pytorch/test/test_utils.py

984 lines
36 KiB
Python

# Owner(s): ["module: unknown"]
import sys
import os
import re
import shutil
import random
import subprocess
import tempfile
import traceback
import textwrap
import unittest
from typing import Any, List, Dict
import torch
import torch.nn as nn
import torch.utils.data
from torch.utils.data import DataLoader
from torch.testing._internal.common_device_type import (
ops,
onlyCPU,
instantiate_device_type_tests,
)
from torch.testing._internal.common_methods_invocations import op_db
import torch.cuda
from torch.utils._pytree import tree_any, tree_all_only
from torch.utils.checkpoint import checkpoint, checkpoint_sequential
from torch import set_default_device
from torch.utils._device import set_device
from torch.utils._traceback import report_compile_source_on_error, format_traceback_short, CapturedTraceback
import torch.utils.cpp_extension
from torch.autograd._functions.utils import check_onnx_broadcast
from torch.onnx.symbolic_opset9 import _prepare_onnx_paddings
from torch.testing._internal.common_utils import load_tests, IS_FBCODE, IS_SANDCASTLE, IS_WINDOWS
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
HAS_CUDA = torch.cuda.is_available()
from torch.testing._internal.common_utils import TestCase, run_tests
class RandomDatasetMock(torch.utils.data.Dataset):
def __getitem__(self, index):
return torch.tensor([torch.rand(1).item(), random.uniform(0, 1)])
def __len__(self):
return 1000
class TestCheckpoint(TestCase):
# This runs checkpoint_sequential on each of the nets in
# module_lists_to_compare, and compares them against the uncheckpointed model.
# To compare, it checks outputs as well as input gradients and parameter gradients
def _check_checkpoint_sequential(
self,
model,
module_lists_to_compare,
num_chunks,
input,
use_reentrant,
):
# not checkpointed
out = model(input)
out_not_checkpointed = out.detach().clone()
model.zero_grad()
out.sum().backward()
grad_not_checkpointed = {
name: param.grad.detach().clone()
for name, param in model.named_parameters()
}
input_grad_not_checkpointed = input.grad.detach().clone()
for model_to_compare in module_lists_to_compare:
# checkpointed model by passing list of modules
detached = input.detach()
detached.requires_grad = True
# pass list of modules to checkpoint
out = checkpoint_sequential(
model_to_compare, num_chunks, detached, use_reentrant=use_reentrant
)
out_checkpointed = out.detach().clone()
model.zero_grad()
out.sum().backward()
grad_checkpointed = {
name: param.grad.detach().clone()
for name, param in model.named_parameters()
}
input_grad_checkpointed = detached.grad.detach().clone()
# compare outputs as well as the gradients of input and parameters
self.assertEqual(out_checkpointed, out_not_checkpointed)
self.assertEqual(input_grad_not_checkpointed, input_grad_checkpointed)
for name in grad_checkpointed:
self.assertEqual(grad_checkpointed[name], grad_not_checkpointed[name])
# Test whether checkpoint is being triggered or not. For this, we check
# the number of times forward pass happens
def test_checkpoint_trigger(self):
class Net(nn.Module):
def __init__(self):
super().__init__()
self.counter = 0
def forward(self, input_var):
self.counter += 1
# For reentrant, need to have autograd actually
# pack a tensor to trigger recomp
ret = input_var * torch.tensor(2.)
return ret
# checkpointed
for use_reentrant in [True, False]:
with self.subTest(use_reentrant=use_reentrant):
modules = [Net() for _ in range(10)]
for m in modules:
self.assertEqual(m.counter, 0)
input_var = torch.randn(3, 4, requires_grad=True)
out = checkpoint_sequential(modules, 2, input_var, use_reentrant=use_reentrant)
for m in modules:
self.assertEqual(m.counter, 1)
out.sum().backward()
for m in modules[:(len(modules) // 2)]:
self.assertEqual(m.counter, 2)
for m in modules[(len(modules) // 2):]:
self.assertEqual(m.counter, 1)
def test_checkpoint_valid(self):
model = nn.Sequential(
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU()
)
input_var = torch.randn(1, 100, requires_grad=True)
# checkpointed
chunks = 2
modules = list(model.children())
out = checkpoint_sequential(modules, chunks, input_var, use_reentrant=True)
with self.assertRaisesRegex(RuntimeError, "Checkpointing is not compatible"):
torch.autograd.grad(
outputs=[out], grad_outputs=[torch.ones(1, 5)], inputs=[input_var], create_graph=True
)
# works with use_reentrant=False, and grads are the same
out = model(input_var)
grads_no_checkpoint = torch.autograd.grad(
outputs=[out], grad_outputs=[torch.ones(1, 5)], inputs=[input_var], create_graph=True,
)
out_checkpoint = checkpoint_sequential(modules, chunks, input_var, use_reentrant=False)
# check outputs are the same
self.assertEqual(out_checkpoint, out)
grads_checkpoint = torch.autograd.grad(
outputs=[out_checkpoint], grad_outputs=[torch.ones(1, 5)], inputs=[input_var], create_graph=True,
)
self.assertEqual(grads_no_checkpoint, grads_checkpoint)
def test_checkpoint(self):
for use_reentrant in [True, False]:
with self.subTest(use_reentrant=use_reentrant):
model = nn.Sequential(
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU()
)
# Compare uncheckpointed model with its checkpointed counterparts
# In addition to running checkpoint_sequential on the nn.Sequential
# instance, we also run the function on the list of functions within
# the module.
self._check_checkpoint_sequential(
model,
[list(model.children()), model],
2,
torch.randn(1, 100, requires_grad=True),
use_reentrant=use_reentrant,
)
def test_checkpoint_module_list(self):
class ModuleListNet(nn.Module):
def __init__(self):
super().__init__()
module_list = [
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU(),
]
self.module_list = nn.ModuleList(module_list)
def forward(self, input):
for layer in self.module_list:
input = layer(input)
return input
for use_reentrant in [True, False]:
with self.subTest(use_reentrant=use_reentrant):
model = ModuleListNet()
# Compare uncheckpointed model with its checkpointed counterparts.
self._check_checkpoint_sequential(
model,
[list(model.module_list.children()), model.module_list],
2,
torch.randn(1, 100, requires_grad=True),
use_reentrant=use_reentrant,
)
def test_checkpoint_sequential_deprecated_multiple_args(self):
class Two(nn.Module):
def forward(self, a, b):
return a, b
model = nn.Sequential(Two())
a = torch.randn(1, 100, requires_grad=True)
b = torch.randn(1, 100, requires_grad=True)
for use_reentrant in [True, False]:
with self.subTest(use_reentrant=use_reentrant):
with self.assertRaises(TypeError):
checkpoint_sequential(model, 1, a, b) # type: ignore[call-arg]
def test_checkpoint_sequential_deprecated_no_args(self):
class Noop(nn.Module):
def forward(self):
pass
model = nn.Sequential(Noop())
for use_reentrant in [True, False]:
with self.subTest(use_reentrant=use_reentrant):
with self.assertRaises(TypeError):
checkpoint_sequential(model, 1) # type: ignore[call-arg]
def test_checkpoint_rng_cpu(self):
for _ in range(5):
inp = torch.randn(20000, device='cpu').requires_grad_()
phase1 = torch.nn.Dropout()
phase2 = torch.nn.Dropout()
def run_fn(input):
return phase2(input)
state = torch.get_rng_state()
out = phase1(inp)
out = checkpoint(run_fn, out, use_reentrant=True)
out.sum().backward()
grad_with_checkpointing = inp.grad
torch.set_rng_state(state)
inp.grad = None
out = phase1(inp)
out = run_fn(out)
out.sum().backward()
grad_no_checkpointing = inp.grad
self.assertEqual(grad_with_checkpointing, grad_no_checkpointing)
@unittest.skipIf(not HAS_CUDA, 'No CUDA')
def test_checkpoint_rng_cuda(self):
for _ in range(5):
inp = torch.randn(20000, device='cuda').requires_grad_()
phase1 = torch.nn.Dropout()
phase2 = torch.nn.Dropout()
def run_fn(input):
return phase2(input)
state = torch.cuda.get_rng_state()
out = phase1(inp)
out = checkpoint(run_fn, out, use_reentrant=True)
out.sum().backward()
grad_with_checkpointing = inp.grad
torch.cuda.set_rng_state(state)
inp.grad = None
out = phase1(inp)
out = run_fn(out)
out.sum().backward()
grad_no_checkpointing = inp.grad
self.assertEqual(grad_with_checkpointing, grad_no_checkpointing)
@unittest.skipIf(not HAS_CUDA, 'No CUDA')
def test_checkpoint_not_preserve_rng_state_and_without_reentrant(self):
inp = torch.randn(2, device='cuda').requires_grad_()
layer = torch.nn.Dropout()
def run_fn(input):
return layer(input)
out = checkpoint(run_fn, inp, use_reentrant=False, preserve_rng_state=False)
out.sum().backward()
# This should run without error
def test_checkpoint_non_tensor(self):
def run_fn(tensor1, tensor2):
if tensor2 is None:
return tensor1
return tensor1 + tensor2
input_var = torch.randn(1, 100, requires_grad=True)
out = checkpoint(run_fn, input_var, None, use_reentrant=True)
out.sum().backward()
def test_checkpoint_non_tensor_inputs_outputs(self):
def foo(t1, t2, scale, t3):
t4 = t1 + t2 * t3
t5 = t1 * t2 + t3
t4 *= scale
t5 *= scale
return scale, t4, None, True, t5, "bar", t1
t1 = torch.rand(10, requires_grad=True)
t2 = torch.rand(10, requires_grad=True)
t3 = torch.rand(10)
scale = random.randint(0, 10)
res = checkpoint(foo, t1, t2, scale, t3, use_reentrant=True)
self.assertEqual(scale, res[0])
self.assertEqual((t1 + t2 * t3) * scale, res[1])
self.assertEqual(None, res[2])
self.assertEqual(True, res[3])
self.assertEqual((t1 * t2 + t3) * scale, res[4])
self.assertEqual("bar", res[5])
self.assertEqual(t1, res[6])
# Validate running backward.
res[1].sum().backward(retain_graph=True)
res[4].sum().backward(retain_graph=True)
res[6].sum().backward()
with self.assertRaisesRegex(RuntimeError, "Trying to backward through the graph a second time"):
res[6].sum().backward()
t1_grad = t1.grad
t2_grad = t2.grad
# Reset grads, run without checkpoint and validate we receive same grads.
t1.grad = None
t2.grad = None
res = foo(t1, t2, scale, t3)
torch.autograd.backward([res[1].sum(), res[4].sum(), res[6].sum()])
self.assertEqual(t1.grad, t1_grad)
self.assertEqual(t2.grad, t2_grad)
def test_checkpoint_no_tensors(self):
def foo(t1, t2, scale, t3):
t4 = t1 + t2 * t3
t5 = t1 * t2 + t3
t4 *= scale
t5 *= scale
return scale, t4, None, True, t5, "bar", t1
t1 = random.random()
t2 = random.random()
t3 = random.random()
scale = random.randint(0, 10)
res = checkpoint(foo, t1, t2, scale, t3, use_reentrant=True)
self.assertEqual(scale, res[0])
self.assertEqual((t1 + t2 * t3) * scale, res[1])
self.assertEqual(None, res[2])
self.assertEqual(True, res[3])
self.assertEqual((t1 * t2 + t3) * scale, res[4])
self.assertEqual("bar", res[5])
self.assertEqual(t1, res[6])
def test_checkpoint_partial_grad(self):
def run_fn(tensor1, tensor2):
# tensor 2 is used for other application logic
return tensor1, tensor2
input_var = torch.randn(1, 4, requires_grad=True)
input_var2 = torch.randn(1, 4, requires_grad=False)
out = checkpoint(run_fn, input_var, input_var2, use_reentrant=True)
out[0].sum().backward()
def run_fn2(tensor1, tensor2):
return tensor1
input_var = torch.randn(1, 4, requires_grad=False)
input_var2 = torch.randn(1, 4, requires_grad=True)
with self.assertRaisesRegex(
RuntimeError,
r"none of output has requires_grad=True, this checkpoint\(\) is not necessary"
):
out = checkpoint(run_fn2, input_var, input_var2, use_reentrant=True)
out.sum().backward()
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA")
def test_checkpointing_without_reentrant_early_free(self):
# I don't know how to check if the temporary saved variable buffer
# get de-allocated directly. So using cuda memory usage as a proxy
def _do_test(fn, should_free):
stats: List[int] = []
def track(x, idx):
# Track that at each step of the backward, some Tensor were
# de-allocated (which correspond to the checkpoint storage being
# emptied at each step)
def hook(_unused):
self.assertEqual(len(stats), idx)
torch.cuda.synchronize()
stats.append(torch.cuda.memory_allocated())
if idx > 0:
if should_free:
self.assertLess(stats[idx], stats[idx - 1])
else:
self.assertEqual(stats[idx], stats[idx - 1])
x.register_hook(hook)
def test_fn(x):
# The main property of this function is that it contains multiple
# operations that save gradients in a chain.
x = x ** 2
track(x, 2)
x = x ** 2
track(x, 1)
x = x ** 2
track(x, 0)
x = x ** 2
return x.sum()
fn(test_fn)
return stats
x = torch.zeros(10, device="cuda", requires_grad=True)
x.grad = torch.zeros_like(x)
# In a regular backward, buffers get eagerly freed
non_retain_stats = _do_test(lambda fn: fn(x).backward(), True)
# In a retain_grad backward, buffers get preserved
_unused_retain_stats = _do_test(lambda fn: fn(x).backward(retain_graph=True), False)
# In a regular backward with checkpoint, buffers get eagerly freed
checkpoint_non_retain_stats = _do_test(lambda fn: checkpoint(fn, x, use_reentrant=False).backward(), True)
# In a retain_grad backward with checkpoint, buffers get eagerly freed
checkpoint_retain_stats = _do_test(lambda fn: checkpoint(fn, x, use_reentrant=False).backward(retain_graph=True), True)
self.assertEqual(non_retain_stats, checkpoint_non_retain_stats)
self.assertEqual(non_retain_stats, checkpoint_retain_stats)
class TestDataLoaderUtils(TestCase):
MAX_TIMEOUT_IN_SECOND = 300
def setUp(self):
super().setUp()
self.dataset = torch.randn(5, 3, 3, 2)
self.batch_size = 3
def test_random_seed(self):
def run():
dataloader = torch.utils.data.DataLoader(RandomDatasetMock(),
batch_size=2,
num_workers=4,
shuffle=True,
timeout=self.MAX_TIMEOUT_IN_SECOND)
return next(iter(dataloader))
torch.manual_seed(2018)
x1 = run()
torch.manual_seed(2018)
x2 = run()
self.assertEqual(x1, x2)
def test_single_keep(self):
# self.dataset is a Tensor here; technically not a valid input because
# not a Dataset subclass, but needs to stay working so add ignore's
# for type checking with mypy
dataloader : DataLoader = DataLoader(self.dataset, # type: ignore[arg-type]
batch_size=self.batch_size,
num_workers=0,
drop_last=False)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 2)
def test_single_drop(self):
dataloader : DataLoader = DataLoader(self.dataset, # type: ignore[arg-type]
batch_size=self.batch_size,
num_workers=0,
drop_last=True)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 1)
@unittest.skip("FIXME: Intermittent CUDA out-of-memory error on Windows and time-out under ASAN")
def test_multi_keep(self):
dataloader : DataLoader = DataLoader(self.dataset, # type: ignore[arg-type]
batch_size=self.batch_size,
num_workers=2,
drop_last=False,
timeout=self.MAX_TIMEOUT_IN_SECOND)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 2)
def test_multi_drop(self):
dataloader : DataLoader = DataLoader(self.dataset, # type: ignore[arg-type]
batch_size=self.batch_size,
num_workers=2,
drop_last=True,
timeout=self.MAX_TIMEOUT_IN_SECOND)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 1)
test_dir = os.path.abspath(os.path.dirname(str(__file__)))
@unittest.skipIf('SKIP_TEST_BOTTLENECK' in os.environ.keys(), 'SKIP_TEST_BOTTLENECK is set')
class TestBottleneck(TestCase):
def _run(self, command, timeout=30):
"""Returns (return-code, stdout, stderr)"""
import subprocess
p = subprocess.Popen(command, stdout=subprocess.PIPE, # noqa: P204
stderr=subprocess.PIPE, shell=True)
try:
output, err = p.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
p.kill()
output, err = p.communicate()
rc = p.returncode
output_str = output.decode("ascii")
err_str = err.decode("ascii")
return (rc, output_str, err_str)
def _run_bottleneck(self, test_file, scriptargs=''):
curdir = os.path.dirname(os.path.abspath(__file__))
filepath = f'{curdir}/{test_file}'
if scriptargs != '':
scriptargs = f' {scriptargs}'
rc, out, err = self._run(
f'{sys.executable} -m torch.utils.bottleneck {filepath}{scriptargs}')
return rc, out, err
def _check_run_args(self):
# Check that this fails due to missing args
rc, out, err = self._run_bottleneck('bottleneck_test/test_args.py')
self.assertEqual(rc, 2, atol=0, rtol=0, msg=self._fail_msg('Missing args should error', out + err))
# This should succeed
rc, out, err = self._run_bottleneck('bottleneck_test/test_args.py', '--foo foo --bar bar')
self.assertEqual(rc, 0, atol=0, rtol=0, msg=self._fail_msg('Should pass args to script', out + err))
def _fail_msg(self, msg, output):
return f'{msg}, output was:\n{output}'
def _check_environment_summary(self, output):
results = re.search('Environment Summary', output)
self.assertIsNotNone(results, self._fail_msg('Should have Environment Summary', output))
# Up to five lines away from the heading, there should be the version number
results = re.search(r'Environment Summary.*(\n.*){,5}\nPyTorch \d+\.\d+', output)
self.assertIsNotNone(results, self._fail_msg('Should have PyTorch version', output))
def _check_cprof_summary(self, output):
results = re.search('cProfile output', output)
self.assertIsNotNone(results, self._fail_msg('Should have cProfile output', output))
# This assumes that after the cProfile output section we have
# the autograd profiler output
results = re.search(r'cProfile output.*(\n.*){6,50}\n.*autograd profiler output', output)
self.assertIsNotNone(results, self._fail_msg(
'Distance between cProfile and autograd prof out not in [6, 50] lines', output))
def _check_autograd_summary(self, output):
results = re.search('autograd profiler output', output)
self.assertIsNotNone(results, self._fail_msg('Should have autograd profiler output', output))
# This assumes that after the autograd profiler output is the end of the
# output.
results = re.search(r'autograd profiler output.*(\n.*){6,100}', output)
self.assertIsNotNone(results, self._fail_msg(
'Distance between autograd prof output and end of output not in [6, 100] lines', output))
def _check_cuda(self, output):
if HAS_CUDA:
results = re.search('CUDA mode', output)
self.assertIsNotNone(results, self._fail_msg('Should tell users CUDA', output))
else:
results = re.search('CUDA mode', output)
self.assertIsNone(results, self._fail_msg('Should not tell users about CUDA', output))
@unittest.skipIf(HAS_CUDA, 'CPU-only test')
def test_bottleneck_cpu_only(self):
rc, out, err = self._run_bottleneck('bottleneck_test/test.py')
self.assertEqual(rc, 0, msg=f'Run failed with\n{err}')
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
@unittest.skipIf(not HAS_CUDA, 'No CUDA')
def test_bottleneck_cuda(self):
rc, out, err = self._run_bottleneck('bottleneck_test/test_cuda.py')
self.assertEqual(rc, 0, msg=f'Run failed with\n{err}')
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
from torch.utils.collect_env import get_pretty_env_info
@unittest.skipIf(IS_FBCODE, "runs pip which is not available internally")
class TestCollectEnv(TestCase):
def test_smoke(self):
info_output = get_pretty_env_info()
self.assertTrue(info_output.count('\n') >= 17)
class TestONNXUtils(TestCase):
def test_prepare_onnx_paddings(self):
sizes = [2, 3, 4]
pad = [1, 2, 3, 4]
paddings = _prepare_onnx_paddings(len(sizes), pad)
self.assertEqual(paddings, [0, 3, 1, 0, 4, 2])
def test_check_onnx_broadcast(self):
def try_check_onnx_broadcast(dims1, dims2, expect_broadcast, expect_fail):
broadcast = True
fail = False
try:
broadcast = check_onnx_broadcast(dims1, dims2)
except ValueError:
fail = True
self.assertEqual(broadcast, expect_broadcast)
self.assertEqual(fail, expect_fail)
# Case 1, check the case when len(dims1) < len(dims2) and numel(dims2) > 1
dims1 = [3, 4]
dims2 = [2, 3, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 2, check the case when len(dims1) < len(dims2) and numel(dims2) == 1
dims1 = [3, 4]
dims2 = [1, 1, 1]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 3, check the case when len(dims1) > len(dims2) and numel(dims2) == 1
dims1 = [1, 1]
dims2 = [1]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 4, check the case when len(dims1) > len(dims2) and dims1[x:] == dims2
dims1 = [2, 3, 4]
dims2 = [3, 4]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 5, check the case when len(dims1) > len(dims2), but dims1[x:] != dims2
dims1 = [2, 3, 4]
dims2 = [1, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 6, check the equal case, no broadcast
dims1 = [3, 4]
dims2 = [3, 4]
try_check_onnx_broadcast(dims1, dims2, False, False)
# Case 7, check the case when len(dims1) == len(dims2), but dims1 != dims2
dims1 = [3, 4]
dims2 = [1, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 8, check the case when len(dims1) == len(dims2) and numel(s2) == 1
dims1 = [3, 4]
dims2 = [1, 1]
try_check_onnx_broadcast(dims1, dims2, True, False)
class TestHipify(TestCase):
def test_import_hipify(self):
from torch.utils.hipify import hipify_python # noqa: F401
class TestAssert(TestCase):
def test_assert_true(self):
# verify assertions work as expected
# bool argument
torch._assert(True, "foo")
with self.assertRaisesRegex(AssertionError, "bar"):
torch._assert(False, "bar")
# tensor argument
torch._assert(torch.tensor([True], dtype=torch.bool), "foo")
with self.assertRaisesRegex(AssertionError, "bar"):
torch._assert(torch.tensor([False], dtype=torch.bool), "bar")
def test_assert_scriptable(self):
class M(torch.nn.Module):
def forward(self, x):
torch._assert(x.sum() > 0, "foo")
return x
m = M()
# scriptable
ms = torch.jit.script(m)
# data can be passed without errors
x = torch.randn(4, 4).fill_(1.0)
ms(x)
with self.assertRaisesRegex(torch.jit.Error, "foo"):
ms(torch.tensor([False], dtype=torch.bool))
@unittest.skipIf(IS_SANDCASTLE, "cpp_extension is OSS only")
class TestStandaloneCPPJIT(TestCase):
def test_load_standalone(self):
build_dir = tempfile.mkdtemp()
try:
src_path = os.path.join(build_dir, "main.cpp")
src = textwrap.dedent("""\
#include <iostream>
#include <torch/torch.h>
int main() {
auto x = torch::eye(3);
std::cout << x << std::endl;
}
""")
with open(src_path, "w") as f:
f.write(src)
exec_path = torch.utils.cpp_extension.load(
"standalone_load_test",
src_path,
build_directory=build_dir,
is_python_module=False,
is_standalone=True,
)
ext = ".exe" if IS_WINDOWS else ""
self.assertEqual(
exec_path,
os.path.join(build_dir, f"standalone_load_test{ext}")
)
for shell in [True, False]:
r = subprocess.run(
[exec_path],
shell=shell,
stdout=subprocess.PIPE,
)
self.assertEqual(r.returncode, 0)
self.assertEqual(
# Windows prints "\r\n" for newlines.
textwrap.dedent(r.stdout.decode("utf-8")).replace("\r\n", "\n"),
textwrap.dedent("""\
1 0 0
0 1 0
0 0 1
[ CPUFloatType{3,3} ]
""")
)
finally:
shutil.rmtree(build_dir)
class DummyXPUModule:
@staticmethod
def is_available():
return True
@staticmethod
def is_autocast_enabled():
return True
@staticmethod
def get_autocast_dtype():
return torch.float16
@staticmethod
def set_autocast_enabled(enable):
pass
@staticmethod
def set_autocast_dtype(dtype):
pass
@staticmethod
def get_amp_supported_dtype():
return [torch.float16]
class TestExtensionUtils(TestCase):
def test_external_module_register(self):
# Built-in module
with self.assertRaisesRegex(RuntimeError, "The runtime module of"):
torch._register_device_module('cuda', torch.cuda)
# Wrong device type
with self.assertRaisesRegex(RuntimeError, "Expected one of cpu"):
torch._register_device_module('dummmy', DummyXPUModule)
with self.assertRaises(AttributeError):
torch.xpu.is_available() # type: ignore[attr-defined]
torch._register_device_module('xpu', DummyXPUModule)
torch.xpu.is_available() # type: ignore[attr-defined]
# No supporting for override
with self.assertRaisesRegex(RuntimeError, "The runtime module of"):
torch._register_device_module('xpu', DummyXPUModule)
def test_external_module_and_backend_register(self):
torch.utils.rename_privateuse1_backend('foo')
with self.assertRaisesRegex(RuntimeError, "has already been set"):
torch.utils.rename_privateuse1_backend('dummmy')
custom_backend_name = torch._C._get_privateuse1_backend_name()
self.assertEqual(custom_backend_name, 'foo')
with self.assertRaises(AttributeError):
torch.foo.is_available()
with self.assertRaisesRegex(AssertionError, "Tried to use AMP with the"):
with torch.autocast(device_type=custom_backend_name):
pass
torch._register_device_module('foo', DummyXPUModule)
torch.foo.is_available()
with torch.autocast(device_type=custom_backend_name):
pass
self.assertEqual(torch._utils._get_device_index('foo:1'), 1)
self.assertEqual(torch._utils._get_device_index(torch.device("foo:2")), 2)
class TestRenderUtils(TestCase):
def test_basic(self):
self.assertExpectedInline(
torch._utils.render_call(torch.sum, [torch.randn(100)], {'dim': 0}),
'''torch.sum(tensor([...], size=(100,)), dim=0)'''
)
self.assertExpectedInline(
torch._utils.render_call(torch.sum, [torch.randn(100, 100)], {'dim': 0}),
'''torch.sum(tensor([...], size=(100, 100)), dim=0)'''
)
class TestDeviceUtils(TestCase):
def test_basic(self):
with torch.device('meta') as dev:
x = torch.empty(3, 3)
self.assertEqual(x.device.type, 'meta')
self.assertEqual(dev, torch.device('meta'))
def test_decorator(self):
@set_device('meta')
def f():
return torch.empty(3, 3)
self.assertEqual(f().device.type, 'meta')
def test_decorator_generator(self):
@set_device('meta')
def f():
yield torch.empty(3, 3)
yield torch.empty(3, 3)
r1, r2 = list(f())
self.assertEqual(r1.device.type, 'meta')
self.assertEqual(r2.device.type, 'meta')
def test_nn_module(self):
with torch.device('meta'):
m = nn.Linear(40, 50)
self.assertEqual(m.weight.device.type, 'meta')
def test_set_default_device(self):
try:
set_default_device('meta')
r = torch.empty(2, 2)
finally:
set_default_device(None)
self.assertEqual(r.device.type, 'meta')
@onlyCPU
@ops(op_db)
def test_device_mode_ops(self, device, dtype, op):
func = op.get_op()
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample in samples:
# Only test samples which don't have Tensor inputs. However,
# we don't test the factory property on OpInfo as it is very,
# very incomplete
if tree_any(
lambda x: isinstance(x, torch.Tensor),
(sample.input, sample.args, sample.kwargs)
):
continue
# Many OpInfos will explicitly pass in a device. DeviceContext
# will respect device if it is explicitly specified. To test
# DeviceContext, we have to remove the device kwarg in this case.
# NB: Can't pass None to sample_inputs, the function can't
# handle it.
kwargs = sample.kwargs.copy()
kwargs.pop('device', None)
with torch.device('meta'):
r = func(sample.input, *sample.args, **kwargs)
self.assertTrue(
tree_all_only(torch.Tensor, lambda x: x.device.type == 'meta', r)
)
instantiate_device_type_tests(TestDeviceUtils, globals())
class TestCppExtensionUtils(TestCase):
def test_cpp_compiler_is_ok(self):
self.assertTrue(torch.utils.cpp_extension.check_compiler_ok_for_platform('c++'))
def test_cc_compiler_is_ok(self):
self.assertTrue(torch.utils.cpp_extension.check_compiler_ok_for_platform('cc'))
class TestTraceback(TestCase):
def test_basic(self):
source = '''\
def f(x):
def g(x):
raise RuntimeError() # HEYA
x = x * 3
return g(x) + 1
'''
out: Dict[str, Any] = {}
scope = {"__compile_source__": source}
exec(source, scope, out)
try:
with report_compile_source_on_error():
out["f"](1)
except RuntimeError as e:
self.assertIn("HEYA", ''.join(traceback.format_tb(e.__traceback__)))
def test_format_traceback_short(self):
try:
raise RuntimeError()
except RuntimeError as e:
self.assertRegex(format_traceback_short(e.__traceback__), r'.*test_utils.py:\d+ in test_format_traceback_short')
def test_captured_traceback(self):
self.assertIn('test_captured_traceback', ''.join(CapturedTraceback.extract().format()))
def test_captured_traceback_format_all(self):
rs = CapturedTraceback.format_all([CapturedTraceback.extract(), CapturedTraceback.extract()])
self.assertEqual(len(rs), 2)
self.assertIn('test_captured_traceback_format_all', ''.join(rs[0]))
def test_captured_traceback_format_all_cached(self):
tb = CapturedTraceback.extract()
tb.format() # cached
rs = CapturedTraceback.format_all([tb, CapturedTraceback.extract()])
self.assertEqual(len(rs), 2)
self.assertIn('test_captured_traceback_format_all', ''.join(rs[0]))
if __name__ == '__main__':
run_tests()