pytorch/test/test_reductions.py

3531 lines
165 KiB
Python

# Owner(s): ["module: tests"]
import contextlib
import torch
import numpy as np
import math
from typing import Dict, List, Sequence
import random
from functools import partial
from itertools import product, combinations, permutations
import warnings
from torch import inf, nan
from torch.testing import make_tensor
from torch.testing._internal.common_dtype import (
all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and,
integral_types_and, floating_and_complex_types_and, all_types_and, all_types,
)
from torch.testing._internal.common_utils import (
TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict,
IS_WINDOWS)
from torch.testing._internal.common_device_type import (
OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU,
onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride)
from torch.testing._internal.common_methods_invocations import (
ReductionOpInfo, ReductionPythonRefInfo, reduction_ops, reference_masked_ops)
# TODO: replace with make_tensor
def _generate_input(shape, dtype, device, with_extremal):
if shape == ():
x = torch.tensor((), dtype=dtype, device=device)
else:
if dtype.is_floating_point or dtype.is_complex:
# work around torch.randn not being implemented for bfloat16
if dtype == torch.bfloat16:
x = torch.randn(*shape, device=device) * random.randint(30, 100)
x = x.to(torch.bfloat16)
else:
x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100)
x[torch.randn(*shape) > 0.5] = 0
if with_extremal and dtype.is_floating_point:
# Use extremal values
x[torch.randn(*shape) > 0.5] = float('nan')
x[torch.randn(*shape) > 0.5] = float('inf')
x[torch.randn(*shape) > 0.5] = float('-inf')
elif with_extremal and dtype.is_complex:
x[torch.randn(*shape) > 0.5] = complex('nan')
x[torch.randn(*shape) > 0.5] = complex('inf')
x[torch.randn(*shape) > 0.5] = complex('-inf')
elif dtype == torch.bool:
x = torch.zeros(shape, dtype=dtype, device=device)
x[torch.randn(*shape) > 0.5] = True
else:
x = torch.randint(15, 100, shape, dtype=dtype, device=device)
return x
# TODO: replace with make_tensor
def _rand_shape(dim, min_size, max_size):
shape = []
for i in range(dim):
shape.append(random.randint(min_size, max_size))
return tuple(shape)
def _reduced_shape(shape, dim=None, keepdim=False):
"""Computes the expected reduced shape given dim and keepdim
Args:
shape: The shape to reduce
dim : The dimensions to reduce
keepdim: If true, reduced dimensions have size 1 in the reduced shape,
otherwise they are removed from the reduced shape.
Returns:
The reduced shape
"""
if dim is None:
return [1] * len(shape) if keepdim else []
# Wrap negative dims
dim = dim if isinstance(dim, Sequence) else [dim]
dim = {i if i >= 0 else len(shape) + i for i in dim}
result = []
for i, size in enumerate(shape):
if i not in dim:
result.append(size)
elif keepdim:
result.append(1)
return result
class TestReductions(TestCase):
###########################################################################
# ReductionOpInfo unit tests
###########################################################################
def _test_dim_keepdim(self, op: ReductionOpInfo, device, *, ndim, **dim_keepdim):
"""Tests output shape for input with ndim and dim and keepdim kwargs"""
shape = torch.randint(2, 5, (ndim,)).tolist()
t = make_tensor(shape, dtype=torch.float, device=device)
args, kwargs = next(op.generate_args_kwargs(t, **dim_keepdim))
result = op(t, *args, **dim_keepdim, **kwargs)
expected_shape = _reduced_shape(shape, **dim_keepdim)
self.assertEqual(result.shape, expected_shape, f"""
expected output shape to be {expected_shape} but got {list(result.shape)}
for input shape {shape} and {dim_keepdim}
""")
# TODO(@heitorschueroff) combine cases with and without keepdim once
# there's support for a @parametrize decorator.
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_default(self, device, op: ReductionOpInfo):
"""Tests that the default dim reduces all dimensions."""
for ndim in range(3):
self._test_dim_keepdim(op, device, ndim=ndim)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_default_keepdim(self, device, op: ReductionOpInfo):
"""Tests that the default dim, when keepdim=True, reduces all dimensions to size 1."""
for ndim in range(3):
self._test_dim_keepdim(op, device, ndim=ndim, keepdim=True)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_none(self, device, op: ReductionOpInfo):
"""Tests that dim=None reduces all dimensions."""
for ndim in range(3):
self._test_dim_keepdim(op, device, ndim=ndim, dim=None)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_none_keepdim(self, device, op: ReductionOpInfo):
"""Tests that dim=None, when keepdim=True, reduces all dimensions to size 1."""
for ndim in range(3):
self._test_dim_keepdim(op, device, ndim=ndim, dim=None, keepdim=True)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_single(self, device, op: ReductionOpInfo):
"""Tests that dim=i reduces dimension i."""
self._test_dim_keepdim(op, device, ndim=0, dim=0)
self._test_dim_keepdim(op, device, ndim=1, dim=0)
self._test_dim_keepdim(op, device, ndim=2, dim=-1)
self._test_dim_keepdim(op, device, ndim=3, dim=1)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_single_keepdim(self, device, op: ReductionOpInfo):
"""Tests that dim=i, when keepdim=True, reduces dimension i to size 1."""
self._test_dim_keepdim(op, device, ndim=0, dim=0, keepdim=True)
self._test_dim_keepdim(op, device, ndim=1, dim=0, keepdim=True)
self._test_dim_keepdim(op, device, ndim=2, dim=-1, keepdim=True)
self._test_dim_keepdim(op, device, ndim=3, dim=1, keepdim=True)
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_empty(self, device, op: ReductionOpInfo):
"""Tests that dim=[] is a no-op"""
self._test_dim_keepdim(op, device, ndim=0, dim=[])
self._test_dim_keepdim(op, device, ndim=2, dim=[])
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_empty_keepdim(self, device, op: ReductionOpInfo):
"""Tests that dim=[], when keepdim=True, is a no-op"""
self._test_dim_keepdim(op, device, ndim=0, dim=[], keepdim=True)
self._test_dim_keepdim(op, device, ndim=2, dim=[], keepdim=True)
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi(self, device, op: ReductionOpInfo):
"""Tests that dim=[i, j, ...] reduces dimensions i, j, ...."""
self._test_dim_keepdim(op, device, ndim=1, dim=[0])
self._test_dim_keepdim(op, device, ndim=3, dim=[0, 2])
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi_keepdim(self, device, op: ReductionOpInfo):
"""Tests that dim=[i, j, ...], when keepdim=True, reduces dimensions i, j, .... to size 1."""
self._test_dim_keepdim(op, device, ndim=1, dim=[0], keepdim=True)
self._test_dim_keepdim(op, device, ndim=3, dim=[0, 2], keepdim=True)
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi_unsorted(self, device, op: ReductionOpInfo):
"""Tests that operator correctly handles unsorted dim list."""
self._test_dim_keepdim(op, device, ndim=4, dim=[3, 0, 2])
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi_unsorted_keepdim(self, device, op: ReductionOpInfo):
"""Tests that operator correctly handles unsorted dim list when keepdim=True."""
self._test_dim_keepdim(op, device, ndim=4, dim=[3, 0, 2], keepdim=True)
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi_duplicate(self, device, op: ReductionOpInfo):
"""Tests that an error is raised if dim has duplicate entries."""
with self.assertRaises(RuntimeError):
self._test_dim_keepdim(op, device, ndim=3, dim=[0, 1, 1, 2])
@ops(filter(lambda op: not op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi_unsupported(self, device, op: ReductionOpInfo):
"""Tests that ops claiming to not support multi dim actually don't."""
with self.assertRaises(TypeError):
self._test_dim_keepdim(op, device, ndim=3, dim=[0, 2])
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_offbounds(self, device, op: ReductionOpInfo):
"""Tests that passing an off-bounds dim throws"""
with self.assertRaises(IndexError):
self._test_dim_keepdim(op, device, ndim=2, dim=2)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_ndim_limit(self, device, op: ReductionOpInfo):
"""Tests that an exception is raised when reducing a tensor with more
than 64 dims along some specific dimensions. dim=None is ok"""
t = make_tensor([1] * 65, dtype=torch.float, device=device)
with self.assertRaisesRegex(RuntimeError, "only tensors with up to 64 dims are supported"):
op(t, dim=0)
@ops(filter(lambda op: op.identity is not None, reduction_ops), dtypes=OpDTypes.supported)
def test_identity(self, device, dtype, op: ReductionOpInfo):
"""Tests that the identity value is an identity for the operator"""
t = make_tensor((10,), dtype=dtype, device=device)
t[1::2] = op.identity
args, kwargs = next(op.generate_args_kwargs(t))
result = op(t[::2], *args, **kwargs)
result_with_identity = op(t, *args, **kwargs)
self.assertEqual(result, result_with_identity, """
Adding identity value to the input tensor should not change the result.
""")
# TODO(@heitorschueroff) Update these to use the nan_policy kwarg once
# it is added to reduction operators.
@ops(filter(lambda op: op.nan_policy == 'propagate', reduction_ops), dtypes=OpDTypes.supported,
allowed_dtypes=floating_and_complex_types_and(torch.bfloat16, torch.float16))
def test_nan_policy_propagate(self, device, dtype, op: ReductionOpInfo):
"""Tests that nan is propagated to the output by default"""
t = make_tensor((5,), dtype=dtype, device=device)
t[2] = torch.nan
args, kwargs = next(op.generate_args_kwargs(t))
result = op(t, *args, **kwargs)
self.assertTrue(result.isnan())
@ops(filter(lambda op: op.nan_policy == 'omit', reduction_ops), dtypes=OpDTypes.supported,
allowed_dtypes=floating_and_complex_types_and(torch.bfloat16, torch.float16))
def test_nan_policy_omit(self, device, dtype, op: ReductionOpInfo):
"""Tests that NaN values do not affect the result."""
t = make_tensor((10,), dtype=dtype, device=device)
t[1::2] = torch.nan
args, kwargs = next(op.generate_args_kwargs(t))
result = op(t[::2], *args, **kwargs)
result_with_nan = op(t, *args, **kwargs)
self.assertEqual(result, result_with_nan)
@ops(reduction_ops, dtypes=OpDTypes.supported)
def test_result_dtype(self, device, dtype, op: ReductionOpInfo):
"""Tests that the result has the correct dtype"""
t = make_tensor((5,), dtype=dtype, device=device)
args, kwargs = next(op.generate_args_kwargs(t))
result: torch.Tensor = op(t, *args, **kwargs)
is_integral = dtype in integral_types_and(torch.bool)
if op.promotes_int_to_float and is_integral:
self.assertTrue(torch.is_floating_point(result))
elif op.promotes_int_to_int64 and is_integral:
self.assertEqual(result.dtype, torch.int64)
elif op.result_dtype is not None:
self.assertEqual(result.dtype, op.result_dtype)
elif op.complex_to_real:
_complex_to_real_dtype_map = {
torch.complex128: torch.float64,
torch.complex64: torch.float32,
torch.complex32: torch.float16,
}
self.assertEqual(result.dtype, _complex_to_real_dtype_map.get(dtype, dtype))
else:
self.assertEqual(result.dtype, dtype)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_empty_tensor_empty_slice(self, device, op: ReductionOpInfo):
"""Tests for consistent behavior when reducing over an empty slice.
The rules for reducing over an empty slice are as follows:
- Return the identity value if the operator has one
- Otherwise, return NaN if the operator promotes integral dtype to
floating point dtypes.
- Otherwise, raise an error
See discussion here https://github.com/pytorch/pytorch/issues/61901
"""
t = make_tensor((0, 2, 3), dtype=torch.float, device=device)
for dim in [0] + [[0, 2]] if op.supports_multiple_dims else []:
args, kwargs = next(op.generate_args_kwargs(t, dim=dim))
if op.identity is not None:
# Reducing along empty slice should return identity
result = op(t, *args, dim=dim, **kwargs)
self.assertEqual(result, torch.full_like(result, op.identity))
elif op.promotes_int_to_float:
# Reducing along empty slice should return NaN
result = op(t, *args, dim=dim, **kwargs)
self.assertEqual(result, torch.full_like(result, torch.nan))
else:
# Reducing along empty slice should raise an error
if isinstance(op, ReductionPythonRefInfo):
# ref reductions throw RuntimeError for this
with self.assertRaises(RuntimeError):
op(t, *args, dim=dim, **kwargs)
else:
with self.assertRaises(IndexError):
op(t, *args, dim=dim, **kwargs)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_empty_tensor_nonempty_slice(self, device, op: ReductionOpInfo):
"""Tests that reducing a nonempty slice of an empty tensor returns an
empty tensor with the dimensions reduced."""
t = make_tensor((0, 2, 3), dtype=torch.float, device=device)
for dim in [1] + [[1, 2]] if op.supports_multiple_dims else []:
args, kwargs = next(op.generate_args_kwargs(t, dim=dim))
result = op(t, *args, dim=dim, **kwargs)
self.assertEqual(result.shape, _reduced_shape(t.shape, dim))
def _test_noncontiguous(self, op: ReductionOpInfo, t: torch.Tensor, **reduction_kwargs):
"""Helper method to test noncontiguous input tensors."""
assert not t.is_contiguous()
t_contig = t.contiguous()
for args, kwargs in op.generate_args_kwargs(t_contig, **reduction_kwargs):
kwargs.update(reduction_kwargs)
result = op(t, *args, **kwargs)
expected = op(t_contig, *args, **kwargs)
self.assertEqual(result, expected)
@ops(reduction_ops)
def test_noncontiguous_innermost(self, device, dtype, op: ReductionOpInfo):
"""Tests reducing along noncontiguous innermost dimension."""
t = make_tensor((10, 10), dtype=dtype, device=device, low=-1, high=1)
self._test_noncontiguous(op, t[:, ::2], dim=1)
@ops(reduction_ops)
def test_noncontiguous_outermost(self, device, dtype, op: ReductionOpInfo):
"""Tests reducing along noncontiguous outermost dimension."""
t = make_tensor((10, 10), dtype=dtype, device=device, low=-1, high=1)
self._test_noncontiguous(op, t[::2, :], dim=0)
@ops(reduction_ops)
def test_noncontiguous_all(self, device, dtype, op: ReductionOpInfo):
"""Tests reducing all dimensions of a noncontiguous tensor."""
t = make_tensor((5, 5, 5), dtype=dtype, device=device, low=-1, high=1)
self._test_noncontiguous(op, t[::2, ::3, 1:-1:2])
@ops(reduction_ops)
def test_noncontiguous_transposed(self, device, dtype, op: ReductionOpInfo):
"""Tests reducing a transposed tensor."""
t = make_tensor((5, 5), dtype=dtype, device=device, low=-1, high=1)
self._test_noncontiguous(op, t.T)
@ops(reduction_ops)
def test_noncontiguous_expanded(self, device, dtype, op: ReductionOpInfo):
"""Tests reducing a tensor with expanded singleton dimensions."""
t = make_tensor((2, 3), dtype=dtype, device=device, low=-1, high=1)
self._test_noncontiguous(op, t.unsqueeze(1).expand(-1, 5, -1))
# NumPy does not support BFloat16 so we don't test that against reference
# implementations. We also don't compare dtypes or test for different
# keepdim because we already have other tests covering those.
# The test_reference_testing in test_ops.py only uses the samples from
# sample_inputs_func which do not test as exhaustively as these tests.
def _test_ref(self, op: ReductionOpInfo, t: torch.Tensor, **reduction_kwargs):
"""Compares op against op.ref for the given input and reduction kwargs"""
for args, kwargs in op.generate_args_kwargs(t, **reduction_kwargs):
kwargs.update(reduction_kwargs)
result = op(t, *args, **kwargs)
expected = op.ref(t.detach().cpu().numpy(), *args, **kwargs)
self.assertEqual(result, expected, exact_dtype=False)
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=all_types_and_complex_and(torch.half, torch.bool))
def test_ref_scalar_input(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for scalar input tensors"""
self._test_ref(op, make_tensor([], dtype=dtype, device=device))
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=all_types_and_complex_and(torch.half, torch.bool))
def test_ref_small_input(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for small input tensors"""
t = make_tensor((5, 3, 4, 2), dtype=dtype, device=device, low=-2, high=2, exclude_zero=True)
self._test_ref(op, t)
for dim in [0, 1, 3] + ([[0, 2], [1, 3]] if op.supports_multiple_dims else []):
self._test_ref(op, t, dim=dim)
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=[torch.float64])
def test_ref_large_input_1D(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for a large 1D input tensor to check stability"""
self._test_ref(op, make_tensor((2 ** 20,), dtype=dtype, device=device, low=-1, high=1, exclude_zero=True))
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=[torch.float64])
def test_ref_large_input_2D(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for a large 2D input tensor to test parallelism"""
t = make_tensor((32, 2 ** 16), dtype=dtype, device=device, low=-1, high=1, exclude_zero=True)
self._test_ref(op, t, dim=1)
@largeTensorTest("8gb")
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=[torch.float64])
def test_ref_large_input_64bit_indexing(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for a very large input tensor that requires 64 bit indexing"""
self._test_ref(op, make_tensor((275000000,), dtype=dtype, device=device, low=-1, high=1, exclude_zero=True))
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=all_types_and_complex_and(torch.half, torch.bool))
def test_ref_duplicate_values(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for input tensors with duplicate values"""
t = make_tensor((4, 4), dtype=dtype, device=device, low=-2, high=2, exclude_zero=True)
t[::2, ::2] = t[1::2, 1::2]
self._test_ref(op, t)
self._test_ref(op, t, dim=0)
self._test_ref(op, t, dim=1)
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=[torch.float32, torch.complex64])
def test_ref_extremal_values(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for input tensors with extremal values"""
t = make_tensor((5,), dtype=dtype, device=device, exclude_zero=True)
extremals = [0, 1, nan, inf, -inf]
for extremal in extremals:
t[2] = extremal
self._test_ref(op, t)
###########################################################################
# TODO: Legacy tests - port to ReductionOpInfo
###########################################################################
def test_var_unbiased(self, device):
tensor = torch.randn(100, device=device)
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False))
tensor = torch.tensor([1.0, 2.0], device=device)
self.assertEqual(tensor.var(unbiased=True), 0.5)
self.assertEqual(tensor.var(unbiased=False), 0.25)
tensor = torch.tensor([1.0, 2.0, 3.0], device=device)
self.assertEqual(tensor.var(unbiased=True), 1.0)
self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0)
tensor = torch.randn(100, device=device)
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False))
def test_var_stability(self, device):
tensor = torch.tensor([2281.5, 2281.25], device=device)
self.assertEqual(tensor.var(dim=0), 0.03125)
self.assertEqual(tensor.var(), 0.03125)
def test_sum_dim_reduction_uint8_overflow(self, device):
example = [[-1, 2, 1], [5, 3, 6]]
x = torch.tensor(example, dtype=torch.uint8, device=device)
self.assertEqual(x.sum(dtype=torch.uint8).item(), 16)
self.assertEqual(x.sum(0, dtype=torch.uint8), torch.tensor([4, 5, 7], dtype=torch.uint8, device=device))
self.assertEqual(x.sum(1, dtype=torch.uint8), torch.tensor([2, 14], dtype=torch.uint8, device=device))
y = torch.tensor(example, dtype=torch.uint8, device=device)
torch.sum(x, 0, out=y)
self.assertEqual(x.sum(0, dtype=torch.uint8), y)
def test_dim_reduction_less_than_64(self, device):
sizes = [1] * 65
x = torch.randn(sizes, device=device)
ops = [torch.mean, torch.sum, torch.nansum, torch.std, torch.logsumexp, torch.std, torch.var,
torch.norm]
for op in ops:
with self.assertRaisesRegex(RuntimeError, "only tensors with up to 64 dims are supported"):
op(x, dim=64)
with self.assertRaisesRegex(RuntimeError, "only tensors with up to 64 dims are supported"):
op(x, dim=-1)
@onlyCPU
@dtypes(torch.float, torch.bfloat16)
def test_dim_reduction_lastdim(self, device, dtype):
x = torch.randn(3, 5, 40, device=device, dtype=dtype)
x = x[:, :, 0:40:2]
x2 = x.contiguous()
ops = [torch.norm, torch.argmax, torch.argmin]
for op in ops:
y = op(x, dim=-1)
y2 = op(x2, dim=-1)
self.assertEqual(y, y2)
@skipIfNoSciPy
def test_logsumexp(self, device):
from scipy.special import logsumexp
a = torch.randn(5, 4, device=device)
a[0, 0] = inf
a[1, :] = -inf
actual = a.logsumexp(1)
expected = logsumexp(a.cpu().numpy(), 1)
self.assertEqual(expected.shape, actual.shape)
self.assertEqual(expected, actual)
# check that out is actually inplace
b = torch.zeros(5, 2, device=device)
c = b[:, 0]
torch.logsumexp(a, 1, out=c)
self.assertEqual(expected, b[:, 0])
# check integral inputs is promoted to floating point
e = torch.randint(-100, 100, [5, 4], device=device)
actual = e.logsumexp(1).to(torch.float64)
expected = logsumexp(e.cpu().numpy(), 1)
self.assertEqual(expected.shape, actual.shape)
self.assertEqual(expected, actual)
@skipIfNoSciPy
@dtypes(torch.complex64, torch.complex128)
def test_logcumsumexp_complex(self, device, dtype):
# logcumsumexp is a more precise way to compute than ``log(cumsum(exp(a)))``
# and faster than ``[log(sum(exp(a[:i]))) for i in range(a.shape[0])]``
# the for-loop above should produce similar precision as logcumsumexp (it's just slower),
# so it can be used as the expected values to check our computation
# using logsumexp from scipy because by the time of writing this test code,
# torch.logsumexp has not been implemented for complex numbers
from scipy.special import logsumexp
def zero_out_neg_inf(t):
t = t.clone()
idx = torch.logical_and(~(torch.isfinite(t)), torch.real(t) < 0)
t[idx] = torch.real(t[idx]).to(t.dtype)
return t
def standardize_phase(t):
t = torch.real(t) + 1j * (torch.imag(t) % (2 * np.pi))
return t
def logcumsumexp_slow(a, dim):
res_lst = []
for i in range(a.size(dim)):
index = [slice(None, None, None) for _ in range(a.ndim)]
index[dim] = slice(None, i + 1, None)
a_inp = a[tuple(index)]
res_lst.append(logsumexp(a_inp.cpu().numpy(), axis=dim, keepdims=True))
res = np.concatenate(res_lst, axis=dim)
return torch.as_tensor(res)
def compare_logcumsumexp(a, expected=None):
for i in range(a.ndim):
actual = torch.logcumsumexp(a, dim=i)
# if the expected is not given, then revert to scipy's logsumexp
if expected is None:
expected2 = logcumsumexp_slow(a, dim=i)
else:
expected2 = expected
# move the imaginary values to (0, 2 * pi)
actual = standardize_phase(actual)
expected2 = standardize_phase(expected2)
# zeroing the imaginary part of the element if the real part is -inf
# as the imaginary part cannot be determined exactly and it does not
# really matter if we take the exp of the output
actual = zero_out_neg_inf(actual)
expected2 = zero_out_neg_inf(expected2)
self.assertEqual(expected2.shape, actual.shape)
self.assertEqual(expected2, actual)
# randomly specified values
# in this case, scipy.logsumexp should be enough
a1 = torch.randn((5, 10), dtype=dtype, device=device)
compare_logcumsumexp(a1)
# test with some non-normal values
a2 = torch.tensor([1e3 + 0j, 1e-18 + 1e4j, 1e2 + 1e-8j], dtype=dtype, device=device)
compare_logcumsumexp(a2)
# handle special case involving infinites and nans
# here we don't use scipy.logsumexp as it gives confusing answer on
# some inf cases
# see here:
inf = float('inf')
nan = float('nan')
a3_input = torch.tensor([
-inf + 4j,
-inf + 1j,
1.2 + 2.1j,
1e10 + 1e20j,
inf + 0j,
inf + 1j,
inf + 3j,
nan + 2j,
])
a3_expected = torch.tensor([
-inf + 0j,
-inf + 0j,
1.2 + 2.1j,
1e10 + 1e20j,
inf + 0j, # scipy's logsumexp gives (inf + 0.7853982j) here, unclear why
inf + (np.pi / 4) * 1j, # the imaginary part thanks to some weird behaviour of log(inf + infj)
complex(inf, nan),
complex(nan, nan),
])
# windows give strange results on the second-to-last results where it gives inf + pi/4 j
# instead of inf + nan j
if not IS_WINDOWS:
compare_logcumsumexp(a3_input, a3_expected)
a4_input = torch.tensor([
complex(-inf, inf),
complex(-inf, inf),
-inf + 1j,
1.2 + 2.1j,
complex(2.4, inf),
])
a4_expected = torch.tensor([
-inf + 0j,
-inf + 0j,
-inf + 0j,
1.2 + 2.1j,
complex(nan, nan),
])
if not IS_WINDOWS:
compare_logcumsumexp(a4_input, a4_expected)
@onlyCPU
def test_sum_parallel(self, device):
# To use parallel branches we'll need to compare on tensors
# that are relatively large. Even if this is run on a single
# core machine these tests will still give you signal on
# the correctness
def _run_test(size):
for dim in range(len(size) + 1):
nv = np.round(np.random.rand(*size)) # 0s and 1s
tv = torch.from_numpy(nv)
# Parallelisim is only used if numel is
# larger than grainsize defined in Parallel.h
self.assertTrue(tv.numel() > 32768)
if dim == len(size):
nvs = nv.sum()
tvs = tv.sum()
else:
nvs = nv.sum(dim)
tvs = tv.sum(dim)
diff = np.abs(nvs - tvs.numpy()).sum()
self.assertEqual(diff, 0)
_run_test([2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3])
_run_test([4, 4, 4, 4, 4, 4, 4, 4, 4, 4])
_run_test([1, 32 * 8 * 32 * 8])
_run_test([1, 32770])
# TODO: kill map2_ (and similar) uses and update to compare with NumPy
# only works on CPU since this uses map2_, which is only supported on CPU
def _testCSelection(self, torchfn, mathfn):
# Two tensors
size = (100, 100)
a = torch.rand(*size)
b = torch.rand(*size)
c = torchfn(a, b)
expected_c = torch.zeros(*size)
expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b))
self.assertEqual(expected_c, c, atol=0, rtol=0)
@onlyCPU
def test_max_elementwise(self, device):
self._testCSelection(torch.max, max)
@onlyCPU
def test_min_elementwise(self, device):
self._testCSelection(torch.min, min)
def test_all_any(self, device):
def test(size):
x = torch.ones(*size, device=device).byte()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = 0
self.assertFalse(x.all())
self.assertTrue(x.any())
x.zero_()
self.assertFalse(x.all())
self.assertFalse(x.any())
x.fill_(2)
self.assertTrue(x.all())
self.assertTrue(x.any())
x = torch.ones(*size, device=device).bool()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = False
self.assertFalse(x.all())
self.assertTrue(x.any())
test((10,))
test((5, 5))
def test_all_any_with_dim(self, device):
def test(x):
r1 = x.prod(dim=0, keepdim=False).byte()
r2 = x.all(dim=0, keepdim=False)
self.assertEqual(r1.shape, r2.shape)
self.assertTrue((r1 == r2).all())
r3 = x.sum(dim=1, keepdim=True).clamp(0, 1).byte()
r4 = x.any(dim=1, keepdim=True)
self.assertEqual(r3.shape, r4.shape)
self.assertTrue((r3 == r4).all())
test(torch.tensor([[0, 0, 0],
[0, 0, 1],
[0, 1, 1],
[1, 1, 1]], device=device, dtype=torch.uint8))
def test_numpy_named_args(self, device):
x1 = torch.randn(10, device=device)
x2 = torch.randn(10, device=device)
res1 = torch.add(input=x1, other=x2)
res2 = torch.add(x1=x1, x2=x2)
self.assertEqual(res1, res2)
x1 = torch.randn(10, 10, 10, device=device)
res1 = x1.sum(dim=(0, 2), keepdim=True)
res2 = x1.sum(axis=(0, 2), keepdims=True)
self.assertEqual(res1, res2)
# TODO: kill this ane replace with common creation ops
def _make_tensors(self, shape, val_range=(-100, 100), use_floating=True, use_integral=True,
use_complex=False) -> Dict[str, List[torch.Tensor]]:
float_types = [torch.double,
torch.float]
int_types = [torch.int64,
torch.int32,
torch.int16]
complex_types = [torch.complex64,
torch.complex128]
def make_contiguous(shape, dtype) -> torch.Tensor:
if dtype in float_types:
val = torch.randn(shape, dtype=dtype)
val = val * ((val_range[1] - val_range[0]) / (math.pi * 2.0))
val = val + ((val_range[1] - val_range[0]) / 2.0)
val = torch.clamp(val, min=val_range[0], max=val_range[1])
return val
result = torch.zeros(shape, dtype=dtype)
result.apply_(lambda x: random.randint(val_range[0], val_range[1]))
return result
def make_non_contiguous(shape, dtype) -> torch.Tensor:
contig = make_contiguous(shape, dtype)
non_contig = torch.empty(shape + (2, 2), dtype=dtype)[..., 0]
non_contig = non_contig.select(-1, -1)
non_contig.copy_(contig)
self.assertFalse(non_contig.is_contiguous())
return non_contig
def make_contiguous_slice(size, dtype) -> torch.Tensor:
contig = make_contiguous((1, size), dtype)
non_contig = contig[:1, 1:size - 1]
self.assertTrue(non_contig.is_contiguous())
return contig
types = []
if use_floating:
types += float_types
if use_integral:
types += int_types
if use_complex:
types += complex_types
tensors: Dict[str, List[torch.Tensor]] = {"cont": [], "noncont": [], "slice": []}
for dtype in types:
tensors["cont"].append(make_contiguous(shape, dtype))
tensors["noncont"].append(make_non_contiguous(shape, dtype))
tensors["slice"].append(make_contiguous_slice(sum(list(shape)), dtype))
return tensors
# TODO: refactor this to use comparators from common_utils
def _assert_matches_numpy(self, t, n):
self.assertEqual(n.shape, t.shape)
if t.dtype == torch.float:
self.assertEqual(n, t, rtol=1e-03, atol=1e-05, equal_nan=True)
else:
self.assertEqual(n, t, equal_nan=True)
# TODO: update this and tests that use it to use the device argument properly
def _test_dim_ops(self, pytorch_op, numpy_op,
use_floating=True, use_integral=True, use_complex=False):
def do_one(tensors_dict, dim):
for category, tensors in tensors_dict.items():
if category == "slice":
dim = 0
for tensor in tensors:
# we have no control over NumPy warnings...
with warnings.catch_warnings():
warnings.simplefilter("ignore")
expected = numpy_op(tensor.cpu().numpy(), dim)
actual = pytorch_op(tensor, dim)
self._assert_matches_numpy(actual, expected)
if torch.cuda.is_available():
self._assert_matches_numpy(pytorch_op(tensor.cuda(), dim).cpu(), expected)
do_one(self._make_tensors((5, 400000), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 0)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 2)
do_one(self._make_tensors((100000, ), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), -1)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 0)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 2)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (1, 2))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (1, -1))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (0, 2))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (0, 2, 1))
@slowTest
@onlyCPU
def test_sum_dim(self, device):
self._test_dim_ops(
lambda t, d: t.sum(d),
lambda n, d: n.sum(d),
use_floating=True, use_integral=True, use_complex=True)
@onlyCPU
def test_mean_dim(self, device):
self._test_dim_ops(
lambda t, d: t.mean(d),
lambda n, d: n.mean(d),
use_integral=False,
use_complex=True)
@onlyCPU
def test_std_dim(self, device):
for unbiased in [False, True]:
self._test_dim_ops(
lambda t, d: t.std(d, unbiased=unbiased),
lambda n, d: n.std(d, ddof=1 if unbiased else 0),
use_integral=False)
@onlyCPU
def test_var_dim(self, device):
for unbiased in [False, True]:
self._test_dim_ops(
lambda t, d: t.var(d, unbiased=unbiased),
lambda n, d: n.var(d, ddof=1 if unbiased else 0),
use_integral=False)
@onlyCPU
@skipIfNoSciPy
def test_logsumexp_dim(self, device):
from scipy.special import logsumexp
self._test_dim_ops(
lambda t, d: t.logsumexp(d),
lambda n, d: logsumexp(n, d),
use_integral=False)
@onlyCPU
def test_mean_int_with_optdtype(self, device):
a = make_tensor((3, 4, 5), dtype=torch.int64, device=device)
# If the optional desired output type is given, the input
# is internally cast.
a_float = a.to(torch.float32)
self.assertEqual(a_float.mean(), a.mean(dtype=torch.float32))
# TODO: update this and tests that use it to handle device properly
def _test_reduce_integer_upcast(self, fn, has_out=True, test_complex=True):
shape = (3, 4, 5)
reduced_shape = fn(torch.ones(shape)).shape
def _test_out(dtype, other_dtype):
out = torch.ones(reduced_shape, dtype=dtype)
result = fn(x, out=out)
self.assertIs(out.dtype, result.dtype)
self.assertEqual(fn(x.to(dtype)), result, exact_dtype=False)
result = fn(x, out=out, dtype=dtype)
self.assertIs(out.dtype, result.dtype)
self.assertEqual(fn(x.to(dtype)), result, exact_dtype=False)
# 'out' is favored over dtype, check error
self.assertRaises(RuntimeError, lambda: fn(x, out=out, dtype=other_dtype))
for dtype in [dtype for dtype in get_all_math_dtypes('cpu') if dtype != torch.float16]:
x = torch.ones(shape, dtype=dtype)
expected_dtype = dtype if dtype.is_floating_point or dtype.is_complex else torch.int64
self.assertIs(expected_dtype, fn(x).dtype)
self.assertEqual(fn(x.to(expected_dtype)), fn(x))
if dtype.is_floating_point:
other_dtype = torch.float32 if dtype == torch.float64 else torch.float64
elif dtype.is_complex:
other_dtype = torch.complex64 if dtype == torch.complex128 else torch.complex128
else:
other_dtype = torch.int32 if dtype != torch.int32 else torch.int16
self.assertIs(other_dtype, fn(x, dtype=other_dtype).dtype)
self.assertEqual(fn(x.to(other_dtype)), fn(x, dtype=other_dtype), exact_dtype=False)
# test mixed int/float/complex
if dtype.is_floating_point:
mixed_dtypes = [torch.int32, torch.complex64]
elif dtype.is_complex:
mixed_dtypes = [torch.int32, torch.float32]
else:
mixed_dtypes = [torch.float32, torch.complex64]
for mixed_dtype in mixed_dtypes:
self.assertIs(mixed_dtype, fn(x, dtype=mixed_dtype).dtype)
self.assertEqual(fn(x.to(mixed_dtype)), fn(x, dtype=mixed_dtype), exact_dtype=False)
if has_out:
_test_out(dtype, other_dtype)
_test_out(dtype, mixed_dtype)
@onlyCPU
def test_sum_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, **kwargs), False)
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, 0, **kwargs))
@onlyCPU
def test_prod_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, **kwargs), False)
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, 0, **kwargs))
@onlyCPU
def test_cumsum_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumsum(x, 0, **kwargs))
@onlyCPU
def test_cumprod_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumprod(x, 0, **kwargs))
@dtypes(*all_types())
def test_mode(self, device, dtype):
SIZE = 10
x = torch.arange(1., SIZE * SIZE + 1, device=device, dtype=dtype).clone().resize_(SIZE, SIZE)
x[:2] = 1
x[:, :2] = 1
x0 = x.clone()
# Pre-calculated results.
res1val = torch.ones(SIZE, device=device, dtype=dtype)
# The indices are the position of the last appearance of the mode element.
res1ind = torch.ones(SIZE, device=device, dtype=torch.long)
res1ind[0] = SIZE - 1
res1ind[1] = SIZE - 1
res2val, res2ind = torch.mode(x, keepdim=False)
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# Test use of result tensor
res2val = torch.tensor((), device=device, dtype=dtype)
res2ind = torch.tensor((), device=device, dtype=torch.long)
torch.mode(x, keepdim=False, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# Test non-default dim
res2val, res2ind = torch.mode(x, 0, False)
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# input unchanged
self.assertEqual(x, x0, atol=0, rtol=0)
def _test_mode_intervals(self, shape, intervals, device, dtype, v=1):
x = torch.arange(0, shape[1], device=device, dtype=dtype).expand(shape)
x = x.contiguous()
x[:, v] = intervals[0][0]
# Set the value of each interval to the mode "v"
for (beg, end) in intervals:
x[:, beg:end] = v
values, indices = torch.mode(x, -1, False)
# Check whether the returned indices correspond to the returned values
self.assertTrue((x.gather(1, indices.unsqueeze(1)).t() == values).all())
# Check whether the returned values are the mode
self.assertTrue((values == v).all().item())
@onlyCUDA
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_mode_large(self, device, dtype):
# i should be less than (d - 2) / 2
def testset_for_shape(shape, i):
d = shape[-1]
# Mode only in the middle.
self._test_mode_intervals(shape, [(i, d - i)], device, dtype)
# Mode in discontiguous parts of the input.
self._test_mode_intervals(shape, [(0, i), (i + 1, d - i - 1), (d - i, d)], device, dtype)
# More than one line of (65535) thread blocks
testset_for_shape((65536, 10), 3)
# Max slice size (2048)
testset_for_shape((10, 2048), 10)
# Naive kernel for big slice sizes (> 2048)
testset_for_shape((10, 4096), 10)
def test_mode_boolean(self, device):
shapes = [
(10, 10),
(4, 2048),
(1, 4096),
]
for shape in shapes:
a = torch.zeros(shape, device=device, dtype=torch.bool)
a[:, (shape[1] - 1) // 2:] = True
values, indices = a.mode(-1)
self.assertEqual(values, torch.ones(shape[0], dtype=torch.bool))
print(indices)
indexed = a.gather(1, indices.unsqueeze(1)).squeeze(1)
self.assertEqual(values, indexed)
a.fill_(False)
a[:, shape[1] // 2 + 1:] = True
values, indices = a.mode(-1)
print(indices)
self.assertEqual(values, torch.zeros(shape[0], dtype=torch.bool))
indexed = a.gather(1, indices.unsqueeze(1)).squeeze(1)
self.assertEqual(values, indexed)
@expectedFailureMeta # mode only supports CPU and CUDA device type
@onlyNativeDeviceTypes
def test_mode_wrong_dtype(self, device):
def test_for_dtypes(x_ty, v_ty, i_ty, message):
x = torch.ones(10, device=device, dtype=x_ty)
v = torch.ones(10, device=device, dtype=v_ty)
i = torch.ones(10, device=device, dtype=i_ty)
with self.assertRaisesRegex(RuntimeError, message):
torch.mode(x, -1, True, out=(v, i))
err_msg = "expected scalar type .* but got .* for "
values_err = err_msg + "values"
indices_err = err_msg + "indices"
test_for_dtypes(torch.uint8, torch.int8, torch.long, values_err)
test_for_dtypes(torch.int8, torch.int16, torch.long, values_err)
test_for_dtypes(torch.int32, torch.float32, torch.long, values_err)
test_for_dtypes(torch.float32, torch.float64, torch.long, values_err)
test_for_dtypes(torch.uint8, torch.uint8, torch.int8, indices_err)
test_for_dtypes(torch.int8, torch.int8, torch.int16, indices_err)
test_for_dtypes(torch.int32, torch.int32, torch.float32, indices_err)
test_for_dtypes(torch.float32, torch.float32, torch.float64, indices_err)
@onlyCUDA
def test_mode_wrong_device(self, device):
# CPU Input Tensor
x = torch.ones(2)
with self.assertRaisesRegex(RuntimeError,
"expected device .* but got .* for values"):
values = torch.tensor([], device=device)
torch.mode(x, -1, True, out=(values, torch.tensor([], dtype=torch.long)))
with self.assertRaisesRegex(RuntimeError,
"expected device .* but got .* for indices"):
indices = torch.tensor([], device=device)
torch.mode(x, -1, True, out=(torch.tensor([]), indices))
# TODO: make work on CUDA, too
@onlyCPU
def test_accreal_type(self, device) -> None:
x = torch.ones(2, 3, 4)
self.assertIsInstance(x.double().sum().item(), float)
self.assertIsInstance(x.float().sum().item(), float)
self.assertIsInstance(x.long().sum().item(), int)
self.assertIsInstance(x.int().sum().item(), int)
self.assertIsInstance(x.short().sum().item(), int)
self.assertIsInstance(x.char().sum().item(), int)
self.assertIsInstance(x.byte().sum().item(), int)
def test_var_mean_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for unbiased in [False, True]:
for keepdim in [False, True]:
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
# TODO: this should be a generic opinfo test
def test_all_any_empty(self, device):
x = torch.ByteTensor().to(device)
self.assertTrue(x.all())
self.assertFalse(x.any())
x = torch.BoolTensor().to(device)
self.assertTrue(x.all())
self.assertFalse(x.any())
@dtypesIfCUDA(torch.half, torch.bfloat16, torch.float, torch.double)
@dtypes(torch.half, torch.bfloat16, torch.float, torch.double)
def test_max_with_inf(self, device, dtype):
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
self.assertTrue(torch.all(torch.max(a, dim=1).values == inf).item())
self.assertTrue(torch.all(torch.amax(a, dim=1) == inf).item())
self.assertTrue(torch.max(a).item() == inf)
self.assertTrue(torch.amax(a).item() == inf)
@dtypesIfCUDA(torch.half, torch.bfloat16, torch.float, torch.double)
@dtypes(torch.half, torch.float, torch.bfloat16, torch.double)
def test_min_with_inf(self, device, dtype):
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
self.assertTrue(torch.all(torch.min(a, dim=1).values == (-inf)).item())
self.assertTrue(torch.all(torch.amin(a, dim=1) == (-inf)).item())
self.assertTrue(torch.min(a).item() == -inf)
self.assertTrue(torch.amin(a).item() == -inf)
def _test_minmax_helper(self, torchfn, reffn, device, dtype, skip_indices=False):
def create_input(shape, device, dtype):
if dtype.is_floating_point:
return torch.randn(*shape, device=device, dtype=dtype)
else:
low = 0 if dtype == torch.bool else -1000
high = 2 if dtype == torch.bool else 1000
return torch.randint(low, high, shape, device=device, dtype=dtype)
x = create_input((100, 100), device, dtype)
self.compare_with_numpy(torchfn, reffn, x)
# non contiguous
x = create_input((10, 10, 10), device, dtype)
x = x[:, 4]
self.compare_with_numpy(torchfn, reffn, x)
def get_values(x):
if isinstance(x, tuple):
return x[0]
return x
# indices
if not skip_indices:
size = 5
x = create_input((size, size), device, dtype)
inputs = (x, x.t())
dims = (0, 1)
for xinp, d in product(inputs, dims):
self.compare_with_numpy(lambda x: get_values(torchfn(x, d, False)), lambda x: reffn(x, d, keepdims=False), xinp)
result = torchfn(xinp, d, False)
if isinstance(result, tuple):
v, i = result
if d == 1:
self.assertEqual(xinp[torch.arange(size), i], v, atol=0, rtol=0)
else:
self.assertEqual(xinp[i, torch.arange(size)], v, atol=0, rtol=0)
# nan
if dtype.is_floating_point:
for index in (0, 4, 99):
x = create_input((100,), device, dtype)
x[index] = nan
if not skip_indices:
result = torchfn(x, 0)
v = get_values(result)
self.assertEqual(v, nan)
if isinstance(result, tuple):
i = result[1]
self.assertEqual(i, index)
self.assertEqual(torchfn(x), nan)
@dtypesIfCPU(torch.float, torch.double, torch.long, torch.bool, torch.half)
@dtypesIfCUDA(torch.half, torch.float, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_max(self, device, dtype):
self._test_minmax_helper(torch.max, np.amax, device, dtype)
@dtypesIfCPU(torch.float, torch.double, torch.long, torch.bool, torch.half)
@dtypesIfCUDA(torch.half, torch.float, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_min(self, device, dtype):
self._test_minmax_helper(torch.min, np.amin, device, dtype)
@dtypesIfCPU(torch.half, torch.float, torch.double, torch.int, torch.long, torch.bool)
@dtypesIfCUDA(torch.half, torch.float, torch.int, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_amin(self, device, dtype):
self._test_minmax_helper(torch.amin, np.amin, device, dtype)
@dtypesIfCPU(torch.half, torch.float, torch.double, torch.int, torch.long, torch.bool)
@dtypesIfCUDA(torch.half, torch.float, torch.int, torch.long, torch.bool)
@dtypes(torch.float, torch.double)
def test_amax(self, device, dtype):
self._test_minmax_helper(torch.amax, np.amax, device, dtype)
@onlyNativeDeviceTypes
@dtypes(torch.float, torch.double)
@dtypesIfCUDA(torch.half, torch.float, torch.bfloat16)
def test_aminmax(self, device, dtype):
def _amin_wrapper(x, dim=None, keepdims=False):
with self.assertWarnsOnceRegex(UserWarning, "_aminmax is deprecated"):
if dim is None:
return torch._aminmax(x)[0]
else:
return torch._aminmax(x, dim, keepdims)[0]
def _amax_wrapper(x, dim=None, keepdims=False):
with self.assertWarnsOnceRegex(UserWarning, "_aminmax is deprecated"):
if dim is None:
return torch._aminmax(x)[1]
else:
return torch._aminmax(x, dim, keepdims)[1]
self._test_minmax_helper(_amin_wrapper, np.amin, device, dtype)
self._test_minmax_helper(_amax_wrapper, np.amax, device, dtype)
# TODO: bincount isn't a classic reduction -- maybe this test suite is
# reductions and summary ops?
def test_bincount(self, device):
# negative input throws
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
torch.bincount(torch.tensor([1, -1], device=device))
# n-d input, with n > 1 throws
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
torch.bincount(torch.tensor([[1, 2], [3, 4]], device=device))
# floating input type throws
with self.assertRaisesRegex(RuntimeError, 'not implemented'):
torch.bincount(torch.tensor([1., 0.3], device=device))
# minlength < 0 throws
with self.assertRaisesRegex(RuntimeError, 'minlength should be >= 0'):
torch.bincount(torch.tensor([1, 3], device=device),
torch.tensor([.2, .2], device=device),
minlength=-1)
# n-d weights, with n > 1 throws
with self.assertRaisesRegex(RuntimeError, '1-d'):
torch.bincount(torch.tensor([1, 0], device=device),
torch.tensor([[1., 0.3], [1., 0.3]], device=device))
# input and weights dim mismatch
with self.assertRaisesRegex(RuntimeError, 'same length'):
torch.bincount(torch.tensor([1, 0], device=device),
torch.tensor([1., 0.3, 0.5], device=device))
# 1-d input with no elements and default minlength
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long)),
torch.zeros(0, dtype=torch.long, device=device))
# 1-d input with no elements and specified minlength
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long), minlength=10),
torch.zeros(10, dtype=torch.long, device=device))
# test tensor method without weights
long_counts = torch.tensor(
[0, 3, 2, 1, 3], dtype=torch.uint8, device=device).bincount()
self.assertEqual(
torch.tensor([1, 1, 1, 2], dtype=torch.int64, device=device),
long_counts)
# test avoiding overflow for uint8 (#76979)
count_uint8 = torch.tensor([0, 1, 2, 3, 255], dtype=torch.uint8, device=device).bincount()
count_int16 = torch.tensor([0, 1, 2, 3, 255], dtype=torch.int16, device=device).bincount()
self.assertEqual(count_uint8, count_int16)
# test minlength functionality
int_counts = torch.bincount(
torch.tensor([1, 1, 1, 1], device=device), minlength=5)
self.assertEqual(
torch.tensor([0, 4, 0, 0, 0], dtype=torch.int64, device=device),
int_counts)
# test weights
byte_counts = torch.bincount(
torch.tensor([0, 1, 1, 1, 4], device=device),
torch.tensor([.1, .2, .3, .4, .5], device=device))
self.assertEqual(
torch.tensor([0.1, 0.9, 0, 0, 0.5], device=device), byte_counts)
byte_counts = torch.bincount(
torch.tensor([0, 1, 1, 1, 4], device=device),
torch.tensor([1, 2, 3, 4, 5], dtype=torch.int8, device=device))
self.assertEqual(
torch.tensor([1, 9, 0, 0, 5], device=device, dtype=torch.float64), byte_counts)
# test non-contiguous inputs and weights
inputs = torch.tensor([[0, 0], [3, 1], [2, 1], [1, 1], [3, 4]], device=device)
weights = torch.tensor([[.1, 1], [.2, 2], [.3, 3], [.4, 4], [.5, 5]], device=device)
for i in [0, 1]:
assert not inputs[:, i].is_contiguous(), "Inputs are supposed to be non-contiguous"
assert not weights[:, i].is_contiguous(), "Weights are supposed to be non-contiguous"
# inputs are non-contiguous but weights are contiguous
self.assertEqual(inputs[:, 0].bincount(), torch.tensor([1, 1, 1, 2]))
# inputs and weights are non-contiguous
self.assertEqual(
inputs[:, 1].bincount(weights[:, 1]),
torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32))
# weights are non-contiguous but inputs are contiguous
self.assertEqual(inputs[:, 1].contiguous().bincount(weights[:, 1]),
torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32))
# test bincount on non-contiguous slices
all0s = torch.zeros((32, 2), dtype=torch.int64, device=device)
self.assertEqual(all0s[:, 0].bincount(), torch.tensor([32]))
all1s = torch.ones((32, 2), dtype=torch.int64, device=device)
self.assertEqual(all1s[:, 0].bincount(), torch.tensor([0, 32]))
# test large number of bins - global memory use
big_exp = torch.zeros(10000000, device=device)
big_exp[-1] = 50.0
big_w = torch.tensor([.5] * 100, device=device)
big_out = torch.tensor([9999999] * 100, device=device).bincount(big_w)
self.assertEqual(big_exp, big_out)
# test large input size
big_exp = torch.zeros(2, device=device, dtype=torch.int64)
big_exp[1] = 1000000
big_out = torch.ones(1000000, dtype=torch.int8, device=device).bincount()
self.assertEqual(big_exp, big_out)
# TODO: how many var stability tests are there?
def test_var_stability2(self, device):
tensor = torch.FloatTensor([2281.5, 2281.25]).to(device)
# Stability for inner dim
self.assertEqual(tensor.var(0), 0.03125)
# General stability
self.assertEqual(tensor.var(), 0.03125)
# Stability for outer dimensions
tensor = tensor.unsqueeze(1)
self.assertEqual(tensor.var(0), 0.03125)
@onlyCPU
@dtypes(torch.bool, torch.double)
def test_sum_all(self, device, dtype) -> None:
def check_sum_all(tensor: torch.Tensor) -> None:
pylist = tensor.reshape(-1).tolist()
self.assertEqual(tensor.sum(), sum(pylist))
if dtype != torch.bool:
check_sum_all(torch.tensor([1, 2, 3, 4, 5], dtype=dtype, device=device))
check_sum_all(torch.randn(200000, dtype=dtype, device=device))
check_sum_all(torch.randn(2000, 2, dtype=dtype, device=device)[:, 0])
else:
check_sum_all(torch.tensor([True, False, True], dtype=torch.bool, device=device))
def _test_memory_format_transformations(self, device, input_generator_fn, transformation_fn,
memory_format, compare_data=True, default_is_preserve=False):
assert(memory_format == torch.channels_last or memory_format == torch.channels_last_3d)
# xc is a channels last tensor
xc = input_generator_fn(device)
# xc is not memory dense, but looks like channels last
if memory_format == torch.channels_last:
xc = xc[..., ::2, ::2]
else:
xc = xc[..., ::2, ::2, ::2]
clone = transformation_fn(xc, memory_format=torch.preserve_format)
self.assertFalse(clone.is_contiguous())
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
self.assertFalse(xc.is_contiguous())
self.assertFalse(xc.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
xc = input_generator_fn(device)
clone = transformation_fn(xc, memory_format=torch.contiguous_format)
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
xc = input_generator_fn(device)
clone = transformation_fn(xc)
if default_is_preserve:
self.assertFalse(clone.is_contiguous())
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
else:
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
x = torch.randn((3, 4, 5, 6, 7, 8, 9), device=device)
for _ in range(10):
permutation = list(range(len(x.shape)))
random.shuffle(permutation)
x = x.permute(permutation)
self.assertEqual(x.stride(), transformation_fn(x, memory_format=torch.preserve_format).stride())
@onlyCPU
@dtypes(torch.double)
def test_sum_out(self, device, dtype: torch.dtype) -> None:
x = torch.rand(100, 100, dtype=dtype, device=device)
res1 = torch.sum(x, 1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.sum(x, 1, out=res2)
self.assertEqual(res1, res2)
x = torch.rand(100, 100, 100, dtype=dtype, device=device)
res1 = x.sum(2).sum(1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.sum(x, (2, 1), out=res2)
self.assertEqual(res1, res2)
@onlyCUDA
@dtypes(torch.float16, torch.float32)
def test_prod_gpu(self, device, dtype):
x = torch.tensor([2, 3, 6, 9, 8], dtype=dtype, device=device)
# Check all combinations: fp16 input - fp16 output, fp16 input - fp32
# output, fp32 input - fp16 output, fp32 input - fp32 output
for dtype_output in [torch.float16, torch.float32]:
result_expected = torch.tensor(2592, dtype=dtype_output, device=device)
output = torch.prod(x, dtype=dtype_output)
self.assertEqual(output, result_expected)
output = x.prod(dtype=dtype_output)
self.assertEqual(output, result_expected)
@onlyCPU
@dtypes(torch.float)
def test_prod(self, device, dtype):
x = torch.rand(100, 100, dtype=dtype, device=device)
res1 = torch.prod(x, 1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.prod(x, 1, out=res2)
self.assertEqual(res1, res2)
def test_prod_bool(self, device):
vals = [[True, True], [True, False], [False, False], []]
for val in vals:
result = torch.prod(torch.tensor(val, device=device), dtype=torch.bool).item()
expect = np.prod(np.array(val), dtype=bool)
self.assertEqual(result, expect)
result = torch.prod(torch.tensor(val, device=device)).item()
expect = np.prod(np.array(val))
self.assertEqual(result, expect)
@onlyCPU
def test_max_mixed_devices(self, device):
a = torch.randn(10, device=device)
if torch.cuda.is_available():
values = torch.randn(10).cuda()
indices = torch.cuda.LongTensor()
self.assertRaises(RuntimeError,
lambda: torch.max(a, 0, out=(values, indices)))
self.assertRaises(RuntimeError,
lambda: torch.amax(a, 0, out=values))
@onlyCPU
def test_min_mixed_devices(self, device):
a = torch.randn(10, device=device)
if torch.cuda.is_available():
values = torch.randn(10).cuda()
indices = torch.cuda.LongTensor()
self.assertRaises(RuntimeError,
lambda: torch.min(a, 0, out=(values, indices)))
self.assertRaises(RuntimeError,
lambda: torch.amin(a, 0, out=values))
# TODO: consider refactoring with bincount test
def test_bucketization(self, device):
values_1d = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9], device=device)
values_3d = torch.tensor([[[1, 3, 5], [2, 4, 6]], [[1, 2, 3], [4, 5, 6]]], device=device)
# simple 1d boundary and 3d input value
boundaries = torch.tensor([1, 2, 3, 4, 5, 6], device=device)
expected_result = torch.tensor([[[0, 2, 4], [1, 3, 5]], [[0, 1, 2], [3, 4, 5]]], device=device)
output = torch.empty(2, 2, 3, device=device, dtype=torch.int64)
self.assertEqual(torch.bucketize(values_3d, boundaries), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries, out=output), expected_result)
expected_result = torch.tensor([[[1, 3, 5], [2, 4, 6]], [[1, 2, 3], [4, 5, 6]]], device=device)
self.assertEqual(torch.bucketize(values_3d, boundaries, right=True), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries, out=output, right=True), expected_result)
# simple float 1d boundary and 1d input with output int32 type
for dtype in [torch.float32, torch.float16]:
values_1d_float = values_1d.to(dtype)
boundaries = torch.tensor([0.9, 1, 2, 2, 3, 3, 4, 4.1, 9, 9], device=device, dtype=dtype)
expected_result = torch.tensor([1, 2, 4, 6, 8, 8, 8, 8, 8], device=device, dtype=torch.int32)
self.assertEqual(torch.searchsorted(boundaries, values_1d_float, out_int32=True), expected_result)
self.assertEqual(torch.bucketize(values_1d_float, boundaries, out_int32=True), expected_result)
# multiple dimension input with 0 elements
boundaries = torch.tensor([1, 2, 3, 4, 5, 6], device=device, dtype=torch.int64)
values_0_el = torch.tensor([[[]]], device=device, dtype=torch.int64)
expected_result = values_0_el.to(torch.int64)
self.assertEqual(torch.searchsorted(boundaries, values_0_el), expected_result)
self.assertEqual(torch.bucketize(values_0_el, boundaries), expected_result)
# nan input
values_nan = torch.tensor([1.0, float('nan'), 2.0, float('nan')], device=device, dtype=torch.float64)
boundaries = torch.tensor([0.0, 1.0, 2.0, 3.0], device=device, dtype=torch.float64)
expected_result = torch.tensor([1, 4, 2, 4], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_nan), expected_result)
expected_result = torch.tensor([2, 4, 3, 4], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_nan, right=True), expected_result)
self.assertEqual(torch.searchsorted(boundaries, values_nan, side='right'), expected_result)
# type promotion and non contiguous tensors
values_3d_permute = values_3d.permute(2, 1, 0).to(torch.int32)
boundaries_permute = values_3d.permute(2, 1, 0).to(torch.float64)
expected_result = torch.tensor([[[0, 0], [0, 1]], [[2, 0], [0, 1]], [[2, 0], [0, 0]]], device=device)
if self.device_type != 'xla':
self.assertWarnsRegex(
UserWarning, "tensor is non-contiguous",
lambda: self.assertEqual(torch.searchsorted(boundaries_permute, values_3d_permute), expected_result))
else:
# All tensors in XLA is contiguous even doing permute, no warning msg will be generate in XLA
self.assertEqual(torch.searchsorted(boundaries_permute, values_3d_permute), expected_result)
# scalar type
boundaries = torch.tensor([1.5, 2.5, 3.5], device=device)
expected_result = torch.tensor(1, device=device)
self.assertEqual(torch.searchsorted(boundaries, 2), expected_result)
self.assertEqual(torch.bucketize(torch.tensor(2, device=device), boundaries), expected_result)
expected_result = torch.tensor(3, device=device)
scalar_tensor_nan = torch.tensor(float('nan'), device=device)
self.assertEqual(torch.searchsorted(boundaries, scalar_tensor_nan), expected_result)
self.assertEqual(torch.bucketize(float('nan'), boundaries, right=True), expected_result)
# invalid input dimensions
boundaries = torch.tensor([[1, 2, 3], [4, 5, 6]], device=device)
with self.assertRaisesRegex(
RuntimeError, "first N-1 dimensions of boundaries tensor and input value tensor must match"):
torch.searchsorted(boundaries, values_3d)
with self.assertRaisesRegex(
RuntimeError, "boundaries tensor must be 1 dimension"):
torch.bucketize(values_3d, boundaries)
with self.assertRaisesRegex(
RuntimeError, "only when boundaries tensor dimension is 1"):
torch.searchsorted(boundaries, 1)
# incompatiable output tensor's dtype
def test_output_dtype(dtype, is_int32):
output = values_1d.to(dtype)
with self.assertRaisesRegex(
RuntimeError, "output tensor's dtype is wrong"):
torch.searchsorted(values_1d, values_1d, out=output, out_int32=is_int32)
test_output_dtype(torch.float32, False)
test_output_dtype(torch.int32, False)
test_output_dtype(torch.int64, True)
# invalid side argument
with self.assertRaisesRegex(RuntimeError, "side can only be 'left' or 'right'"):
torch.searchsorted(values_1d, values_1d, side='bad')
# invalid sorter argument, wrong size
with self.assertRaisesRegex(RuntimeError, "boundary and sorter must have the same size"):
sequence = torch.rand_like(values_1d, dtype=torch.float)
_, sorted_idx = torch.sort(sequence)
torch.searchsorted(sequence, values_1d, sorter=sorted_idx[:-1])
# invalid sorter argument, is not dtype long
with self.assertRaisesRegex(RuntimeError, "sorter must be a tensor of long dtype"):
sequence = torch.rand_like(values_1d, dtype=torch.float)
_, sorted_idx = torch.sort(sequence)
torch.searchsorted(sequence, values_1d, sorter=sorted_idx.to(torch.float32))
# invalid sorter value, out of bound (>= innermost size)
with self.assertRaisesRegex(RuntimeError, "sorter index out of range"):
torch.searchsorted(torch.tensor([1, 2, 3]), 2.5, sorter=torch.tensor([0, 1, 3]))
# invalid sorter value, out of bound (< 0)
with self.assertRaisesRegex(RuntimeError, "sorter index out of range"):
torch.searchsorted(torch.tensor([1, 2, 3]), 2.5, sorter=torch.tensor([-1, 1, 2]))
# scalar type bfloat16
if self.device_type == 'cpu':
def test_dtype_bfloat16(values_bf16=False, boundaries_bf16=False):
values_1d_float = values_1d.to(torch.float32)
boundaries = torch.tensor([0.9, 1, 2, 2, 3, 3, 4, 4.1, 9, 9], device=device, dtype=torch.float32)
if values_bf16:
values_1d_float = values_1d_float.to(torch.bfloat16)
if boundaries_bf16:
boundaries = boundaries.to(torch.bfloat16)
expected_result = torch.tensor([1, 2, 4, 6, 8, 8, 8, 8, 8], device=device, dtype=torch.int32)
self.assertEqual(torch.bucketize(values_1d_float, boundaries, out_int32=True), expected_result)
test_dtype_bfloat16(True, False)
test_dtype_bfloat16(False, True)
test_dtype_bfloat16(True, True)
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_nansum(self, device, dtype):
args = product(
(True, False), # noncontiguous
(0, 1, None), # dim
)
zero = torch.zeros((), device=device, dtype=dtype)
for noncontiguous, dim in args:
# Randomly scale the values
scale = random.randint(10, 100)
x = make_tensor((17, 17), device=device, dtype=dtype,
low=-scale, high=scale, noncontiguous=noncontiguous)
if dtype.is_floating_point:
nan_mask = x < 0.2 * scale
x_nonan = torch.where(nan_mask, zero, x)
x[nan_mask] = np.nan
else:
x_nonan = x
dim_kwargs = {} if dim is None else {"dim": dim}
expect = torch.sum(x_nonan, **dim_kwargs)
actual = torch.nansum(x, **dim_kwargs)
self.assertEqual(expect, actual)
def _test_reduction_function_with_numpy(self, torch_func, np_func, device, dtype,
with_extremal=False, atol=None, rtol=None,
exact_dtype=True, with_keepdim=False):
# Test 0-d to 3-d tensors.
for ndims in range(0, 4):
shape = _rand_shape(ndims, min_size=5, max_size=10)
for n in range(ndims + 1):
for c in combinations(list(range(ndims)), n):
for count_dim in permutations(c):
# Generate Input.
x = _generate_input(shape, dtype, device, with_extremal)
if count_dim == ():
# Default `dims=None` case
self.compare_with_numpy(torch_func, np_func, x, device=None, dtype=None,
atol=atol, rtol=rtol, exact_dtype=exact_dtype)
else:
# With `dims: tuple of ints` case
if with_keepdim:
torch_func_partial = partial(torch_func, keepdim=True, dim=count_dim)
np_func_partial = partial(np_func, keepdims=True, axis=count_dim)
else:
torch_func_partial = partial(torch_func, dim=count_dim)
np_func_partial = partial(np_func, axis=count_dim)
self.compare_with_numpy(torch_func_partial, np_func_partial, x, device=None, dtype=None,
atol=atol, rtol=rtol, exact_dtype=exact_dtype)
@dtypes(*all_types_and_complex_and(torch.half))
def test_count_nonzero(self, device, dtype):
self._test_reduction_function_with_numpy(torch.count_nonzero, np.count_nonzero, device, dtype)
self._test_reduction_function_with_numpy(torch.count_nonzero, np.count_nonzero, device, dtype, True)
def _test_sum_reduction_vs_numpy(self, torch_fn, np_fn, device, dtype, with_keepdim=False, with_extremal=False):
def is_integral(dtype):
return dtype in integral_types()
# On Windows CI, the current version of `numpy` promotes all lower integers
# dtypes to int32 while `torch` promotes them to int64. Hence we skip on checking
# the exact dtype.
# Reference : https://dr.pytorch.org/api/view-log-full?build_id=122051580
# PR : https://github.com/pytorch/pytorch/pull/38628#issuecomment-655905370
exact_dtype = False if (IS_WINDOWS and is_integral(dtype)) else True
if dtype == torch.uint8:
with self.assertRaises(TypeError):
self._test_reduction_function_with_numpy(torch_fn, np_fn, device, dtype, with_extremal=with_extremal)
else:
# TODO: Investigate why the output is not close to numpy.
if dtype == torch.float16:
atol = 0.4
rtol = 1e-2
elif dtype == torch.float32:
atol = 7e-05
rtol = 3e-06
else:
# Default values
atol = None
rtol = None
self._test_reduction_function_with_numpy(torch_fn, np_fn, device, dtype,
atol=atol, rtol=rtol, exact_dtype=exact_dtype,
with_keepdim=with_keepdim, with_extremal=with_extremal)
@onlyNativeDeviceTypes
@dtypes(*all_types_and(torch.half))
def test_sum_vs_numpy(self, device, dtype):
self._test_sum_reduction_vs_numpy(torch.sum, np.sum, device, dtype)
self._test_sum_reduction_vs_numpy(torch.sum, np.sum, device, dtype, with_extremal=True)
self._test_sum_reduction_vs_numpy(torch.sum, np.sum, device, dtype, with_keepdim=True)
@onlyNativeDeviceTypes
@dtypes(*all_types_and(torch.half))
def test_nansum_vs_numpy(self, device, dtype):
self._test_sum_reduction_vs_numpy(torch.nansum, np.nansum, device, dtype)
self._test_sum_reduction_vs_numpy(torch.nansum, np.nansum, device, dtype, with_extremal=True)
self._test_sum_reduction_vs_numpy(torch.nansum, np.nansum, device, dtype, with_keepdim=True)
@onlyCPU
@dtypes(*complex_types())
def test_nansum_complex(self, device, dtype):
x = torch.randn((3, 3, 3), device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, "nansum does not support complex inputs"):
torch.nansum(x)
@dtypes(*all_types_and(torch.half))
def test_nansum_out_dtype(self, device, dtype):
out_dtype = dtype
inp_dtypes = all_types_and(torch.half) if out_dtype.is_floating_point else integral_types()
for inp_dtype in inp_dtypes:
shape = _rand_shape(random.randint(2, 5), min_size=5, max_size=10)
x = _generate_input(shape, inp_dtype, device, with_extremal=False)
torch_fn = partial(torch.nansum, dtype=out_dtype)
np_out_dtype = torch_to_numpy_dtype_dict[out_dtype]
np_fn = partial(np.nansum, dtype=np_out_dtype)
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
@dtypes(*all_types_and(torch.half))
def test_argminmax_multiple(self, device, dtype):
# Case: All Ones
t = torch.ones(3, 3, device=device, dtype=dtype)
self.compare_with_numpy(torch.argmax, np.argmax, t)
self.compare_with_numpy(torch.argmin, np.argmin, t)
# Case: With single `nan` present.
if dtype in floating_types_and(torch.half, torch.bfloat16):
t[2, 2] = float('nan')
self.compare_with_numpy(torch.argmax, np.argmax, t)
self.compare_with_numpy(torch.argmin, np.argmin, t)
# Case: Randomly Generated Tensors
for ndims in range(1, 5):
shape = _rand_shape(ndims, min_size=5, max_size=10)
for with_extremal in [False, True]:
for contiguous in [False, True]:
# Generate Input.
x = _generate_input(shape, dtype, device, with_extremal)
if dtype == torch.half:
max_val = torch.max(x.to(torch.float))
min_val = torch.min(x.to(torch.float))
else:
max_val = torch.max(x)
min_val = torch.min(x)
mask = torch.randn(x.shape) > 0.5
x[mask] = torch.tensor(max_val + 1, dtype=dtype)
mask = torch.randn(x.shape) > 0.5
x[mask] = torch.tensor(min_val - 1, dtype=dtype)
if not contiguous:
x = x.T
self.compare_with_numpy(torch.argmax, np.argmax, x, device=None, dtype=None)
self.compare_with_numpy(torch.argmin, np.argmin, x, device=None, dtype=None)
# Verify indices returned by max and min.
if dtype != torch.half:
rand_dim = random.randint(0, ndims - 1)
self.compare_with_numpy(lambda x: torch.max(x, dim=rand_dim)[1],
lambda x: np.argmax(x, axis=rand_dim), x, device=None, dtype=None)
self.compare_with_numpy(lambda x: torch.min(x, dim=rand_dim)[1],
lambda x: np.argmin(x, axis=rand_dim), x, device=None, dtype=None)
def verify_against_numpy(t):
# Argmax
torch_fn = partial(torch.argmax, dim=1)
np_fn = partial(np.argmax, axis=1)
self.compare_with_numpy(torch_fn, np_fn, t)
# Non-contiguous input
self.compare_with_numpy(torch_fn, np_fn, t.T)
# Verify indices returned by max.
if dtype != torch.half:
self.compare_with_numpy(lambda x: torch.max(x, dim=1)[1], np_fn, x, device=None, dtype=None)
self.compare_with_numpy(lambda x: torch.max(x, dim=1)[1], np_fn, x.T, device=None, dtype=None)
# Argmin
torch_fn = partial(torch.argmin, dim=1)
np_fn = partial(np.argmin, axis=1)
self.compare_with_numpy(torch_fn, np_fn, t)
# Non-contiguous input
self.compare_with_numpy(torch_fn, np_fn, t.T)
# Verify indices returned by min.
if dtype != torch.half:
self.compare_with_numpy(lambda x: torch.min(x, dim=1)[1], np_fn, x, device=None, dtype=None)
self.compare_with_numpy(lambda x: torch.min(x, dim=1)[1], np_fn, x.T, device=None, dtype=None)
# Case: Sample from issue: https://github.com/pytorch/pytorch/issues/41998
t = torch.tensor([[1, 5],
[2, 10],
[3, 3]], device=device, dtype=dtype)
verify_against_numpy(t)
# Case: Sample from issue: https://github.com/pytorch/pytorch/issues/41998
t = torch.tensor([[1, 5],
[2, 10],
[0, 0]], device=device, dtype=dtype)
verify_against_numpy(t)
@dtypes(*all_types_and_complex_and(torch.half, torch.bool))
def test_all_any_vs_numpy(self, device, dtype):
# Note [all, any uint8 compatibility]: However for compatibility reason,
# for `uint8`, they return Tensor of same dtype `uint8`.
# Reference: https://github.com/pytorch/pytorch/pull/47878#issuecomment-747108561
exact_dtype = True if dtype != torch.uint8 else False
def _test_all_any(x):
self.compare_with_numpy(torch.all, np.all, x)
self.compare_with_numpy(torch.any, np.any, x)
def _test_all_any_with_dim(x, dim):
torch_fn = partial(torch.all, dim=dim)
np_fn = partial(np.all, axis=dim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
torch_fn = partial(torch.any, dim=dim)
np_fn = partial(np.any, axis=dim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
def _test_out_variant(x, dim):
out = torch.empty_like(x)
if dtype == torch.bool or dtype == torch.uint8:
expected = torch.all(x, dim)
torch.all(x, dim, out=out)
self.assertEqual(expected, out)
expected = torch.any(x, dim)
torch.any(x, dim, out=out)
self.assertEqual(expected, out)
else:
with self.assertRaisesRegex(RuntimeError, "all only supports bool tensor for result, got"):
torch.all(x, dim, out=out)
with self.assertRaisesRegex(RuntimeError, "any only supports bool tensor for result, got"):
torch.any(x, dim, out=out)
def _test_all_any_with_dim_keepdim(x, dim, keepdim):
torch_fn = partial(torch.all, dim=dim, keepdim=keepdim)
np_fn = partial(np.all, axis=dim, keepdims=keepdim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
torch_fn = partial(torch.any, dim=dim, keepdim=keepdim)
np_fn = partial(np.any, axis=dim, keepdims=keepdim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
def _test_output_dtype(x):
# This test will fail once the functions return bool output
# for uint8 input.
expected_dtype = torch.uint8 if dtype == torch.uint8 else torch.bool
self.assertEqual(torch.all(x).dtype, expected_dtype)
self.assertEqual(torch.any(x).dtype, expected_dtype)
self.assertEqual(torch.all(x, dim=0).dtype, expected_dtype)
self.assertEqual(torch.any(x, dim=0).dtype, expected_dtype)
for ndim in range(5):
shape = _rand_shape(ndim, 1, 5)
x = _generate_input(shape, dtype, device, with_extremal=False)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
x = _generate_input(shape, dtype, device, with_extremal=True)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
x = torch.zeros_like(x)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
x = torch.ones_like(x)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
_test_output_dtype(x)
for dim in range(ndim):
x = _generate_input(shape, dtype, device, with_extremal=False)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
x = _generate_input(shape, dtype, device, with_extremal=True)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
x = torch.zeros_like(x)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
x = torch.ones_like(x)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
# TODO: part of this test covers torch.norm, with should be covered by test_linalg
@onlyNativeDeviceTypes
def test_repeated_dim(self, device):
ops = [torch.mean, torch.sum, torch.nansum, torch.std, torch.logsumexp, torch.std, torch.var,
torch.norm]
x = torch.randn(3, 3, 3, 3, device=device)
error_msg = r'appears multiple times in the list of dims'
for op in ops:
for dim in [(0, 0), (0, -4)]:
with self.assertRaisesRegex(RuntimeError, error_msg):
op(x, dim=dim)
# TODO: update this test to comapre against NumPy
@onlyCUDA
def test_var(self, device):
cpu_tensor = torch.randn(2, 3, 3)
device_tensor = cpu_tensor.to(device)
self.assertEqual(device_tensor.var(), cpu_tensor.var())
self.assertEqual(device_tensor.var(1), cpu_tensor.var(1))
self.assertEqual(device_tensor.var(2), cpu_tensor.var(2))
self.assertEqual(device_tensor.std(), cpu_tensor.std())
self.assertEqual(device_tensor.std(1), cpu_tensor.std(1))
self.assertEqual(device_tensor.var(2), cpu_tensor.var(2))
cpu_tensor = torch.randn(100)
device_tensor = cpu_tensor.to(device)
self.assertEqual(device_tensor.var(), cpu_tensor.var())
# TODO: update this test to compare against NumPy
@onlyCUDA
def test_var_large_input(self, device):
# Large, not-nice input
cpu_tensor = torch.randn(2 * 32 * 1024 + 1, 2, 67)
device_tensor = cpu_tensor.to(device)
self.assertEqual(cpu_tensor.var(2), device_tensor.var(2))
# TODO: update this to compare against NumPy instead of CPU
@onlyCUDA
@dtypes(torch.double)
def test_sum_noncontig(self, device, dtype):
x = torch.randn(1, 75, 57, 20, dtype=dtype, device=device).permute(0, 3, 1, 2)
y = x.cpu()
self.assertEqual(x.sum().cpu(), y.sum())
self.assertEqual(x.sum(dim=(-1, -2)).cpu(), y.sum(dim=(-1, -2)))
self.assertEqual(x.sum(dim=(1, 3)).cpu(), y.sum(dim=(1, 3)))
# TODO: update this to compare against NumPy instead of CPU
@onlyCUDA
def test_min_max_nan(self, device):
tests = [(lambda x: x.min(), 'min'),
(lambda x: x.max(), 'max'),
(lambda x: x.amin(), 'amin'),
(lambda x: x.amax(), 'amax'),
(lambda x: x.min(0).values, 'min_dim'),
(lambda x: x.max(0).values, 'max_dim'),
(lambda x: x.amin(0), 'amin_dim'),
(lambda x: x.amax(0), 'amax_dim')]
for f, name in tests:
a = torch.arange(25.0).view(5, 5)
a[2, 2] = nan
actual = f(a.to(device)).cpu()
expected = f(a).cpu()
self.assertEqual(torch.isnan(actual), torch.isnan(expected), msg=f'nans for {name}')
self.assertEqual(actual[~torch.isnan(actual)],
expected[~torch.isnan(expected)], msg=f'nans for {name}')
# TODO: make this test generic using OpInfos
@onlyCUDA
def test_sum_cpu_device_mismatch(self, device):
x = torch.randn(20, dtype=torch.float32, device=device)
y = torch.randn(1, dtype=torch.float32)
err_string = f"Expected out tensor to have device {device}, but got cpu instead"
with self.assertRaisesRegex(RuntimeError, err_string):
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
# tests half to float promotion
if self.device_type == 'cuda':
x = x.half()
with self.assertRaisesRegex(RuntimeError, err_string):
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
# Assert for illegal dtype would not be raised on XLA
@onlyNativeDeviceTypes
def test_minmax_illegal_dtype(self, device):
x = torch.randn(5, 5, dtype=torch.float32, device=device)
valid_values = torch.empty(5, dtype=torch.float32, device=device)
valid_indices = torch.empty(5, dtype=torch.long, device=device)
illegal_values = torch.empty(5, dtype=torch.int, device=device)
illegal_indices = torch.empty(5, dtype=torch.double, device=device)
torch.max(x, dim=0, out=(valid_values, valid_indices))
torch.min(x, dim=0, out=(valid_values, valid_indices))
torch.amax(x, dim=0, out=valid_values)
torch.amin(x, dim=0, out=valid_values)
rmsg = r'scalar type|dtype'
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.max(x, dim=0, out=(illegal_values, valid_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.min(x, dim=0, out=(illegal_values, valid_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.max(x, dim=0, out=(valid_values, illegal_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.min(x, dim=0, out=(valid_values, illegal_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.max(x, dim=0, out=(illegal_values, illegal_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.min(x, dim=0, out=(illegal_values, illegal_indices))
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_dim_arg_reduction_scalar(self, device, dtype):
example = 4.0
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.argmax().item(), 0)
self.assertEqual(x.argmax(dim=None).item(), 0)
self.assertEqual(x.argmax(dim=0).item(), 0)
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.tensor(0, dtype=torch.int64))
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.argmin().item(), 0)
self.assertEqual(x.argmin(dim=None).item(), 0)
self.assertEqual(x.argmin(dim=0).item(), 0)
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.tensor(0, dtype=torch.int64))
@precisionOverride({torch.float16: 1e-2, torch.bfloat16: 1e-2})
@dtypes(*set(all_types_and(torch.half, torch.bfloat16)) - {torch.uint8})
def test_dim_reduction(self, device, dtype):
example = [[-1, 2, 1], [5, 3, 6]]
sum_dtype = {
torch.bfloat16: torch.bfloat16,
torch.double: torch.double,
torch.float: torch.float,
torch.half: torch.half,
torch.int64: torch.int64,
torch.int32: torch.int64,
torch.int16: torch.int64,
torch.int8: torch.int64
}
# This won't test for 256bit instructions, since we usually
# only work on 1 cacheline (512bit) at a time and these
# examples aren't big enough to trigger that.
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.sum().item(), 16)
self.assertEqual(x.sum(0), torch.tensor([4, 5, 7], dtype=sum_dtype[dtype]))
self.assertEqual(x.sum(1), torch.tensor([2, 14], dtype=sum_dtype[dtype]))
y = torch.tensor(example, device=device, dtype=sum_dtype[dtype])
torch.sum(x, 0, out=y)
self.assertEqual(x.sum(0), y)
# Mean not supported for Int types
if dtype in [torch.float16, torch.bfloat16, torch.float32, torch.float64]:
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.mean().item(), 16.0 / 6)
self.assertEqual(x.mean(0), torch.tensor([2.0, 2.5, 7.0 / 2], dtype=dtype))
self.assertEqual(x.mean(1), torch.tensor([2.0 / 3, 14.0 / 3], dtype=dtype))
self.assertEqual(x.mean(), x.mean((0, 1)))
prod_dtype = {
torch.bfloat16: torch.bfloat16,
torch.double: torch.double,
torch.float: torch.float,
torch.float16: torch.float16,
torch.int64: torch.int64,
torch.int32: torch.int64,
torch.int16: torch.int64,
torch.int8: torch.int64,
}
# prod is not supported for float16 & bfloat16 on CPU
if not (self.device_type == 'cpu' and dtype in [torch.float16, torch.bfloat16]):
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.prod().item(), -180)
self.assertEqual(x.prod(0), torch.tensor([-5, 6, 6], dtype=prod_dtype[dtype]))
self.assertEqual(x.prod(1), torch.tensor([-2, 90], dtype=prod_dtype[dtype]))
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.min().item(), -1)
self.assertEqual(x.argmin().item(), 0)
# TODO: torch.min does not support the same operation as argmin
# for the same case, should we enable it?
self.assertEqual(x.argmin(dim=None).item(), 0)
self.assertEqual(x.min(0), (torch.tensor([-1, 2, 1], dtype=dtype),
torch.tensor([0, 0, 0], dtype=torch.int64)))
self.assertEqual(x.amin(0), torch.tensor([-1, 2, 1], dtype=dtype))
self.assertEqual(x.argmin(0), torch.tensor([0, 0, 0], dtype=torch.int64))
self.assertEqual(x.min(dim=0, keepdim=True), (torch.tensor([[-1, 2, 1]], dtype=dtype),
torch.tensor([[0, 0, 0]], dtype=torch.int64)))
self.assertEqual(x.amin(dim=0, keepdim=True), torch.tensor([[-1, 2, 1]], dtype=dtype))
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.tensor([[0, 0, 0]], dtype=torch.int64))
self.assertEqual(x.min(1), (torch.tensor([-1, 3], dtype=dtype),
torch.tensor([0, 1], dtype=torch.int64)))
self.assertEqual(x.amin(1), torch.tensor([-1, 3], dtype=dtype))
self.assertEqual(x.argmin(1), torch.tensor([0, 1], dtype=torch.int64))
self.assertEqual(x.min(dim=1, keepdim=True), (torch.tensor([[-1], [3]], dtype=dtype),
torch.tensor([[0], [1]], dtype=torch.int64)))
self.assertEqual(x.amin(dim=1, keepdim=True), torch.tensor([[-1], [3]], dtype=dtype))
self.assertEqual(x.argmin(dim=1, keepdim=True), torch.tensor([[0], [1]], dtype=torch.int64))
# test that non-contiguous tensors work
self.assertEqual(x[:, :2].min().item(), -1)
self.assertEqual(x[:, :2].amin().item(), -1)
self.assertEqual(x[:, :2].argmin().item(), 0)
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.max().item(), 6)
self.assertEqual(x.amax().item(), 6)
self.assertEqual(x.argmax().item(), 5)
self.assertEqual(x.max(0), (torch.tensor([5, 3, 6], dtype=dtype),
torch.tensor([1, 1, 1], dtype=torch.int64)))
self.assertEqual(x.amax(0), torch.tensor([5, 3, 6], dtype=dtype))
self.assertEqual(x.argmax(dim=0), torch.tensor([1, 1, 1], dtype=torch.int64))
self.assertEqual(x.max(dim=0, keepdim=True), (torch.tensor([[5, 3, 6]], dtype=dtype),
torch.tensor([[1, 1, 1]], dtype=torch.int64)))
self.assertEqual(x.amax(dim=0, keepdim=True), torch.tensor([[5, 3, 6]], dtype=dtype))
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.tensor([[1, 1, 1]], dtype=torch.int64))
self.assertEqual(x.max(1), (torch.tensor([2, 6], dtype=dtype),
torch.tensor([1, 2], dtype=torch.int64)))
self.assertEqual(x.amax(1), torch.tensor([2, 6], dtype=dtype))
self.assertEqual(x.argmax(dim=1), torch.tensor([1, 2], dtype=torch.int64))
self.assertEqual(x.max(1, keepdim=True), (torch.tensor([[2], [6]], dtype=dtype),
torch.tensor([[1], [2]], dtype=torch.int64)))
self.assertEqual(x.amax(1, keepdim=True), torch.tensor([[2], [6]], dtype=dtype))
self.assertEqual(x.argmax(dim=1, keepdim=True), torch.tensor([[1], [2]], dtype=torch.int64))
# test that non-contiguous tensors work
self.assertEqual(x[:, :2].max().item(), 5)
self.assertEqual(x[:, :2].amax().item(), 5)
self.assertEqual(x[:, :2].argmax().item(), 2)
dim_red_fns = [
"mean", "median", "nanmedian", "mode", "norm", "prod",
"std", "sum", "var", "max", "min", "amax", "amin"]
def normfn_attr(t, dim, keepdim=False, out=None):
attr = torch.norm
return attr(t, 2, dim, keepdim, out=out)
for fn_name in dim_red_fns:
fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
def fn(x, dim, keepdim=False, out=None):
ans = fn_attr(x, dim, keepdim=keepdim, out=out)
return ans if not isinstance(ans, tuple) else ans[0]
def fn_tuple(x, dim, keepdim=False, out=None):
return fn_attr(x, dim, keepdim=keepdim, out=out)
def test_multidim(x, dim):
self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
# general case
x = torch.randn(3, 4, 5, device=device)
dim = random.randint(0, 2)
test_multidim(x, dim)
# check 1-d behavior
x = torch.randn(1, device=device)
dim = 0
self.assertEqual(fn(x, dim).shape, ())
self.assertEqual(fn(x, dim, keepdim=True).shape, (1,))
# check reducing of a singleton dimension
dims = [3, 4, 5]
singleton_dim = random.randint(0, 2)
dims[singleton_dim] = 1
x = torch.randn(dims, device=device)
test_multidim(x, singleton_dim)
# check reducing with output kwargs
if fn_name in ['median', 'nanmedian', 'mode', 'max', 'min']:
y = torch.randn(5, 3, device=device)
values = torch.randn(5, 3, device=device)
indices = torch.zeros(5, 3, device=device).long() - 1
fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1]))
values_expected, indices_expected = fn_tuple(y, 1, keepdim=False)
self.assertEqual(values[:, 1], values_expected,
msg=f'{fn_name} values with out= kwarg')
self.assertEqual(indices[:, 1], indices_expected,
msg=f'{fn_name} indices with out= kwarg')
continue
x = torch.randn(5, 3, device=device)
y = torch.randn(5, 3, device=device)
fn(y, 1, keepdim=False, out=x[:, 1])
expected = fn(y, 1, keepdim=False)
self.assertEqual(x[:, 1], expected, msg=f'{fn_name} with out= kwarg')
@onlyCUDA
@largeTensorTest('10GB')
def test_reduction_split(self, device):
# Test reduction when there is a 32bit-indexing split
# https://github.com/pytorch/pytorch/issues/37583
input_ = torch.randn(5, 14400, 14400, device=device)
result = input_.sum(dim=0)
expect = input_[0] + input_[1] + input_[2] + input_[3] + input_[4]
self.assertEqual(result, expect)
@onlyCUDA
@dtypes(torch.half, torch.float, torch.double, torch.bfloat16)
def test_reduction_vectorize_along_input_corner(self, device, dtype):
# 1D case: sum
size = 1024 * 1024 * 64 + 3
shift = 1
x = torch.zeros(size, dtype=dtype, device=device)
y = x[shift:]
for i in range(100):
x.zero_()
x[i] = 1
self.assertEqual(x.sum(), 1.0)
if i < shift:
self.assertEqual(y.sum(), 0.0)
else:
self.assertEqual(y.sum(), 1.0)
for i in range(1, 100):
x.zero_()
x[-i] = 1
self.assertEqual(x.sum(), 1.0)
self.assertEqual(y.sum(), 1.0)
# 1D case: argmax
size = 1024 * 1024 * 64 + 3
shift = 1
ysize = size - shift
x = torch.zeros(size, dtype=dtype, device=device)
y = x[shift:]
for i in range(100):
x.zero_()
x[i] = 1
self.assertEqual(x.argmax().item(), i)
if i >= shift:
self.assertEqual(y.argmax().item(), i - shift)
for i in range(1, 100):
x.zero_()
x[-i] = 1
self.assertEqual(x.argmax().item(), size - i)
self.assertEqual(y.argmax().item(), ysize - i)
# 2D case: sum
size = (7, 1024 * 1024 + 3)
x = torch.zeros(size, dtype=dtype, device=device)
for i in range(100):
x.zero_()
for j in range(7):
x[j][i] = j
xs = x.sum(dim=-1)
for j in range(7):
self.assertEqual(xs[j].item(), float(j))
for i in range(100):
x.zero_()
for j in range(7):
x[j][-i] = j
xs = x.sum(dim=-1)
for j in range(7):
self.assertEqual(xs[j].item(), float(j))
# 2D case: max/argmax
size = (7, 1024 * 1024 + 3)
x = torch.zeros(size, dtype=dtype, device=device)
for i in range(100):
x.zero_()
for j in range(7):
x[j][i] = j + 1
xs1 = x.argmax(dim=-1)
xs2 = x.max(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), i)
self.assertEqual(xs2[j].item(), i)
for i in range(1, 100):
x.zero_()
for j in range(7):
x[j][-i] = j + 1
xs1 = x.argmax(dim=-1)
xs2 = x.max(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), size[1] - i)
self.assertEqual(xs2[j].item(), size[1] - i)
# 2D case: min/argmin
size = (7, 1024 * 1024 + 3)
x = torch.zeros(size, dtype=dtype, device=device)
for i in range(100):
x.zero_()
for j in range(7):
x[j][i] = -(j + 1)
xs1 = x.argmin(dim=-1)
xs2 = x.min(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), i)
self.assertEqual(xs2[j].item(), i)
for i in range(1, 100):
x.zero_()
for j in range(7):
x[j][-i] = -(j + 1)
xs1 = x.argmin(dim=-1)
xs2 = x.min(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), size[1] - i)
self.assertEqual(xs2[j].item(), size[1] - i)
@onlyCUDA
@dtypes(torch.half, torch.float, torch.double, torch.bfloat16)
def test_reduction_vectorize_along_output(self, device, dtype):
def run_test(input_):
M, N = input_.shape
input_.zero_()
for i in range(min(M, N)):
input_[i][i] = 1
output1 = input_.argmax(dim=0)
output2 = input_.sum(dim=0)
for i in range(min(M, N)):
self.assertEqual(output1[i], i)
self.assertEqual(output2[i], 1)
# vec 4
run_test(torch.zeros(64, 64, dtype=dtype, device=device))
# vec 2
run_test(torch.zeros(64 * 64 + 2, dtype=dtype, device=device)[2:].view(64, 64))
run_test(torch.zeros(64, 62, dtype=dtype, device=device))
run_test(torch.zeros(64, 2, dtype=dtype, device=device))
# vec 1
run_test(torch.zeros(64 * 64 + 1, dtype=dtype, device=device)[1:].view(64, 64))
run_test(torch.zeros(64, 61, dtype=dtype, device=device))
run_test(torch.zeros(64, 1, dtype=dtype, device=device))
@onlyCUDA
def test_argminmax_large_axis(self, device):
# Regression test for gh-32863
x = torch.zeros(2**31, device=device, dtype=torch.int8)
x[-1] = 1
self.assertEqual(x.argmax(0), x.shape[0] - 1)
self.assertEqual(x.max(0).indices, x.shape[0] - 1)
x[-1] = -1
self.assertEqual(x.argmin(0), x.shape[0] - 1)
self.assertEqual(x.min(0).indices, x.shape[0] - 1)
def test_argminmax_axis_with_dim_one(self, device):
# See: https://github.com/pytorch/pytorch/issues/38922
n = 32768
x = torch.zeros(1, n)
self.assertEqual(x.argmax(dim=0), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=0), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmax(dim=-2), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=-2), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
self.assertEqual(x.argmax(dim=-2, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=-2, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
@dtypes(torch.int, torch.long, torch.float, torch.double)
@dtypesIfCUDA(torch.int, torch.long, torch.half, torch.float, torch.double)
def test_median_real_values(self, device, dtype):
# Generate random 0-3D sizes
sizes = [random.sample(range(1, 32), i) for i in range(4) for _ in range(2)]
for size in sizes:
# Create random input tensor
t = torch.randn(size, device=device).type(dtype)
t_numpy = t.cpu().numpy()
res = t.median()
self.assertEqual(res, t.nanmedian())
k = int((t.numel() - 1) / 2)
self.assertEqual(res, t.view(-1).sort()[0][k])
if t.numel() % 2 == 1:
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
self.assertEqual(res.cpu().numpy(), np.median(t_numpy))
for dim in range(t.ndim):
res = t.median(dim, True)
self.assertEqual(res, t.nanmedian(dim, True))
size = t.size(dim) if t.ndim > 0 else 1
k = int((size - 1) / 2)
self.assertEqual(res[0], (t.sort(dim)[0]).select(dim, k).unsqueeze_(dim))
self.assertEqual(res[0], t.gather(dim, res[1]))
if size % 2 == 1:
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
self.assertEqual(res[0].cpu().numpy(), np.median(t_numpy, dim, keepdims=True), exact_dtype=False)
@dtypes(torch.float, torch.double)
@dtypesIfCUDA(torch.half, torch.float, torch.double)
def test_median_nan_values(self, device, dtype):
# Generate random 0-3D sizes
sizes = [random.sample(range(1, 32), i) for i in range(4) for _ in range(2)]
for size in sizes:
# Create random input tensor with nan values
t = torch.rand(size, device=device, dtype=dtype)
t.masked_fill_(t < 0.1, float('nan'))
t_numpy = t.cpu().numpy()
for op in [torch.median, torch.nanmedian]:
numpy_op = np.median if op == torch.median else np.nanmedian
res = op(t)
num_nan = t.isnan().sum()
if op == torch.median and num_nan > 0:
k = t.numel() - 1
else:
k = int((t.numel() - num_nan - 1) / 2)
self.assertEqual(res, t.view(-1).sort()[0][k])
if (t.numel() - num_nan) % 2 == 1:
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
self.assertEqual(res.item(), numpy_op(t.cpu().numpy()))
for dim in range(t.ndim):
res = op(t, dim, True)
size = t.size(dim) if t.ndim > 0 else 1
num_nan = t.isnan().sum(dim, True)
if op == torch.median:
k = torch.where(num_nan > 0, size - 1, int((size - 1) / 2))
else:
k = ((size - num_nan - 1) / 2).type(torch.long)
self.assertEqual(res[0], (t.sort(dim)[0]).gather(dim, k))
self.assertEqual(res[0], t.gather(dim, res[1]))
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
mask = (size - num_nan) % 2 == 1
res = res[0].masked_select(mask).cpu()
ref = numpy_op(t_numpy, dim, keepdims=True)[mask.cpu().numpy()]
self.assertEqual(res, torch.from_numpy(ref))
def test_median_corner_cases(self, device):
def check(op, a, args, key):
t = torch.tensor(a, device=device)
res = op(t, *args)
if not args:
key = torch.tensor(key, device=device)
else:
if len(key) == 1:
key = torch.tensor(key[0], device=device)
res = res[0]
else:
key = (torch.tensor(key[0], device=device), torch.tensor(key[1], device=device))
self.assertEqual(res, key)
nan = float('nan')
check(torch.median, nan, [], nan)
check(torch.median, [], [], nan)
check(torch.nanmedian, nan, [], nan)
check(torch.median, nan, [0], [nan, 0])
check(torch.nanmedian, nan, [0], [nan, 0])
check(torch.median, [nan], [0, True], [[nan], [0]])
check(torch.nanmedian, [nan], [0, True], [[nan], [0]])
check(torch.median, [nan], [0, True], [[nan], [0]])
check(torch.nanmedian, [nan], [0, True], [[nan], [0]])
# Indices are not deterministic here so can only check values
check(torch.median, [[nan, nan], [1, 2]], [0], [[nan, nan]])
check(torch.nanmedian, [[nan, nan], [1, 2]], [0], [[1, 2.]])
check(torch.median, [[nan, nan], [1, 2]], [1], [[nan, 1]])
check(torch.nanmedian, [[nan, nan], [1, 2]], [1], [[nan, 1.]])
# Discontiguous and strided tensors
a = torch.arange(12, device=device)
self.assertEqual(a[::2].median(), torch.tensor(4, device=device))
self.assertEqual(a[::2].nanmedian(), torch.tensor(4, device=device))
a.resize_(3, 4)
self.assertEqual(a.T.median(), torch.tensor(5, device=device))
self.assertEqual(a.T.nanmedian(), torch.tensor(5, device=device))
self.assertEqual(a[::2, ::2].median(-1)[0], torch.tensor([0, 8], device=device))
self.assertEqual(a[::2, ::2].nanmedian(-1)[0], torch.tensor([0, 8], device=device))
a.resize_(2, 3, 2)
self.assertEqual(a.T.median(), torch.tensor(5, device=device))
self.assertEqual(a.T.nanmedian(), torch.tensor(5, device=device))
self.assertEqual(a[:, ::2, :].median(-1)[0], torch.tensor([[0, 4], [6, 10]], device=device))
self.assertEqual(a[:, ::2, :].nanmedian(-1)[0], torch.tensor([[0, 4], [6, 10]], device=device))
@onlyNativeDeviceTypes
@dtypes(torch.float, torch.double)
def test_quantile(self, device, dtype):
# Generate some random test cases
ops = ['quantile', 'nanquantile']
inputs = [tuple(np.random.randint(2, 10, size=i)) for i in range(1, 4)]
quantiles = [tuple(np.random.rand(i)) for i in range(0, 5)]
keepdims = [True, False]
# Add corner cases
inputs.extend([0.75, (1,), (1, 1), (1, 2, 1)])
inputs.extend([[float('nan')], [[float('nan'), float('nan')], [1, 2]]])
inputs.extend([[[float('nan'), float('nan')], [float('nan'), 2]]])
quantiles.extend([0.5, [0., 1.], np.random.rand(10)])
# Enumerate all input combinations
for op, x, q, keepdim in product(ops, inputs, quantiles, keepdims):
if type(x) is tuple:
a = torch.randn(x, dtype=dtype, device=device)
# Make some random elements NaN
a.masked_fill_(torch.randint_like(a, 20) == 0, float('nan'))
else:
a = torch.tensor(x, dtype=dtype, device=device)
q = torch.tensor(q, dtype=dtype, device=device)
torch_op = getattr(torch, op)
numpy_op = getattr(np, op)
# Compute quantile along every dimension and flattened tensor
interpolations = ('linear', 'lower', 'higher', 'midpoint', 'nearest')
for interpolation, dim in product(interpolations,
[None] + list(range(a.ndim))):
result = torch_op(a, q, dim=dim, keepdim=keepdim, interpolation=interpolation)
expected = numpy_op(a.cpu().numpy(), q.cpu().numpy(), dim,
interpolation=interpolation, keepdims=keepdim)
self.assertEqual(result.cpu(), torch.from_numpy(np.array(expected)).type(result.type()))
# Test out variation
out = torch.empty_like(result)
torch_op(a, q, dim=dim, keepdim=keepdim, interpolation=interpolation, out=out)
self.assertEqual(out.cpu(), result.cpu())
def test_quantile_backward(self, device):
def check(a, q, dim, expected_grad, ops=(torch.quantile, torch.nanquantile)):
for op in ops:
t = torch.tensor(a, device=device, requires_grad=True)
op(t, torch.tensor(q, device=device), dim).sum().backward()
self.assertEqual(t.grad, expected_grad)
check([1., 2, 3], 0.5, 0, [0, 1, 0])
check([1., 2, 3, 4], 0.5, 0, [0, 0.5, 0.5, 0])
check([3., 1, 4, 2], 0.5, 0, [0.5, 0, 0, 0.5])
check([1., 2, 3, 4], [0.25, 0.5, 0.75], 0, [0.25, 1.25, 1.25, 0.25])
check([[1., 2], [2, 1]], 0., 0, [[1, 0], [0, 1]])
check([[1., 2], [4, 3]], 1., 1, [[0, 1], [1, 0]])
check([1, float('nan'), 2], 0.5, 0, [0, 1, 0], [torch.quantile])
check([1, float('nan'), 2], 0.5, 0, [0.5, 0, 0.5], [torch.nanquantile])
def test_quantile_error(self, device):
def check(a, q, args, kwargs, message):
with self.assertRaisesRegex(RuntimeError, r'quantile\(\) ' + message):
at = torch.tensor(a, device=device)
qt = torch.tensor(q, device=device) if isinstance(q, list) else q
torch.quantile(at, qt, *args, **kwargs)
check([], 0.5, [], {}, r'input tensor must be non-empty')
check([1.], [[1.]], [], {}, r'q must be a scalar or 1D tensor')
check([1], 0.5, [], {}, r'input tensor must be either float or double dtype')
check([1.], [1], [], {}, r'q tensor must be same dtype as the input tensor')
check([1.], -1., [], {}, r'q must be in the range \[0, 1\] but got -1')
check([1.], 1.1, [], {}, r'q must be in the range \[0, 1\] but got 1.1')
check([1.], 0.5, [], {'out': torch.empty([], dtype=torch.int32, device=device)},
r'out tensor must be same dtype as the input tensor')
check([1.], [1.], [None, False], {'interpolation': 'random_mode'},
r"interpolation must be one of linear, lower, higher, midpoint or nearest, but got random_mode")
if self.device_type == "cpu":
check([1.], [0.5, 1.1, -1], [], {}, r'q values must be in the range \[0, 1\]')
if self.device_type == "cuda":
with self.assertRaisesRegex(
RuntimeError, r'quantile\(\) q tensor must be on the same device as the input tensor'):
torch.randn(1, device=device).quantile(torch.tensor(0.5))
with self.assertRaisesRegex(
RuntimeError, r'quantile\(\) out tensor must be on the same device as the input tensor'):
torch.quantile(torch.randn(1, device=device), 0.5, out=torch.scalar_tensor(1))
def test_std_mean(self, device):
x = torch.rand(100, 50, 20, device=device)
for dim in range(x.dim()):
for unbiased in [False, True]:
for keepdim in [False, True]:
std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def test_std_mean_all_dims(self, device):
x = torch.rand(100, 50, 20, device=device)
for unbiased in [False, True]:
std1, mean1 = torch.std_mean(x, unbiased=unbiased)
std2 = x.std(unbiased=unbiased)
mean2 = x.mean()
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def test_var_mean(self, device):
x = torch.rand(100, 300, 50, device=device)
for dim in range(x.dim()):
for unbiased in [False, True]:
for keepdim in [False, True]:
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
def test_var_mean_all_dims(self, device):
x = torch.rand(100, 50, 20, device=device)
for unbiased in [False, True]:
var1, mean1 = torch.var_mean(x, unbiased=unbiased)
var2 = x.var(unbiased=unbiased)
mean2 = x.mean()
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
def test_std_mean_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for unbiased in [False, True]:
for keepdim in [False, True]:
std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def _compare_std_var_with_numpy(self, op, device, dtype, input, dim,
keepdim, unbiased, use_out):
a = input.cpu().numpy() if input.dtype is not torch.bfloat16 else input.float().cpu().numpy()
numpy_kwargs = {
'axis' : dim,
'keepdims' : keepdim,
'ddof' : 1 if unbiased else 0,
}
if dim is None:
del numpy_kwargs['axis']
del numpy_kwargs['keepdims']
if op == 'var':
torch_op = torch.var
numpy_op = np.var
elif op == 'std':
torch_op = torch.std
numpy_op = np.std
else:
self.fail("Unknown op!")
numpy_result = numpy_op(a, **numpy_kwargs)
if dim is None and use_out is False:
torch_result = torch_op(input, unbiased)
elif dim is not None and use_out is False:
torch_result = torch_op(input, dim, unbiased, keepdim)
elif dim is not None and use_out is True:
out = torch.empty(0, device=device, dtype=dtype)
torch_result = torch_op(input, dim, unbiased, keepdim, out=out)
else:
out = torch.empty(0, device=device, dtype=dtype)
torch_result = torch_op(input, dim, unbiased, keepdim, out=out)
exact_dtype = input.dtype not in (torch.bfloat16, torch.complex32, torch.complex64, torch.complex128)
self.assertEqual(torch_result, numpy_result, exact_dtype=exact_dtype)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_var_vs_numpy(self, device, dtype):
_size = (20, 20)
for test_case in product((torch.randn(_size, device=device, dtype=dtype),),
(None, 0, 1),
(False, True),
(False, True),
(False, True),):
self._compare_std_var_with_numpy('var', device, dtype, *test_case)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_std_vs_numpy(self, device, dtype):
_size = (20, 20)
for test_case in product((torch.randn(_size, device=device, dtype=dtype),),
(None, 0, 1),
(False, True),
(False, True),
(False, True),):
self._compare_std_var_with_numpy('std', device, dtype, *test_case)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_var_correction_vs_numpy(self, device, dtype):
_size = (20, 20)
test_args = [
*product(
# dim
(None, 0, 1),
# correction
(None, 0, 10, 30),
# keepdim
(False, True),
),
[None, -100, True], # Negative correction
]
tensor = make_tensor(_size, device=device, dtype=dtype)
array = tensor.cpu().numpy()
for dim, correction, keepdim in test_args:
numpy_kwargs = dict(axis=dim, ddof=correction, keepdims=keepdim)
if correction is None:
# NumPy default is not compatible with torch.std (gh-50010)
numpy_kwargs['ddof'] = 1
numpy_res = np.asarray(np.var(array, **numpy_kwargs))
torch_res = torch.var(tensor, dim=dim, correction=correction, keepdim=keepdim)
# inf vs. nan results are sensitive to machine precision,
# just treat them as equivalent
numpy_res[np.isinf(numpy_res)] = np.nan
torch_res[torch_res.isinf()] = np.nan
self.assertEqual(torch_res, numpy_res)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_std_correction_vs_numpy(self, device, dtype):
_size = (20, 20)
test_args = [
*product(
# dim
(None, 0, 1),
# correction
(None, 0, 10, 30),
# keepdim
(False, True),
),
[None, -100, True], # Negative correction
]
tensor = make_tensor(_size, device=device, dtype=dtype)
array = tensor.cpu().numpy()
for dim, correction, keepdim in test_args:
numpy_kwargs = dict(axis=dim, ddof=correction, keepdims=keepdim)
if correction is None:
# NumPy default is incompatible with torch.std (gh-50010)
numpy_kwargs['ddof'] = 1
numpy_res = np.asarray(np.std(array, **numpy_kwargs))
torch_res = torch.std(tensor, dim=dim, correction=correction, keepdim=keepdim)
# inf vs. nan results are sensitive to machine precision,
# just treat them as equivalent
numpy_res[np.isinf(numpy_res)] = np.nan
torch_res[torch_res.isinf()] = np.nan
self.assertEqual(torch_res, numpy_res)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_std_mean_correction(self, device, dtype):
_size = (20, 20)
test_args = [
*product(
# dim
(None, 0, 1),
# correction
(None, 0, 10, 30),
# keepdim
(False, True),
),
[None, -100, True], # Negative correction
]
tensor = make_tensor(_size, device=device, dtype=dtype)
for dim, correction, keepdim in test_args:
kwargs = dict(dim=dim, correction=correction, keepdim=keepdim)
std1 = torch.std(tensor, **kwargs)
if dim is not None:
mean1 = torch.mean(tensor, dim=dim, keepdim=keepdim)
else:
mean1 = torch.mean(tensor)
if keepdim:
mean1 = mean1.reshape((1,) * tensor.ndim)
std2, mean2 = torch.std_mean(tensor, **kwargs)
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_var_mean_correction(self, device, dtype):
_size = (20, 20)
test_args = [
*product(
# dim
(None, 0, 1),
# correction
(None, 0, 10, 30),
# keepdim
(False, True),
),
[None, -100, True], # Negative correction
]
tensor = make_tensor(_size, device=device, dtype=dtype)
for dim, correction, keepdim in test_args:
kwargs = dict(dim=dim, correction=correction, keepdim=keepdim)
var1 = torch.var(tensor, **kwargs)
if dim is not None:
mean1 = torch.mean(tensor, dim=dim, keepdim=keepdim)
else:
mean1 = torch.mean(tensor)
if keepdim:
mean1 = mean1.reshape((1,) * tensor.ndim)
var2, mean2 = torch.var_mean(tensor, **kwargs)
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
def test_amin_amax_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for keepdim in [False, True]:
amin1 = torch.amin(x, dim=dim, keepdim=keepdim)
amax1 = torch.amax(x, dim=dim, keepdim=keepdim)
amin2 = x
amax2 = x
for i, d in enumerate(dim):
if not keepdim:
d -= i
amin2 = torch.amin(amin2, dim=d, keepdim=keepdim)
amax2 = torch.amax(amax2, dim=d, keepdim=keepdim)
self.assertEqual(amin1, amin2)
self.assertEqual(amax1, amax2)
def test_histc(self, device):
# negative nbins throws
with self.assertRaisesRegex(RuntimeError, 'bins must be > 0'):
torch.histc(torch.tensor([1], dtype=torch.float, device=device), bins=-1)
# empty tensor
actual = torch.histc(torch.tensor([], device=device), min=0, max=3)
expected = torch.zeros(100, dtype=torch.float, device=device)
self.assertEqual(expected, actual)
# without nbins
actual = torch.histc(
torch.tensor([2, 5], dtype=torch.float, device=device))
expected = torch.zeros(100, dtype=torch.float, device=device)
expected[0] = 1
expected[99] = 1
self.assertEqual(expected, actual)
# tensor with the same element
actual = torch.histc(torch.ones(5, dtype=torch.float, device=device), bins=5)
self.assertEqual(
torch.tensor([0, 0, 5, 0, 0], dtype=torch.float, device=device),
actual)
# no element falls between [min, max]
actual = torch.histc(
torch.ones(5, dtype=torch.float, device=device), bins=5, min=2, max=3)
self.assertEqual(
torch.tensor([0, 0, 0, 0, 0], dtype=torch.float, device=device),
actual)
# element falls below min + integral bin size and
actual = torch.histc(
torch.tensor([2, 4, 2, 2, 5, 4], dtype=torch.float, device=device),
bins=5, min=1, max=5)
self.assertEqual(
torch.tensor([0, 3, 0, 2, 1], dtype=torch.float, device=device),
actual)
# non-integral bin size
actual = torch.histc(
torch.tensor([1, 2, 1], dtype=torch.float, device=device),
bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
actual)
# double input
actual = torch.histc(
torch.tensor([1, 2, 1], dtype=torch.double, device=device), bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.double, device=device),
actual)
self.assertEqual(actual.dtype, torch.double)
# mixed input
actual = torch.histc(
torch.tensor([1., 2, 1], dtype=torch.float, device=device),
bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
actual)
self.assertEqual(actual.dtype, torch.float)
# scalar input and 1 bin -- should return a 1-dimensional tensor, not a scalar.
actual = torch.histc(
torch.tensor(0, dtype=torch.float, device=device),
bins=1, min=0, max=3)
self.assertEqual(
torch.tensor([1], dtype=torch.float, device=device),
actual)
# tensors with inf; min, max not provided -- should throw a RuntimeError
with self.assertRaisesRegex(RuntimeError, r'range of \[inf, inf\] is not finite'):
torch.histc(torch.tensor([float("inf")], dtype=torch.float, device=device))
with self.assertRaisesRegex(RuntimeError, r'range of \[1, inf\] is not finite'):
torch.histc(torch.tensor([1., 2., float("inf")], dtype=torch.float, device=device))
# tensors with inf; min, max provided
self.assertEqual(
torch.histc(torch.tensor([float("inf")], dtype=torch.float, device=device),
bins=1, min=0, max=3),
torch.tensor([0], dtype=torch.float, device=device))
self.assertEqual(
torch.histc(torch.tensor([1., 2., float("inf")], dtype=torch.float, device=device),
bins=4, max=3),
torch.tensor([0, 1, 1, 0], dtype=torch.float, device=device))
# tensor with nan; min, max not provided -- should throw a RuntimeError
with self.assertRaisesRegex(RuntimeError, r'range of \[nan, nan\] is not finite'):
torch.histc(torch.tensor([float("nan")], dtype=torch.float, device=device))
# tensor with nan; min, max provided -- nan is ignored
self.assertEqual(
torch.histc(torch.tensor([1., 2., float("nan")], dtype=torch.float, device=device),
bins=4, max=3),
torch.tensor([0, 1, 1, 0], dtype=torch.float, device=device))
# tensors with min > max -- should throw a RuntimeError
with self.assertRaisesRegex(RuntimeError, "max must be larger than min"):
torch.histc(torch.tensor([1., 2., 3.], dtype=torch.float, device=device),
bins=4, min=5, max=1)
# test against numpy.histogram()
def test_against_np(tensor, bins=100, min=0, max=0):
if min == 0 and max == 0:
min = tensor.min().item()
max = tensor.max().item()
nparr = tensor.cpu().numpy()
actual = torch.histc(tensor, bins=bins, min=min, max=max)
expected = torch.from_numpy(np.histogram(nparr, bins=bins, range=(min, max))[0])
actual_cpu = actual.cpu()
# NB: Numpy returns a int64 tensor, like normal people...
self.assertEqual(actual, expected.to(actual_cpu))
test_against_np(torch.tensor([1., 2, 1], device=device))
test_against_np(torch.randn(5000, device=device))
# Test bins arg
test_against_np(torch.randn(301, device=device), bins=10)
# Test truncated range
test_against_np(torch.randn(201, device=device), min=0.1, max=1)
noncontig = torch.randn(100, 3, device=device)[:, 2]
test_against_np(noncontig)
multidim = torch.randn(3, 5, 7, 2, device=device)
test_against_np(multidim)
expanded = torch.randn(1, 5, 1, 2, device=device).expand(3, 5, 7, 2)
test_against_np(expanded)
linear = torch.linspace(0, 0.99 - 5.0e-7, 101).to(device)
test_against_np(linear, bins=20, min=0, max=0.99)
@onlyCPU
def test_histc_bfloat16(self, device):
actual = torch.histc(
torch.tensor([1, 2, 1], dtype=torch.bfloat16, device=device), bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.bfloat16, device=device),
actual)
self.assertEqual(actual.dtype, torch.bfloat16)
"""
Runs torch.histogram and numpy.histogram on the specified input parameters
and asserts that their output is equal.
"""
def _test_histogram_numpy(self, t, bins, bin_range, weights, density):
def to_np(t):
if not torch.is_tensor(t):
return t
else:
return t.cpu().numpy()
# Wrapper around numpy.histogram performing conversions between torch tensors and numpy arrays.
def reference_histogram(self, t, bins, bin_range, weights, density, dtype):
(np_t, np_bins, np_weights) = map(to_np, [t, bins, weights])
(np_hist, np_bin_edges) = np.histogram(np_t, np_bins, range=bin_range, weights=np_weights, density=density)
return (torch.from_numpy(np_hist).to(dtype), torch.from_numpy(np_bin_edges).to(dtype))
# Doesn't pass a 'range' kwarg unless necessary because the override of histogram with Tensor bins doesn't accept one
if bin_range:
(actual_hist, actual_bin_edges) = torch.histogram(t, bins, range=bin_range, weight=weights, density=density)
else:
(actual_hist, actual_bin_edges) = torch.histogram(t, bins, weight=weights, density=density)
(expected_hist, expected_bin_edges) = reference_histogram(self, t, bins, bin_range, weights, density, actual_hist.dtype)
"""
Works around linspace discrepancies by passing torch's constructed bin_edges to numpy.
When bin edges are not explicitly defined, histogram uses the linspace operator internally
to construct the sequence of bin edges. In some cases, torch.linspace output differs slightly
from numpy.linspace output.
Issue: https://github.com/pytorch/pytorch/issues/58758
"""
if not torch.is_tensor(bins):
self.assertEqual(actual_bin_edges, expected_bin_edges, atol=1e-5, rtol=1e-5)
# Calls numpy.histogram again, passing torch's actual_bin_edges as the bins argument
(expected_hist, expected_bin_edges) = reference_histogram(
self, t, actual_bin_edges, bin_range, weights, density, actual_hist.dtype)
self.assertEqual(actual_hist, expected_hist)
self.assertEqual(actual_bin_edges, expected_bin_edges)
# Test passing non-contiguous output tensors
hist_out = make_tensor(expected_hist.shape, device=expected_hist.device, dtype=expected_hist.dtype,
noncontiguous=True)
bin_edges_out = make_tensor(expected_bin_edges.shape, device=expected_bin_edges.device, dtype=expected_bin_edges.dtype,
noncontiguous=True)
# Doesn't pass a 'range' kwarg unless necessary because the override of histogram with Tensor bins doesn't accept one
if bin_range:
torch.histogram(t, bins, range=bin_range, weight=weights, density=density, out=(hist_out, bin_edges_out))
else:
torch.histogram(t, bins, weight=weights, density=density, out=(hist_out, bin_edges_out))
self.assertEqual(hist_out, expected_hist)
self.assertEqual(bin_edges_out, expected_bin_edges)
@onlyCPU
@dtypes(torch.float32)
def test_histogram(self, device, dtype):
shapes = (
(),
(0,),
(1,),
(1, 5),
(3, 5),
(1, 5, 1),
(2, 3, 5))
for contig, bins_contig, bin_ct, weighted, density, shape in \
product([True, False], [True, False], range(1, 10), [True, False], [True, False], shapes):
values = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9, noncontiguous=not contig)
weights = make_tensor(shape, dtype=dtype, device=device, low=0, high=9, noncontiguous=not contig) if weighted else None
# Tests passing just the bin_ct
self._test_histogram_numpy(values, bin_ct, None, weights, density)
# Tests with caller-specified histogram range
bin_range = sorted((random.uniform(-9, 9), random.uniform(-9, 9)))
self._test_histogram_numpy(values, bin_ct, bin_range, weights, density)
# Tests with range min=max
bin_range[1] = bin_range[0]
self._test_histogram_numpy(values, bin_ct, bin_range, weights, density)
# Tests with caller-specified bin edges
bin_edges = make_tensor(bin_ct + 1, dtype=dtype, device=device, low=-9, high=9).msort()
if not bins_contig:
# Necessary because msort always produces contiguous output
bin_edges_noncontig = make_tensor(bin_ct + 1, dtype=dtype, device=device, noncontiguous=not bins_contig)
bin_edges_noncontig.copy_(bin_edges)
bin_edges = bin_edges_noncontig
self.assertEqual(bin_edges.is_contiguous(), bins_contig)
self._test_histogram_numpy(values, bin_edges, None, weights, density)
# Tests with input tensor in which all elements are equal
elt = random.uniform(-9, 9)
values = make_tensor(shape, dtype=dtype, device=device, low=elt, high=elt, noncontiguous=not contig)
self._test_histogram_numpy(values, bin_ct, bin_range, weights, density)
self._test_histogram_numpy(values, bin_edges, None, weights, density)
# Tests with input equal to bin_edges
weights = (
make_tensor(bin_ct + 1, dtype=dtype, device=device, low=0, high=9, noncontiguous=not contig)
if weighted
else None
)
self._test_histogram_numpy(bin_edges, bin_edges, None, weights, density)
# Tests values of default args
for bin_ct, shape in product(range(1, 10), shapes):
values = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9)
(actual_hist, actual_bin_edges) = torch.histogram(values, bin_ct)
(expected_hist, expected_bin_edges) = torch.histogram(
values, bin_ct, range=None, weight=None, density=False)
self.assertEqual(actual_hist, expected_hist)
self.assertEqual(actual_bin_edges, expected_bin_edges)
"""
Runs torch.histogramdd and numpy.histogramdd on the specified input parameters
and asserts that their output is equal.
"""
def _test_histogramdd_numpy(self, t, bins, bin_range, weights, density):
def to_np(t):
if type(t) == list:
return list(map(to_np, t))
if not torch.is_tensor(t):
return t
return t.cpu().numpy()
# Wrapper around numpy.histogram performing conversions between torch tensors and numpy arrays.
def reference_histogramdd(t, bins, bin_range, weights, density, dtype):
(np_t, np_bins, np_weights) = map(to_np, [t, bins, weights])
# numpy.histogramdd accepts only (N, D) shapes
D = np_t.shape[-1]
N = np.prod(np_t.shape[:-1])
reshaped_t = np.reshape(np_t, (N, D))
reshaped_wt = np.reshape(np_weights, (N,)) if np_weights is not None else None
# numpy.histogramdd throws an error for D=0
if D == 0:
return (torch.tensor(float('nan') if density else 0.), [])
# numpy.histogramdd expects range to be specified as a sequence of D (lower, upper) tuples
reshaped_range = None if not bin_range else [(bin_range[2 * i], bin_range[2 * i + 1]) for i in range(D)]
(np_hist, np_bin_edges) = np.histogramdd(reshaped_t, np_bins,
range=reshaped_range, weights=reshaped_wt, density=density)
return (torch.from_numpy(np_hist).to(dtype), [torch.from_numpy(t).to(dtype) for t in np_bin_edges])
(actual_hist, actual_bin_edges) = torch.histogramdd(t, bins, range=bin_range, weight=weights, density=density)
(expected_hist, expected_bin_edges) = reference_histogramdd(t, bins, bin_range, weights, density, actual_hist.dtype)
D = len(actual_bin_edges)
self.assertEqual(D, len(expected_bin_edges))
"""
Works around linspace discrepancies by passing torch's constructed bin_edges to numpy.
When bin edges are not explicitly defined, histogram uses the linspace operator internally
to construct the sequence of bin edges. In some cases, torch.linspace output differs slightly
from numpy.linspace output.
Issue: https://github.com/pytorch/pytorch/issues/58758
"""
if not torch.is_tensor(bins):
for dim in range(D):
self.assertEqual(actual_bin_edges[dim], expected_bin_edges[dim], atol=1e-5, rtol=1e-5)
# Calls numpy.histogram again, passing torch's actual_bin_edges as the bins argument
(expected_hist, expected_bin_edges) = reference_histogramdd(
t, actual_bin_edges, bin_range, weights, density, actual_hist.dtype)
self.assertEqual(D, len(expected_bin_edges))
self.assertEqual(actual_hist, expected_hist)
for dim in range(D):
self.assertEqual(actual_bin_edges[dim], expected_bin_edges[dim])
@onlyCPU
@dtypes(torch.float32)
def test_histogramdd(self, device, dtype):
shapes = (
(1, 5),
(3, 5),
(1, 5, 1),
(2, 3, 5),
(7, 7, 7, 7),
(16, 8, 4, 2),
(10, 10, 10),
(7, 0, 3),
(5, 0),)
for contig, bins_contig, weighted, density, shape in \
product([True, False], [True, False], [True, False], [True, False], shapes):
D = shape[-1]
values = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9, noncontiguous=not contig)
weights = (
make_tensor(shape[:-1], dtype=dtype, device=device, low=0, high=9, noncontiguous=not contig)
if weighted
else None
)
# Tests passing a single bin count
bin_ct = random.randint(1, 5)
self._test_histogramdd_numpy(values, bin_ct, None, weights, density)
# Tests passing a bin count for each dimension
bin_ct = [random.randint(1, 5) for dim in range(D)]
self._test_histogramdd_numpy(values, bin_ct, None, weights, density)
# Tests with caller-specified histogram range
bin_range_tuples = [sorted((random.uniform(-9, 9), random.uniform(-9, 9))) for dim in range(D)]
bin_range = [elt for t in bin_range_tuples for elt in t]
self._test_histogramdd_numpy(values, bin_ct, bin_range, weights, density)
# Tests with range min=max
for dim in range(D):
bin_range[2 * dim + 1] = bin_range[2 * dim]
self._test_histogramdd_numpy(values, bin_ct, bin_range, weights, density)
# Tests with caller-specified bin edges
bin_edges = [make_tensor(ct + 1, dtype=dtype, device=device, low=-9, high=9).msort() for ct in bin_ct]
if not bins_contig:
# Necessary because msort always produces contiguous output
bin_edges_noncontig = [
make_tensor(ct + 1, dtype=dtype, device=device, noncontiguous=not bins_contig)
for ct in bin_ct
]
for dim in range(D):
bin_edges_noncontig[dim].copy_(bin_edges[dim])
bin_edges = bin_edges_noncontig
for dim in range(D):
self.assertEqual(bin_edges[dim].is_contiguous(), bins_contig)
self._test_histogramdd_numpy(values, bin_edges, None, weights, density)
@onlyCPU
@dtypes(torch.float32)
def test_histogram_error_handling(self, device, dtype):
with self.assertRaisesRegex(RuntimeError, 'not implemented for'):
values = make_tensor((), dtype=torch.int32, device=device)
torch.histogram(values, 1)
inconsistent_dtype = torch.float32 if dtype != torch.float32 else torch.float64
with self.assertRaisesRegex(RuntimeError, 'input tensor and bins tensors should have the same dtype'):
values = make_tensor((), dtype=dtype, device=device)
bins = make_tensor((), dtype=inconsistent_dtype, device=device)
torch.histogram(values, bins)
with self.assertRaisesRegex(RuntimeError, 'input tensor and weight tensor should have the same dtype'):
values = make_tensor((), dtype=dtype, device=device)
weight = make_tensor((), dtype=inconsistent_dtype, device=device)
torch.histogram(values, 1, weight=weight)
with self.assertRaisesRegex(RuntimeError, 'input tensor and hist tensor should have the same dtype'):
values = make_tensor((), dtype=dtype, device=device)
hist = make_tensor((), dtype=inconsistent_dtype, device=device)
bin_edges = make_tensor((), dtype=dtype, device=device)
torch.histogram(values, 1, out=(hist, bin_edges))
with self.assertRaisesRegex(RuntimeError, 'input tensor and bin_edges tensor should have the same dtype'):
values = make_tensor((), dtype=dtype, device=device)
hist = make_tensor((), dtype=dtype, device=device)
bin_edges = make_tensor((), dtype=inconsistent_dtype, device=device)
torch.histogram(values, 1, out=(hist, bin_edges))
with self.assertRaisesRegex(RuntimeError, 'bins tensor should have one dimension'):
t = make_tensor((2, 2), dtype=dtype, device=device)
torch.histogram(t, t)
with self.assertRaisesRegex(RuntimeError, 'bins tensor should have at least 1 element'):
t = make_tensor((0), dtype=dtype, device=device)
torch.histogram(t, t)
with self.assertRaisesRegex(RuntimeError, 'bins must be > 0'):
values = make_tensor((), dtype=dtype, device=device)
torch.histogram(values, -1)
with self.assertRaisesRegex(RuntimeError, 'if weight tensor is provided it should have the same shape \
as the input tensor excluding its innermost dimension'):
values = make_tensor((2, 2), dtype=dtype, device=device)
weight = make_tensor((1), dtype=dtype, device=device)
torch.histogram(values, 1, weight=weight)
with self.assertRaisesRegex(TypeError, 'received an invalid combination of arguments'):
values = make_tensor((), dtype=dtype, device=device)
bin_edges = make_tensor((), dtype=dtype, device=device)
torch.histogram(values, bin_edges, range=(0, 1))
with self.assertRaisesRegex(RuntimeError, 'min should not exceed max'):
values = make_tensor((), dtype=dtype, device=device)
torch.histogram(values, 2, range=(1, 0))
with self.assertRaisesRegex(RuntimeError, r'range \[nan, nan\] is not finite'):
values = torch.tensor([float("nan")], device=device, dtype=dtype)
torch.histogram(values, 2)
# Tests to ensure that reduction functions employing comparison operators are usable when there
# exists a zero dimension (i.e. when the the tensors are empty) in the tensor. These tests specifically
# cater to functions where specifying the `dim` parameter is necessary.
def test_tensor_compare_ops_empty(self, device):
shape = (2, 0, 4)
master_input = torch.randn(shape, device=device)
np_input = np.empty(shape)
test_functions = [
('amax', torch.amax, np.amax),
('amin', torch.amin, np.amin),
('max', lambda *args, **kwargs: torch.max(*args, **kwargs).values, np.max),
('min', lambda *args, **kwargs: torch.min(*args, **kwargs).values, np.min),
('median', lambda *args, **kwargs: torch.median(*args, **kwargs).values, np.median),
]
for name, fn, np_function in test_functions:
# Check if reduction happens along the specified dim with and without keepdim. Check with
# numpy to maintain compatibility with numpy functions.
error_msg = f"test function: {name}"
self.assertEqual(torch.empty((2, 0), device=device), fn(master_input, dim=2), msg=error_msg)
self.assertEqual(np_function(np_input, axis=2),
fn(master_input, dim=2).cpu().numpy(), msg=error_msg, exact_dtype=False)
self.assertEqual(torch.empty((2, 0), device=device), fn(master_input, dim=-1), msg=error_msg)
self.assertEqual(np_function(np_input, axis=-1),
fn(master_input, dim=-1).cpu().numpy(), msg=error_msg, exact_dtype=False)
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(master_input, dim=2, keepdim=True),
msg=error_msg)
self.assertEqual(np_function(np_input, axis=2, keepdims=True),
fn(master_input, dim=2, keepdim=True).cpu().numpy(), msg=error_msg, exact_dtype=False)
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(master_input, dim=-1, keepdim=True),
msg=error_msg)
self.assertEqual(np_function(np_input, axis=-1, keepdims=True),
fn(master_input, dim=-1, keepdim=True).cpu().numpy(), msg=error_msg, exact_dtype=False)
# Check if function raises error on specified zero'd dimension as reduction dim.
self.assertRaisesRegex(IndexError, "Expected reduction dim", lambda: fn(master_input, dim=1))
# Tests to ensure that reduction of zero-dim tensors (i.e. empty tensors) using comparison operators
# raises an error if no `dim` parameter is specified. This exists separately from tests in
# test_tensot_compare_ops_empty because not specifying a `dim` parameter in the former tests does
# not throw errors. Also, checking the return type of argmax requires supplying a different dtype
# argument than that for the input tensor. There is also variantion in numpy testing.
def test_tensor_compare_ops_argmax_argmix_kthvalue_dim_empty(self, device):
shape = (2, 0, 4)
master_input = torch.randn(shape, device=device)
np_input = np.empty(shape)
test_functions = [
('argmax', torch.argmax, {'dtype': torch.int64}, np.argmax),
('argmin', torch.argmin, {'dtype': torch.int64}, np.argmin),
('kthvalue', lambda *args, k=1, **kwargs: torch.kthvalue(*args, k=1, **kwargs).values,
{}, lambda *args, k=1, axis=None, **kwargs: np.partition(*args, k, **kwargs).take(k - 1, axis=axis))
]
for name, fn, dtype, np_function in test_functions:
error_msg = f"test function: {name}"
self.assertEqual(torch.empty((2, 0), device=device, **dtype), fn(master_input, dim=2), msg=error_msg)
self.assertEqual(
np_function(np_input, axis=2), fn(master_input, dim=2).cpu().numpy(), msg=error_msg, exact_dtype=False
)
self.assertEqual(torch.empty((2, 0), device=device, **dtype), fn(master_input, dim=-1), msg=error_msg)
self.assertEqual(
np_function(np_input, axis=-1), fn(master_input, dim=-1).cpu().numpy(), msg=error_msg, exact_dtype=False
)
# keepdim variant does not exist for numpy
self.assertEqual(torch.empty((2, 0, 1), device=device, **dtype), fn(master_input, dim=2, keepdim=True),
msg=error_msg)
self.assertEqual(torch.empty((2, 0, 1), device=device, **dtype), fn(master_input, dim=-1, keepdim=True),
msg=error_msg)
# Check if function raises error on specified zero'd dimension as reduction dim.
self.assertRaisesRegex(IndexError, "Expected reduction dim", lambda: fn(master_input, dim=1))
if name != 'kthvalue':
self.assertRaisesRegex(IndexError, "Expected reduction dim", lambda: fn(master_input))
# Tests to ensure that reduction of zero-dim tensors (i.e. empty tensors) using math operators works when a
# non-zero dim is specified for the reduction and throws an error when the dim specified is 0. Although
# there is some repetition with test_tensor_compare_ops_optional_dim_empty and test_tensor_compare_ops_empty,
# these tests are kept separate since tests for math operators also require checking for correctness of the
# returned data using allclose() or isinf() which does not exists in the former tests.
@skipIfNoSciPy
def test_tensor_reduce_ops_empty(self, device):
from scipy.special import logsumexp
shape = (2, 0, 4)
master_input = torch.randn(shape, device=device)
np_input = np.empty(shape)
test_functions = [
('prod', torch.prod, 1., np.prod),
('sum', torch.sum, 0., np.sum),
('norm', torch.norm, 0., np.linalg.norm),
('mean', torch.mean, nan, np.mean),
('var', torch.var, nan, np.var),
('std', torch.std, nan, np.std),
('logsumexp', torch.logsumexp, -inf, logsumexp),
]
for name, fn, return_value, np_function in test_functions:
# Check if reduction happens along the specified dimension.
error_msg = f"test function: {name}"
self.assertEqual(torch.empty((2, 0), device=device), fn(master_input, dim=2), msg=error_msg)
self.assertEqual(np_function(np_input, axis=2), fn(master_input, dim=2).cpu().numpy(), msg=error_msg,
exact_dtype=False)
self.assertEqual(torch.empty((2, 0), device=device), fn(master_input, dim=-1), msg=error_msg)
self.assertEqual(np_function(np_input, axis=-1), fn(master_input, dim=-1).cpu().numpy(), msg=error_msg,
exact_dtype=False)
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(master_input, dim=2, keepdim=True),
msg=error_msg)
self.assertEqual(np_function(np_input, axis=2, keepdims=True), fn(master_input, dim=2, keepdim=True),
msg=error_msg, exact_dtype=False)
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(master_input, dim=-1, keepdim=True),
msg=error_msg)
self.assertEqual(np_function(np_input, axis=-1, keepdims=True), fn(master_input, dim=-1, keepdim=True),
msg=error_msg, exact_dtype=False)
self.assertEqual(torch.full((2, 4), return_value, device=device), fn(master_input, dim=1), msg=error_msg)
self.assertEqual(torch.full((2, 4), return_value, device=device), fn(master_input, dim=-2), msg=error_msg)
self.assertEqual(torch.full((2, 1, 4), return_value, device=device), fn(master_input, dim=1, keepdim=True),
msg=error_msg)
self.assertEqual(torch.full((2, 1, 4), return_value, device=device), fn(master_input, dim=-2, keepdim=True),
msg=error_msg)
if name != 'logsumexp':
# The scipy function does not work for reduction the zero dimension
self.assertEqual(np.float32(np_function(np_input, axis=1)), fn(master_input, dim=1).cpu().numpy(),
msg=error_msg)
self.assertEqual(np.float32(np_function(np_input, axis=-2)), fn(master_input, dim=-2).cpu().numpy(),
msg=error_msg)
self.assertEqual(np.float32(np_function(np_input, axis=1, keepdims=True)),
fn(master_input, dim=1, keepdim=True).cpu().numpy(),
msg=error_msg)
self.assertEqual(np.float32(np_function(np_input, axis=-2, keepdims=True)),
fn(master_input, dim=-2, keepdim=True).cpu().numpy(),
msg=error_msg)
# logsumexp throws a type error when not specifying dim so test separately.
self.assertEqual(torch.full((), return_value, device=device), fn(master_input), msg=error_msg)
else:
self.assertRaises(TypeError, lambda: fn(master_input))
# Tests to ensure that any() and all() functions work with zero-dim tensors. Kept separate from
# other tests for checking reduction with zero-dim tensors because these tests have significantly
# different testing behaviour than that used for the former tests.
def test_reduction_empty_any_all(self, device):
shape = (2, 0, 4)
x = torch.randn(shape, device=device)
for dtype in all_types_and_complex_and(torch.half, torch.bool):
# Refer: [all, any uint8 compatibility]
if dtype == torch.uint8:
out_dtype = torch.uint8
else:
out_dtype = torch.bool # output of all/any is bool irrespective of input dtype
xb = x.to(dtype)
yb = x.to(dtype)
# any
self.assertEqual((2, 0), xb.any(2).shape)
self.assertEqual((2, 0, 1), xb.any(2, keepdim=True).shape)
self.assertEqual(torch.zeros((2, 4), device=device, dtype=out_dtype), xb.any(1))
self.assertEqual(torch.zeros((2, 1, 4), device=device, dtype=out_dtype), xb.any(1, keepdim=True))
self.assertEqual(torch.zeros((), device=device, dtype=out_dtype), xb.any())
# all
self.assertEqual((2, 0), xb.all(2).shape)
self.assertEqual((2, 0, 1), xb.all(2, keepdim=True).shape)
self.assertEqual(torch.ones((2, 4), device=device, dtype=out_dtype), xb.all(1))
self.assertEqual(torch.ones((2, 1, 4), device=device, dtype=out_dtype), xb.all(1, keepdim=True))
self.assertEqual(torch.ones((), device=device, dtype=out_dtype), xb.all())
# TODO: can these be merged with their respective OpInfos?
def test_reduce_dtype(self, device):
def test_reduction(op, has_no_dim, takes_dtype=True):
x = torch.randn(3, 3, dtype=torch.float, requires_grad=True, device=device)
if has_no_dim:
grad1, = torch.autograd.grad([op(x)], [x])
grad2, = torch.autograd.grad([op(x, dtype=torch.double)], [x])
self.assertEqual(grad1, grad2)
self.assertEqual(grad2.dtype, torch.float)
gi = torch.randn(op(x, dim=0).shape, dtype=torch.float, device=device)
grad1, = torch.autograd.grad([op(x, dim=0)], [x], gi)
if takes_dtype:
grad2, = torch.autograd.grad([op(x, dim=0, dtype=torch.double)], [x], gi.double())
else:
grad2, = torch.autograd.grad([op(x.double(), dim=0)], [x], gi.double())
self.assertEqual(grad1, grad2)
self.assertEqual(grad2.dtype, torch.float)
test_reduction(torch.sum, True)
test_reduction(torch.prod, True)
test_reduction(torch.cumsum, False)
test_reduction(torch.cumprod, False)
test_reduction(torch.logcumsumexp, False, takes_dtype=False)
@ops(reference_masked_ops)
def test_reference_masked(self, device, dtype, op):
"""Test masked reduction operations on strided-only tensors using
numpy reductions as reference.
"""
def to_numpy(input):
if input.dtype is torch.bfloat16:
return input.cpu().to(torch.float32).numpy()
else:
return input.cpu().numpy()
samples = op.sample_inputs_func(op, device, dtype, requires_grad=False)
for sample_input in samples:
t = sample_input.input
actual = op(t, *sample_input.args, **sample_input.kwargs)
exact_dtype = not (t.dtype is torch.bfloat16
or (op.promotes_int_to_float and not torch.is_floating_point(t)))
expected = op.ref(to_numpy(t), *sample_input.args,
**dict(
# `identity` is mapped to numpy reduction `initial` argument
identity=torch.masked._reduction_identity(op.name, t),
**sample_input.kwargs))
# Workaround https://github.com/pytorch/pytorch/issues/66556
expected = np.asarray(expected) # transform numpy scalars to numpy.ndarray instances
msg = ("Failed to produce expected results! Input tensor was"
f" {t}, torch result is {actual}, and reference result is"
f" {expected}.") if t.numel() < 10 else None
self.assertEqual(actual, expected, msg, exact_dtype=exact_dtype)
@onlyCUDA
@largeTensorTest("8GB")
@dtypes(torch.half, torch.chalf, torch.bfloat16)
def test_reductions_large_half_tensors(self, device, dtype):
t = torch.ones(2**31, device=device, dtype=dtype)
t[2**30:] = -1
expected = torch.tensor(0, device=device, dtype=dtype)
self.assertEqual(torch.sum(t), expected)
# mean_cuda is not implemented for ComplexHalf
err_msg = "not implemented for 'ComplexHalf'"
ctx = self.assertRaisesRegex(
RuntimeError, err_msg) if dtype is torch.chalf else contextlib.nullcontext()
with ctx:
self.assertEqual(torch.mean(t), expected)
instantiate_device_type_tests(TestReductions, globals())
if __name__ == '__main__':
run_tests()