torch.int8)
data1 = data1.mul(128).to(torch.int8)
if fn_name in ["bitwise_left_shift", "bitwise_right_shift"]:
data0 = data0.abs().to(torch.int64)
data1 = data1.abs().to(torch.int64)
return data0, data1, mask
def _get_sample_kwargs(self, fn_name):
fn_name = _fix_fn_name(fn_name)
kwargs = {}
return kwargs
def _yield_sample_args(self, fn_name, data0, data1, mask):
""" Returns two sets of Tensor and MaskedTensor args for a binary function to compute.
Tensor args are all the same (just the two provided data tensors),
while the MaskedTensor args tests both (MaskedTensor, MaskedTensor) and (MaskedTensor, Tensor)
"""
fn_name = _fix_fn_name(fn_name)
mt0 = masked_tensor(data0, mask)
mt1 = masked_tensor(data1, mask)
t_args = [data0, data1]
mt_args = [mt0, mt1]
yield t_args, mt_args
t_args = [data0, data1]
mt_args = [mt0, data1]
yield t_args, mt_args
@parametrize("fn", NATIVE_BINARY_FNS)
def test_binary(self, fn):
torch.random.manual_seed(0)
fn_name = fn.__name__
data0, data1, mask = self._get_test_data(fn_name)
kwargs = self._get_sample_kwargs(fn_name)
for (t_args, mt_args) in self._yield_sample_args(fn_name, data0, data1, mask):
mt_result = fn(*mt_args, **kwargs)
t_result = fn(*t_args, **kwargs)
_compare_mt_t(mt_result, t_result)
@parametrize("fn", NATIVE_INPLACE_BINARY_FNS)
def test_inplace_binary(self, fn):
torch.random.manual_seed(0)
fn_name = fn.__name__
data0, data1, mask = self._get_test_data(fn_name)
kwargs = self._get_sample_kwargs(fn_name)
for (t_args, mt_args) in self._yield_sample_args(fn_name, data0, data1, mask):
mt_result = fn(*mt_args, **kwargs)
t_result = fn(*t_args, **kwargs)
_compare_mt_t(mt_result, t_result)
@parametrize("fn_name", ["add", "add_"])
def test_masks_match(self, fn_name):
torch.random.manual_seed(0)
fn = getattr(torch.ops.aten, fn_name)
data0, data1, mask = self._get_test_data(fn_name)
mask0 = mask
mask1 = torch.rand(mask.size()) > 0.5
mt0 = masked_tensor(data0, mask0)
mt1 = masked_tensor(data1, mask1)
try:
fn(mt0, mt1)
raise AssertionError()
except ValueError as e:
assert (
"Input masks must match. If you need support for this, please open an issue on Github."
== str(e)
)
class TestReductions(TestCase):
def test_max_not_implemented(self):
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m)
with self.assertRaisesRegex(TypeError, "torch._ops.aten.max.default"):
mt.max()
def test_sum(self):
d = torch.tensor([[0, 1, 2, 6], [3, 4, 5.0, 7]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(17.0), torch.tensor(True)), mt.sum())
_compare_mts(
masked_tensor(
torch.tensor([0.0, 4.0, 1.0, 13]),
torch.tensor([True, True, False, True]),
),
mt.sum(dim=0),
)
def test_sum_grad(self):
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.sum().backward()
_compare_mts(mt.grad, masked_tensor(torch.tensor(1.0).expand_as(m), m))
def test_mean(self):
d = torch.tensor([[0, 1, 3, 2], [3, 4, 1.0, 4]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(2.5), torch.tensor(True)), mt.mean())
_compare_mts(
masked_tensor(
torch.tensor([0.0, 4.0, 1.0, 3]),
torch.tensor([True, True, False, True]),
),
mt.mean(dim=0),
)
"""
The following block of tests "test_mean_grad_case_1[a through e] are used to test the functionality of
the two different ways of constructing MaskedTensors:
masked_tensor(data, mask, requires_grad=True/False) -- NO differentiable constructor and always a leaf
as_masked_tensor(data, mask) -- differentiable constructor
Like torch.tensor(data), masked_tensor(data, mask) will provide a UserWarning if data.requires_grad=True
as_masked_tensor does not take in requires_grad -- it just takes on the requires_grad from data
Therefore, there are 6 cases to test and we use `mean` as a proxy to test the different combinations
Assuming mt.mean().backward() is run after each constructor:
Case 1a:
values.requires_grad = True
mt = masked_tensor(values, mask, requires_grad=True)
yields
- Provide a UserWarning because values.requires_grad=True
- values.grad = None
- mt.grad is a MaskedTensor with the correct gradient
Case 1b:
values.requires_grad = False
mt = masked_tensor(values, mask, requires_grad=True)
yields
- values.grad = None
- mt.grad is a MaskedTensor with the correct gradient
Case 2a/2b:
values.requires_grad = True/False
mt = masked_tensor(values, mask, requires_grad=False)
will both yield a RuntimeError of "element 0 of tensors does not require grad and does not have a grad_fn"
as expected. When values.requires_grad=True, we will also get a UserWarning
Case 3a:
values.requires_grad = True
mt = as_masked_tensor(values, mask)
yields
- values.grad is a MaskedTensor with the correct gradient
- mt.grad is None and gives a UserWarning that
"The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad"
Case 3b:
values.requires_grad = False
mt = as_masked_tensor(values, mask)
will yield a RuntimeError of "element 0 of tensors does not require grad and does not have a grad_fn"
as expected.
"""
def test_mean_grad_case_1a(self):
""" values.requires_grad = True
mt = masked_tensor(values, mask, requires_grad=True)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
m = torch.tensor([[True, False, False], [False, True, False]])
with self.assertWarnsRegex(UserWarning, "It is not recommended to create a MaskedTensor"):
mt = masked_tensor(d, m, requires_grad=True)
mt.mean().backward()
self.assertIsNone(d.grad)
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
def test_mean_grad_case_1b(self):
""" values.requires_grad = False
mt = masked_tensor(values, mask, requires_grad=True)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.mean().backward()
self.assertIsNone(d.grad)
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
def test_mean_grad_case_1c(self):
""" values.requires_grad = True
mt = masked_tensor(values, mask, requires_grad=False)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
m = torch.tensor([[True, False, False], [False, True, False]])
with self.assertWarnsRegex(UserWarning, "It is not recommended to create a MaskedTensor"):
mt = masked_tensor(d, m, requires_grad=False)
result = mt.mean()
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
with self.assertRaisesRegex(RuntimeError, msg):
result.backward()
def test_mean_grad_case_1d(self):
""" values.requires_grad = False
mt = masked_tensor(values, mask, requires_grad=False)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=False)
result = mt.mean()
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
with self.assertRaisesRegex(RuntimeError, msg):
result.backward()
def test_mean_grad_case_1e(self):
""" values.requires_grad = True
mt = as_masked_tensor(values, mask)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
m = torch.tensor([[True, False, False], [False, True, False]])
mt = as_masked_tensor(d, m)
mt.mean().backward()
_compare_mts(d.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
msg = "The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad"
with self.assertWarnsRegex(UserWarning, msg):
self.assertIsNone(mt.grad)
def test_mean_grad_case_1f(self):
""" values.requires_grad = False
mt = as_masked_tensor(values, mask)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = as_masked_tensor(d, m)
result = mt.mean()
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
with self.assertRaisesRegex(RuntimeError, msg):
result.backward()
def test_mean_dim_grad(self):
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, True, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.mean(1).sum().backward()
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0.5, 0], [0, 1, 0]]), m))
def test_amax(self):
d = torch.tensor([[0, 1, 3, -3], [3, -4, 1.0, 3]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(3.0), torch.tensor(True)), mt.amax())
_compare_mts(
masked_tensor(
torch.tensor([0.0, -4.0, 1.0, 3]),
torch.tensor([True, True, False, True]),
),
mt.amax(dim=0),
)
def test_amax_grad(self):
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.amax().backward()
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.0, 0, 0], [0, 1, 0]]), m))
def test_amin(self):
d = torch.tensor([[0, 1, 3, -3], [3, -4, 1.0, 3]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(-4.0), torch.tensor(True)), mt.amin())
_compare_mts(
masked_tensor(
torch.tensor([0.0, -4.0, 1.0, -3]),
torch.tensor([True, True, False, True]),
),
mt.amin(dim=0),
)
def test_amin_grad(self):
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.amin().backward()
_compare_mts(mt.grad, masked_tensor(torch.tensor([[1.0, 0, 0], [0, 0, 0]]), m))
def test_prod(self):
d = torch.tensor([[0, 1, 3, 0.0], [float("nan"), 4, 1.0, 5.0]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(0.0), torch.tensor(True)), mt.prod())
_compare_mts(
masked_tensor(
torch.tensor([0.0, 4.0, 1.0, 0.0]),
torch.tensor([True, True, False, True]),
),
mt.prod(dim=0),
)
def test_prod_grad(self):
d = torch.tensor([[2, float("nan"), 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.prod().backward()
_compare_mts(mt.grad, masked_tensor(torch.tensor([[4.0, 0, 0], [0, 2, 0]]), m))
def test_all(self):
d = torch.tensor([[True, True, False, False], [False, True, True, True]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(False), torch.tensor(True)), mt.all())
_compare_mts(
masked_tensor(
torch.tensor([True, True, True, False]),
torch.tensor([True, True, False, True]),
),
mt.all(dim=0),
)
m = torch.tensor([[True, False, True, False], [False, True, False, False]])
mt = masked_tensor(d, m)
_compare_mts(
masked_tensor(
torch.tensor([True, True, False, True]),
torch.tensor([True, True, True, False]),
),
mt.all(dim=0),
)
def test_grad_dtype(self):
d = torch.tensor([[True, True, False], [False, True, True]])
m = torch.tensor([[True, False, False], [False, True, False]])
msg = "Only Tensors of floating point and complex dtype can require gradients"
with self.assertRaisesRegex(RuntimeError, msg):
masked_tensor(d, m, requires_grad=True)
def is_unary(op):
return op.name in UNARY_NAMES
def is_binary(op):
return op.name in BINARY_NAMES
def is_reduction(op):
return op.name in REDUCE_NAMES and op.name not in {"all", "mean", "std", "var"}
mt_unary_ufuncs = [op for op in unary_ufuncs if is_unary(op)]
mt_binary_ufuncs = [op for op in binary_ufuncs if is_binary(op)]
mt_reduction_ufuncs = [op for op in reduction_ops if is_reduction(op)]
MASKEDTENSOR_FLOAT_TYPES = {
torch.float16,
torch.float32,
torch.float64,
}
class TestOperators(TestCase):
def _convert_mt_args(self, args, mask, layout):
return [
masked_tensor(
arg.sparse_mask(mask) if layout != torch.strided else arg, mask
)
if torch.is_tensor(arg)
else arg
for arg in args
]
def _test_unary_binary_equality(self, device, dtype, op, layout=torch.strided):
samples = op.sample_inputs(device, dtype, requires_grad=True)
for sample in samples:
input = sample.input
sample_args, sample_kwargs = sample.args, sample.kwargs
mask = (
_create_random_mask(input.shape, device)
if "mask" not in sample_kwargs
else sample_kwargs.pop("mask")
)
if layout == torch.sparse_coo:
mask = mask.to_sparse_coo().coalesce()
input = input.sparse_mask(mask)
elif layout == torch.sparse_csr:
if input.ndim != 2 or mask.ndim != 2:
continue
mask = mask.to_sparse_csr()
input = input.sparse_mask(mask)
# Binary operations currently only support same size masks
if is_binary(op):
if input.shape != sample_args[0].shape:
continue
# Binary operations also don't support kwargs right now
else:
sample_kwargs = {}
mt = masked_tensor(input, mask)
mt_args = self._convert_mt_args(sample_args, mask, layout)
mt_result = op(mt, *mt_args, **sample_kwargs)
t_result = op(sample.input, *sample_args, **sample_kwargs)
_compare_mt_t(mt_result, t_result)
# If the operation is binary, check that lhs = masked, rhs = regular tensor also works
if is_binary(op) and layout == torch.strided:
mt_result2 = op(mt, *sample_args, **sample_kwargs)
_compare_mt_t(mt_result2, t_result)
def _test_reduction_equality(self, device, dtype, op, layout=torch.strided):
samples = op.sample_inputs(device, dtype, requires_grad=True)
for sample in samples:
input = sample.input
# Reduction operations don't support more advanced args/kwargs right now
sample_args, sample_kwargs = (), {}
if input.dim() == 0 or input.numel() == 0:
continue
mask = _create_random_mask(input.shape, device)
if torch.count_nonzero(mask) == 0:
continue
tensor_input = _combine_input_and_mask(op.op, input, mask)
if layout == torch.sparse_coo:
mask = mask.to_sparse_coo().coalesce()
input = input.sparse_mask(mask)
elif layout == torch.sparse_csr:
if input.ndim != 2 or mask.ndim != 2:
continue
mask = mask.to_sparse_csr()
input = input.sparse_mask(mask)
mt = masked_tensor(input, mask)
mt_args = self._convert_mt_args(sample_args, mask, layout)
mt_result = op(mt, *mt_args, **sample_kwargs)
t_result = op(tensor_input, *sample_args, **sample_kwargs)
_compare_mt_t(mt_result, t_result)
@ops(mt_unary_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
def test_unary_core(self, device, dtype, op, layout):
# Skip tests that don't have len(kwargs) == 0
skip_variants = {
"decimals_0",
"decimals_3",
"decimals_neg_3",
}
if op.name == "round" and op.variant_test_name in skip_variants:
return
self._test_unary_binary_equality(device, dtype, op)
@ops(mt_binary_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
def test_binary_core(self, device, dtype, op, layout):
self._test_unary_binary_equality(device, dtype, op, layout)
@ops(mt_reduction_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
def test_reduction_all(self, device, dtype, op, layout):
# argmin and argmax are not currently supported for torch.sparse_csr
if op.name in {"argmin", "argmax"} and layout == torch.sparse_csr:
return
self._test_reduction_equality(device, dtype, op, layout)
only_for = ("cpu", "cuda")
instantiate_device_type_tests(TestOperators, globals(), only_for=only_for)
instantiate_device_type_tests(TestBasics, globals(), only_for=only_for)
instantiate_parametrized_tests(TestUnary)
instantiate_parametrized_tests(TestBinary)
instantiate_parametrized_tests(TestReductions)
if __name__ == '__main__':
run_tests()