pytorch/test/test_view_ops.py

1849 lines
76 KiB
Python

# Owner(s): ["module: tests"]
import torch
import numpy as np
import unittest
from itertools import product, permutations, combinations
from functools import partial
import random
from torch.testing import make_tensor
from torch.testing._internal.common_utils import (
IS_FBCODE, TestCase, run_tests, suppress_warnings, gradcheck, gradgradcheck,
numpy_to_torch_dtype_dict, skipIfTorchDynamo
)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, onlyCPU, dtypes, onlyNativeDeviceTypes, skipLazy, skipMeta, skipXLA)
from torch.testing._internal.common_dtype import (
all_types_and_complex_and, complex_types, all_types_and, floating_and_complex_types_and,
)
# TODO: replace this with make_tensor() in common_utils.py
def _generate_input(shape, dtype, device, with_extremal):
if shape == ():
x = torch.tensor((), dtype=dtype, device=device)
else:
if dtype.is_floating_point or dtype.is_complex:
# work around torch.randn not being implemented for bfloat16
if dtype == torch.bfloat16:
x = torch.randn(*shape, device=device) * random.randint(30, 100)
x = x.to(torch.bfloat16)
else:
x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100)
x[torch.randn(*shape) > 0.5] = 0
if with_extremal and dtype.is_floating_point:
# Use extremal values
x[torch.randn(*shape) > 0.5] = float('nan')
x[torch.randn(*shape) > 0.5] = float('inf')
x[torch.randn(*shape) > 0.5] = float('-inf')
elif with_extremal and dtype.is_complex:
x[torch.randn(*shape) > 0.5] = complex('nan')
x[torch.randn(*shape) > 0.5] = complex('inf')
x[torch.randn(*shape) > 0.5] = complex('-inf')
elif dtype == torch.bool:
x = torch.zeros(shape, dtype=dtype, device=device)
x[torch.randn(*shape) > 0.5] = True
else:
x = torch.randint(15, 100, shape, dtype=dtype, device=device)
return x
# TODO: replace this with make_tensor() in common_utils.py
def _rand_shape(dim, min_size, max_size):
shape = []
for i in range(dim):
shape.append(random.randint(min_size, max_size))
return tuple(shape)
# TODO: refactor tests to avoid this function
# Converts half/bfloat16 dtype to float when device is cpu
def _convert_t(dtype, device):
if device == 'cpu' and dtype in {torch.half, torch.bfloat16}:
return torch.float
return dtype
# TODO: replace this with make_tensor() in common_utils.py
# Returns a tensor of the requested shape, dtype, and device
# Requesting a half CPU tensor returns a float CPU tensor with
# values representable by a half.
# Initialization uses randint for non-float types and randn for float types.
def _make_tensor(shape, dtype, device, fill_ones=False) -> torch.Tensor:
# Returns a tensor filled with ones
if fill_ones:
return torch.ones(*shape, dtype=_convert_t(dtype, device), device=device)
# Returns a tensor with random integer values
if not (dtype.is_floating_point or dtype.is_complex):
t = torch.randint(0, 10, shape, device=device)
if dtype != torch.uint8:
t = t - 5 # generate negative values also
return t.to(_convert_t(dtype, device))
# Populates the CPU tensor with floats representable as half/bfloat16
if dtype == torch.half and device == 'cpu':
return torch.randn(*shape, dtype=torch.float, device=device).half().float()
if dtype == torch.bfloat16 and device == 'cpu':
return torch.randn(*shape, dtype=torch.float, device=device).bfloat16().float()
# Default: returns a tensor with random float values
return torch.randn(shape, dtype=dtype, device=device).to(dtype=dtype)
# Tests ops and indexing to ensure they return views (and new tensors) as
# appropriate.
class TestViewOps(TestCase):
exact_dtype = True
def is_view_of(self, base, other):
if (not other._is_view() or
other is base or
other._base is not base or
base.device != other.device):
return False
# Note: only validates storage on native device types
# because some accelerators, like XLA, do not expose storage
if base.device.type == 'cpu' or base.device.type == 'cuda':
if base.untyped_storage().data_ptr() != other.untyped_storage().data_ptr():
return False
return True
# Returns true if v1 and v2 are views of the same base
def is_view_of_same_base(self, v1, v2):
if (not v1._is_view() or v1 is v2):
return False
return self.is_view_of(v1._base, v2)
# Performs transpose if contiguous=True, else returns the input tensor as is
def _do_transpose(self, x, contiguous=False, dim0=0, dim1=1):
if contiguous:
return x
else:
return x.transpose(dim0, dim1)
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_conj_self(self, device, dtype):
t = torch.ones(5, 5, device=device)
s = t.conj()
self.assertTrue(s is t)
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bool))
def test_view_dtype_new(self, device, dtype):
dtypes = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()}
del dtypes[torch.bool]
def generate_inputs():
yield make_tensor((4, 4, 64), dtype=dtype, device=device, low=-5, high=5)
yield make_tensor((4, 4, 64), dtype=dtype, device=device, low=-5, high=5).permute(1, 0, 2)
yield make_tensor((4, 64, 4), dtype=dtype, device=device, low=-5, high=5).permute(2, 0, 1)
yield make_tensor((1, 5, 1), dtype=dtype, device=device, low=-5, high=5).expand(5, 5, 64)
yield make_tensor((2, 5, 256), dtype=dtype, device=device, low=-5, high=5)[1::2, 1:, ::2]
yield make_tensor((0, 5, 64), dtype=dtype, device=device, low=-5, high=5)
yield make_tensor((), dtype=dtype, device=device, low=-5, high=5)
def calc_expected_size_and_stride(a, view_dtype):
dtype_size = torch._utils._element_size(a.dtype)
view_dtype_size = torch._utils._element_size(view_dtype)
if dtype_size == view_dtype_size:
return a.size(), a.stride()
elif dtype_size > view_dtype_size:
size_ratio = dtype_size // view_dtype_size
view_size = list(a.size())
view_size[-1] = view_size[-1] * size_ratio
view_stride = [stride * size_ratio for stride in a.stride()]
view_stride[-1] = 1
return torch.Size(view_size), tuple(view_stride)
else:
size_ratio = view_dtype_size // dtype_size
view_size = list(a.size())
view_size[-1] = view_size[-1] // size_ratio
view_stride = [stride // size_ratio for stride in a.stride()]
view_stride[-1] = 1
return torch.Size(view_size), tuple(view_stride)
for a in generate_inputs():
a_np = a.cpu().numpy()
a_np_contiguous = a.cpu().contiguous().numpy()
for view_dtype, np_view_dtype in dtypes.items():
equal_element_size = torch._utils._element_size(dtype) == torch._utils._element_size(view_dtype)
if not equal_element_size and a.dim() == 0:
with self.assertRaisesRegex(RuntimeError, r"self.dim\(\) cannot be 0"):
a.view(view_dtype)
continue
if not equal_element_size and a.stride(-1) != 1:
with self.assertRaisesRegex(RuntimeError, r"self.stride\(-1\) must be 1"):
a.view(view_dtype)
continue
a_view = a.view(view_dtype)
self.assertEqual(a_view.dtype, view_dtype)
self.assertEqual(a.data_ptr(), a_view.data_ptr())
expected_size, expected_stride = calc_expected_size_and_stride(a, view_dtype)
self.assertEqual(a_view.size(), expected_size)
self.assertEqual(a_view.stride(), expected_stride)
self.assertEqual(a_view.view(dtype), a, rtol=0, atol=0)
# NumPy's dtype view requires contiguous input if target
# dtype is a different size
if equal_element_size:
a_np_view = a_np.view(np_view_dtype)
else:
a_np_view = a_np_contiguous.view(np_view_dtype)
self.assertEqual(a_view, a_np_view)
# Test that requires_grad is dropped for floating point casts,
# because view(dtype) does not support backward yet
# TODO: Remove this when autograd support is added
if dtype.is_floating_point or dtype.is_complex:
for view_dtype in floating_and_complex_types_and(torch.half, torch.bfloat16):
t = make_tensor((5, 5, 64), dtype=dtype, device=device, low=-5, high=5, requires_grad=True)
self.assertFalse(t.view(view_dtype).requires_grad)
# Test the extra error checks that happen when the view dtype
# has a greater element size than the original dtype
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_view_dtype_upsize_errors(self, device, dtype):
dtype_size = torch._utils._element_size(dtype)
for view_dtype in all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool):
view_dtype_size = torch._utils._element_size(view_dtype)
if view_dtype_size <= dtype_size:
continue
size_ratio = view_dtype_size // dtype_size
a = make_tensor((4, 4, size_ratio + 1), dtype=dtype, device=device, low=-5, high=5)
with self.assertRaisesRegex(
RuntimeError,
rf"self.size\(-1\) must be divisible by {size_ratio}"):
a.view(view_dtype)
with self.assertRaisesRegex(
RuntimeError,
rf"self.storage_offset\(\) must be divisible by {size_ratio}"):
a[:, :, 1:].view(view_dtype)
a = make_tensor((4, 4, size_ratio), dtype=dtype, device=device, low=-5, high=5)
a = a.as_strided((4, 4, size_ratio), (size_ratio, 1, 1))
with self.assertRaisesRegex(
RuntimeError,
rf"self.stride\(1\) must be divisible by {size_ratio}"):
a.view(view_dtype)
@onlyNativeDeviceTypes
def test_view_as_complex(self, device):
def fn(contiguous_input=True, dim0=0, dim1=1):
t = torch.randn(3, 2, 2, device=device)
c_t = t[:, :, 0] + 1j * t[:, :, 1]
input = self._do_transpose(t, contiguous_input, dim0, dim1)
if input.size()[-1] != 2:
self.assertRaisesRegex(
RuntimeError, "Tensor must have a last dimension of size 2",
lambda: torch.view_as_complex(input))
return
if input.stride()[-1] != 1:
self.assertRaisesRegex(
RuntimeError, "Tensor must have a last dimension with stride 1",
lambda: torch.view_as_complex(input))
return
res = torch.view_as_complex(input)
self.assertEqual(res, self._do_transpose(c_t, contiguous_input, dim0, dim1))
self.assertTrue(self.is_view_of(t, res))
fn()
fn(contiguous_input=False)
# RuntimeError since in this case the last dim of input would not be of size 2
fn(contiguous_input=False, dim0=0, dim1=2)
# RuntimeError since in this case the last dim of input would not have stride 1
fn(contiguous_input=False, dim0=1, dim1=2)
# RuntimeError since in this case the stride of non-last dim of input would not be of size 2
x = torch.randn(3, 3, device=device)
t = torch.as_strided(x, (2, 2), (1, 1))
self.assertRaisesRegex(
RuntimeError, "Tensor must have a stride divisible by 2 for all but last dimension",
lambda: torch.view_as_complex(t))
# tensor with zero elements
x = torch.tensor([], device=device) # torch.Size([0])
self.assertRaisesRegex(
RuntimeError, "Tensor must have a last dimension of size 2",
lambda: torch.view_as_complex(x))
# zero dimension tensor
z = torch.tensor(2.0)
self.assertRaisesRegex(
RuntimeError, "Input tensor must have one or more dimensions",
lambda: torch.view_as_complex(z))
y = x.reshape(0, 2) # torch.Size([0, 2])
res = torch.view_as_complex(y)
self.assertTrue(self.is_view_of(x, res))
self.assertEqual(res.shape, torch.Size([0]))
@onlyNativeDeviceTypes
@dtypes(*complex_types(), torch.complex32)
def test_view_as_real(self, device, dtype):
def fn(contiguous_input=True):
t = torch.randn(3, 4, dtype=dtype, device=device)
input = self._do_transpose(t, contiguous_input)
res = torch.view_as_real(input)
self.assertEqual(res[:, :, 0], input.real)
self.assertEqual(res[:, :, 1], input.imag)
self.assertTrue(self.is_view_of(t, res))
fn()
fn(contiguous_input=False)
# tensor with zero elements
x = torch.tensor([], dtype=dtype, device=device)
res = torch.view_as_real(x)
self.assertTrue(self.is_view_of(x, res))
self.assertEqual(res.shape, torch.Size([0, 2]))
# tensor with zero dim
x = torch.tensor(2 + 3j, dtype=dtype, device=device)
res = torch.view_as_real(x)
self.assertTrue(self.is_view_of(x, res))
self.assertEqual(res.shape, torch.Size([2]))
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_view_tensor_split(self, device, dtype):
a = make_tensor((40, 30), dtype=dtype, device=device, low=-9, high=9)
a_split_dim0 = a.tensor_split(7, 0)
for a_split_dim0_tensor in a_split_dim0:
self.assertTrue(self.is_view_of(a, a_split_dim0_tensor))
a_split_dim1 = a.tensor_split(7, 1)
for a_split_dim1_tensor in a_split_dim1:
self.assertTrue(self.is_view_of(a, a_split_dim1_tensor))
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_view_tensor_hsplit(self, device, dtype):
t = make_tensor((4, 4, 4), dtype=dtype, device=device, low=-9, high=9)
t_hsplit = torch.hsplit(t, 2)
for t_hsplit_tensor in t_hsplit:
self.assertTrue(self.is_view_of(t, t_hsplit_tensor))
t[2, 2, 2] = 7
self.assertEqual(t_hsplit[1][2, 0, 2], t[2, 2, 2])
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_view_tensor_vsplit(self, device, dtype):
t = make_tensor((4, 4, 4), dtype=dtype, device=device, low=-9, high=9)
t_vsplit = torch.vsplit(t, 2)
for t_vsplit_tensor in t_vsplit:
self.assertTrue(self.is_view_of(t, t_vsplit_tensor))
t[2, 2, 2] = 7
self.assertEqual(t_vsplit[1][0, 2, 2], t[2, 2, 2])
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_view_tensor_dsplit(self, device, dtype):
t = make_tensor((4, 4, 4), dtype=dtype, device=device, low=-9, high=9)
t_dsplit = torch.dsplit(t, 2)
for t_dsplit_tensor in t_dsplit:
self.assertTrue(self.is_view_of(t, t_dsplit_tensor))
t[2, 2, 2] = 7
self.assertEqual(t_dsplit[1][2, 2, 0], t[2, 2, 2])
@onlyNativeDeviceTypes
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_imag_noncomplex(self, device, dtype):
t = torch.ones((5, 5), dtype=dtype, device=device)
with self.assertRaises(RuntimeError):
torch.imag(t)
@onlyNativeDeviceTypes
@dtypes(*complex_types())
def test_real_imag_view(self, device, dtype):
def compare_with_numpy(contiguous_input=True):
t = torch.randn(3, 3, dtype=dtype, device=device)
if not contiguous_input:
u = t.T
else:
u = t
re = u.real
exp = torch.from_numpy(u.cpu().numpy().real).to(device=device)
self.assertEqual(re, exp)
# for the case of contiguous_input, t=u
# for the case of non contiguous_input, the base still remains
# t since we are performing a view operation to make the input non-contiguous
self.assertTrue(self.is_view_of(t, re))
im = u.imag
exp = torch.from_numpy(u.cpu().numpy().imag).to(device=device)
self.assertEqual(im, exp)
self.assertTrue(self.is_view_of(t, im))
compare_with_numpy()
compare_with_numpy(contiguous_input=False)
# ensure storage offset is being correctly set
a = torch.randn(10, dtype=dtype)
self.assertEqual(a[5:].real, a.real[5:])
self.assertEqual(a[5:].imag, a.imag[5:])
@onlyNativeDeviceTypes
@dtypes(*complex_types())
def test_conj_imag_view(self, device, dtype) -> None:
t = _make_tensor((4, 5,), dtype, device)
t_numpy_conj = torch.from_numpy(t.cpu().numpy().conj()).to(device=device)
v = t.conj()
self.assertTrue(self.is_view_of(t, v))
self.assertEqual(v, t_numpy_conj)
if (t.is_complex()):
v_imag = v.imag
self.assertTrue(self.is_view_of(t, v_imag))
self.assertEqual(v_imag, t_numpy_conj.imag)
self.assertTrue(v_imag.is_neg())
@onlyNativeDeviceTypes
def test_conj_view_with_shared_memory(self, device) -> None:
a = _make_tensor((4, 5,), torch.cfloat, device)
b = a.conj()
c = a.conj()
self.assertEqual(torch.add(a, b), a.add_(b))
self.assertEqual(torch.add(b, c), torch.add(b, c, out=a))
self.assertEqual(torch.add(b, c), b.add_(c))
@onlyNativeDeviceTypes
@dtypes(*product(complex_types(), all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool)))
@suppress_warnings
def test_set_real_imag(self, device, dtypes):
x = torch.randn(10, dtype=dtypes[0], device=device)
new_real = _make_tensor((10,), dtypes[1], device)
new_imag = _make_tensor((10,), dtypes[1], device)
x.real = new_real
x.imag = new_imag
if dtypes[1].is_complex:
self.assertEqual(x.real, new_real.real, exact_dtype=False)
self.assertEqual(x.imag, new_imag.real, exact_dtype=False)
else:
self.assertEqual(x.real, new_real, exact_dtype=False)
self.assertEqual(x.imag, new_imag, exact_dtype=False)
def test_diagonal_view(self, device) -> None:
t = torch.ones((5, 5), device=device)
v = torch.diagonal(t)
self.assertTrue(self.is_view_of(t, v))
v[0] = 0
self.assertEqual(t[0, 0], v[0])
t = torch.ones((3, 3, 3), device=device)
v = torch.diagonal(t, offset=1, dim1=1, dim2=2)
self.assertTrue(self.is_view_of(t, v))
v[0, 0] = 0
self.assertEqual(t[0, 0, 1], v[0, 0])
def test_select_view(self, device) -> None:
t = torch.ones((5, 5), device=device)
v = t.select(0, 2)
self.assertTrue(self.is_view_of(t, v))
v[0] = 0
self.assertEqual(t[2, 0], v[0])
# Lazy hasn't implemented unbind yet.
@skipLazy
def test_unbind_view(self, device) -> None:
t = torch.zeros((5, 5), device=device)
tup = torch.unbind(t)
for idx, v in enumerate(tup):
self.assertTrue(self.is_view_of(t, v))
v[0] = idx + 1
self.assertEqual(t[idx, 0], v[0])
# TODO: opinfo this or move to unbind's test suite
def test_unbind(self):
stacked = torch.randn(3, 10, 10, requires_grad=True)
x, y, z = stacked.unbind()
grad = torch.randn(3, 10, 10)
torch.autograd.backward([x, y, z], grad.unbind())
self.assertEqual(stacked.grad, grad)
# check that it works with only one gradient provided (#9977)
for i in range(3):
stacked = torch.randn(3, 10, 10, requires_grad=True)
outs = stacked.unbind()
gi = grad.unbind()[i]
g, = torch.autograd.grad(outs[i], stacked, gi)
g_expected = torch.stack([gi if j == i else torch.zeros_like(gi)
for j in range(3)], dim=0)
self.assertEqual(g, g_expected)
# Check with gradcheck
stacked = torch.randn(3, 10, 10, dtype=torch.double, requires_grad=True)
gradcheck(lambda x: x.unbind(), (stacked,), check_forward_ad=True)
# TODO: Fix this test for LTC. There is an interaction with dynamic shapes here that is broken,
# causing asserts to trigger.
@skipLazy
def test_expand_view(self, device) -> None:
t = torch.ones((5, 1), device=device)
v = t.expand(5, 5)
self.assertTrue(self.is_view_of(t, v))
v[2, 2] = 0
self.assertEqual(t[2, 0], v[2, 2])
def test_expand_as_view(self, device):
t = torch.ones((5, 1), device=device)
e = torch.empty((5, 5), device=device)
v = t.expand_as(e)
self.assertTrue(self.is_view_of(t, v))
v[2, 2] = 0
self.assertEqual(t[2, 0], v[2, 2])
def test_narrow_view(self, device):
t = torch.ones((5, 5), device=device)
v = torch.narrow(t, 1, 2, 2)
self.assertTrue(self.is_view_of(t, v))
v[0, 0] = 0
self.assertEqual(t[0, 2], v[0, 0])
def test_permute_view(self, device) -> None:
t = torch.ones((5, 5), device=device)
v = t.permute(1, 0)
self.assertTrue(self.is_view_of(t, v))
v[0, 1] = 0
self.assertEqual(t[1, 0], v[0, 1])
def test_transpose_view(self, device):
for fn in (torch.swapdims, torch.swapaxes, torch.transpose):
t = torch.ones((5, 5), device=device)
v = fn(t, 0, 1)
self.assertTrue(self.is_view_of(t, v))
v[0, 1] = 0
self.assertEqual(t[1, 0], v[0, 1])
def test_transpose_inplace_view(self, device):
t = torch.ones(5, 5, device=device)
v = t.view_as(t)
v = v.swapdims_(0, 1)
self.assertTrue(self.is_view_of(t, v))
v[0, 1] = 0
self.assertEqual(t[1, 0], v[0, 1])
t = torch.ones(5, 5, device=device)
v = t.view_as(t)
v = v.swapaxes_(0, 1)
self.assertTrue(self.is_view_of(t, v))
v[0, 1] = 0
self.assertEqual(t[1, 0], v[0, 1])
t = torch.ones(5, 5, device=device)
v = t.view_as(t)
v = v.transpose_(0, 1)
self.assertTrue(self.is_view_of(t, v))
v[0, 1] = 0
self.assertEqual(t[1, 0], v[0, 1])
def test_t_view(self, device):
t = torch.ones((5, 5), device=device)
v = t.t()
self.assertTrue(self.is_view_of(t, v))
v[0, 1] = 0
self.assertEqual(t[1, 0], v[0, 1])
def test_t_inplace_view(self, device):
t = torch.ones(5, 5, device=device)
v = t.view_as(t)
v = v.t_()
self.assertTrue(self.is_view_of(t, v))
v[0, 1] = 0
self.assertEqual(t[1, 0], v[0, 1])
def test_T_view(self, device):
for op in ("T", "H", "mT", "mH"):
t = torch.ones((5, 5), device=device)
v = getattr(t, op)
self.assertTrue(self.is_view_of(t, v))
v[0, 1] = 0
self.assertEqual(t[1, 0], v[0, 1])
def test_unfold_view(self, device):
t = torch.ones(10, device=device)
v = t.unfold(0, 3, 2)
self.assertTrue(self.is_view_of(t, v))
v[1, 0] = 0
self.assertEqual(t[2], v[1, 0])
def test_squeeze_view(self, device):
t = torch.ones(5, 1, 5, device=device)
v = torch.squeeze(t)
self.assertTrue(self.is_view_of(t, v))
v[0, 1] = 0
self.assertEqual(t, v._base)
def test_squeeze_inplace_view(self, device):
t = torch.ones(5, 5, device=device)
v = t.view_as(t)
v = v.squeeze_()
self.assertTrue(self.is_view_of(t, v))
v[0, 1] = 0
self.assertEqual(t, v._base)
def test_unsqueeze_view(self, device):
t = torch.ones(5, 5, device=device)
v = torch.unsqueeze(t, 1)
self.assertTrue(self.is_view_of(t, v))
v[0, 0, 1] = 0
self.assertEqual(t[0, 1], v[0, 0, 1])
def test_unsqueeze_inplace_view(self, device):
t = torch.ones(5, 5, device=device)
v = t.view_as(t)
v = v.unsqueeze_(1)
self.assertTrue(self.is_view_of(t, v))
v[0, 0, 1] = 0
self.assertEqual(t[0, 1], v[0, 0, 1])
def test_as_strided_view(self, device):
t = torch.ones(5, 5, device=device)
v = torch.as_strided(t, (25,), (1,))
self.assertTrue(self.is_view_of(t, v))
v[6] = 0
self.assertEqual(t[1, 1], v[6])
def test_as_strided_inplace_view(self, device):
t = torch.ones(5, 5, device=device)
v = t.view_as(t)
v = v.as_strided_((25,), (1,))
self.assertTrue(self.is_view_of(t, v))
v[6] = 0
self.assertEqual(t[1, 1], v[6])
def test_as_strided_gradients(self):
def test(x, prepro_fn, size, strides, offset=None):
x = x.to(torch.double).detach().requires_grad_()
# Check that forward will **not** resize storage because it may
# cause NaN in output and fail numerical Jacobian check consequently
with torch.no_grad():
y = prepro_fn(x) if prepro_fn is not None else x
max_offset = sum((si - 1) * st for si, st in zip(size, strides))
max_offset += offset if offset is not None else y.storage_offset()
assert max_offset < len(y.storage()), "test case resizes storage"
def closure(x):
if prepro_fn is not None:
x = prepro_fn(x)
return x.as_strided(size, strides, offset)
gradcheck(closure, [x], check_forward_ad=True)
gradgradcheck(closure, [x])
# test
test(torch.arange(0, 25), lambda x: x.view(5, 5), [3, 3], [6, 2], 2)
# test crazy stride at dim with size 1 case
test(torch.randn(12), None, [1, 2, 1, 5], [0, 5, 100, 1], 2)
# test expand case
test(torch.randn(5), None, [3, 3, 3], [0, 1, 0], 2)
test(torch.randn(5), None, [3, 3, 3], [0, 0, 0], 4)
test(torch.randn(5), lambda x: x.expand(5, 5), [5, 5], [0, 1], 0)
# test non-expand overlapping case
test(torch.randn(35), None, [6, 6], [5, 1], 2)
test(torch.randn(15), None, [3, 2], [3, 6], 2)
# test transpose case
test(torch.randn(3, 4), None, [4, 3], [1, 4])
# test "getting things outside the input" case
x = torch.randn(6, 2)
test(x[3:], None, [3, 2], [2, 1], 0) # should be all zeros
self.assertEqual(x[3:].as_strided([3, 2], [2, 1], 0), x[:3])
# test select on expanded input case
test(torch.randn(2, 3), lambda x: x.expand(10, 2, 3), [2, 3], [3, 1], 0)
def test_view_view(self, device):
t = torch.ones(5, 5, device=device)
v = t.view(25)
self.assertTrue(self.is_view_of(t, v))
v[6] = 0
self.assertEqual(t[1, 1], v[6])
def test_view_as_view(self, device):
t = torch.ones(5, 5, device=device)
e = torch.empty((25,))
v = t.view_as(e)
self.assertTrue(self.is_view_of(t, v))
v[6] = 0
self.assertEqual(t[1, 1], v[6])
def test_contiguous_self(self, device):
t = torch.ones(5, 5, device=device)
s = t.contiguous()
self.assertTrue(s is t)
@skipMeta
# self.is_view_of reports false positives for lazy
@skipLazy
def test_contiguous_nonview(self, device):
t = torch.ones(5, 5, device=device)
nv = t.t().contiguous()
self.assertTrue(not self.is_view_of(t, nv))
nv[0, 0] = 0
self.assertNotEqual(t[0, 0], nv[0, 0])
def test_reshape_view(self, device):
t = torch.ones(5, 5, device=device)
v = torch.reshape(t, (25,))
self.assertTrue(self.is_view_of(t, v))
v[6] = 0
self.assertEqual(t[1, 1], v[6])
def test_reshape_as_view(self, device):
t = torch.ones(5, 5, device=device)
e = torch.empty((25,), device=device)
v = t.reshape_as(e)
self.assertTrue(self.is_view_of(t, v))
v[6] = 0
self.assertEqual(t[1, 1], v[6])
@skipMeta
# self.is_view_of reports false positives for lazy
@skipLazy
def test_reshape_nonview(self, device):
t = torch.ones(5, 5, device=device)
nv = torch.reshape(t.t(), (25,))
self.assertTrue(not self.is_view_of(t, nv))
nv[6] = 0
self.assertNotEqual(t[1, 1], nv[6])
# This test use as_strided to construct a tensor with overlapping memory,
# which is not handled by the functionalization pass.
@skipLazy
@skipXLA
def test_flatten_view(self, device):
def test_writes_propagate(t, v):
idx_t = (0,) * t.ndim
idx_v = (0,) * v.ndim
v[idx_v] = 0
self.assertEqual(t[idx_t], v[idx_v])
t = torch.ones(1, 2, 3, 4, device=device)
v = t.flatten()
self.assertTrue(self.is_view_of(t, v))
test_writes_propagate(t, v)
# zero-dimensional tensor
t = torch.tensor(1, device=device)
v = t.flatten()
test_writes_propagate(t, v)
self.assertTrue(self.is_view_of(t, v))
t = torch.ones(1, 2, 3, 4, device=device).transpose(2, 3)
v = t.flatten(0, 1)
test_writes_propagate(t, v)
self.assertTrue(self.is_view_of_same_base(t, v))
# stride[i] = stride[i + 1] * size[i + 1] is satisfied for 3 groups:
t = torch.ones(720, device=device) \
.as_strided((2, 3, 2, 3, 5, 4), (6, 2, 15, 5, 1, 0))
# [--1--|---2---|-3-] [--1--|----2---|-3-]
v1 = t.flatten(0, 1)
v2 = v1.flatten(1, 3)
v3 = v2.flatten(2, 2)
test_writes_propagate(t, v1)
self.assertTrue(self.is_view_of_same_base(t, v1))
test_writes_propagate(t, v2)
self.assertTrue(self.is_view_of_same_base(t, v2))
test_writes_propagate(t, v3)
self.assertTrue(self.is_view_of_same_base(t, v3))
@onlyNativeDeviceTypes
def test_flatten_nonview(self, device):
def assert_is_nonview(t, nv):
idx_t = (0,) * t.ndim
idx_nv = (0,) * nv.ndim
self.assertTrue(not nv._is_view())
nv[idx_nv] = 0
if device != "meta":
self.assertNotEqual(t[idx_t], nv[idx_nv])
t = torch.ones(2, 3, 2, 3, device=device).transpose(2, 3)
nv = t.flatten(1, 3)
assert_is_nonview(t, nv)
t = torch.ones(2, 2, device=device).T
nv = t.flatten()
assert_is_nonview(t, nv)
# flatten returns the original object if start_dim=end_dim
t = t = torch.ones(2, 2, device=device)
nv = t.flatten(1, 1)
self.assertTrue(t is nv)
def test_basic_indexing_slice_view(self, device):
t = torch.ones(5, 5, device=device)
v = t[:2, :3]
self.assertTrue(self.is_view_of(t, v))
v[0, 0] = 0
self.assertEqual(t[0, 0], v[0, 0])
def test_basic_indexing_ellipses_view(self, device):
t = torch.ones(5, 5, device=device)
v = t[..., :2]
self.assertTrue(self.is_view_of(t, v))
v[0, 0] = 0
self.assertEqual(t[0, 0], v[0, 0])
def test_basic_indexing_newaxis_view(self, device):
t = torch.ones(5, 5, device=device)
v = t[None, :2, 3]
self.assertTrue(self.is_view_of(t, v))
v[0, 0] = 0
self.assertEqual(t[0, 3], v[0, 0])
def test_advanced_indexing_nonview(self, device):
t = torch.ones(3, 3, device=device)
rows = torch.tensor([[0, 0], [2, 2]], device=device)
cols = torch.tensor([[0, 1], [2, 2]], device=device)
nv = t[rows, cols]
self.assertTrue(not self.is_view_of(t, nv))
nv[1, 1] = 0
self.assertNotEqual(t[2, 2], nv[1, 1])
@unittest.skipIf(IS_FBCODE, "TorchScript backend not yet supported in FBCODE/OVRSOURCE builds")
def test_advanced_indexing_assignment(self, device):
t = torch.ones(3, 3, device=device)
rows = torch.tensor([[0, 0], [2, 2]], device=device)
cols = torch.tensor([[0, 1], [2, 2]], device=device)
t[rows, cols] = 0
self.assertEqual(t[2, 2], 0)
@unittest.skip("See https://github.com/pytorch/pytorch/pull/32720")
def test_chunk_view(self, device):
t = torch.zeros(3, 3, device=device)
l = torch.chunk(t, 3)
for idx, v in enumerate(l):
self.assertTrue(self.is_view_of(t, v))
v[0, 0] = idx + 1
self.assertEqual(t[idx, 0], v[0, 0])
@unittest.skip("See https://github.com/pytorch/pytorch/pull/32720")
def test_split_view(self, device):
t = torch.zeros(3, 3, device=device)
l = torch.split(t, [1, 1, 1])
for idx, v in enumerate(l):
self.assertTrue(self.is_view_of(t, v))
v[0, 0] = idx + 1
self.assertEqual(t[idx, 0], v[0, 0])
def test_movedim_view(self, device):
def run_test(device, op):
t = torch.zeros(3, 3, device=device)
out = op(t)
self.assertTrue(self.is_view_of(t, out))
# Randomly change values in output
# and verify that original is changed
# as well.
for _ in range(3):
idx_1, idx_2 = random.randint(0, 2), random.randint(0, 2)
out[idx_1, idx_2] = random.random()
self.assertEqual(t[idx_2, idx_1], out[idx_1, idx_2])
for fn in [torch.movedim, torch.moveaxis]:
op = partial(fn, source=(0, 1), destination=(1, 0))
run_test(device, op)
op = partial(fn, source=0, destination=1)
run_test(device, op)
# Testing that the generated view_copy kernel and its derivative are implemented correctly
def test_view_copy(self, device):
a = torch.randn(4, device=device, requires_grad=True)
a_ref = a.clone().detach().requires_grad_()
a_view = a_ref.view(2, 2)
a_view_copy = torch.view_copy(a, (2, 2))
# view_copy ops don't preserve view relationship
self.assertTrue(self.is_view_of(a_ref, a_view))
self.assertFalse(self.is_view_of(a, a_view_copy))
a_view_copy.sum().backward()
a_view.sum().backward()
# forward and backward give the same shape + result
self.assertEqual(a_view_copy, a_view)
self.assertEqual(a.grad, a_ref.grad)
# Testing that the output of a view_copy kernel (by default) is contiguous.
def test_view_copy_output_contiguous(self, device):
a = torch.randn(4, 4, 4, 4, device=device).to(memory_format=torch.channels_last)
b = torch.ops.aten.slice_copy(a, 0, 0, 2)
self.assertTrue(b.is_contiguous())
def test_view_copy_out(self, device):
a = torch.randn(2, 2, device=device)
out = torch.empty(2, device=device)
torch.diagonal_copy(a, out=out)
expected = torch.diagonal_copy(a)
self.assertEqual(expected, out)
a = torch.randn(4, device=device)
out1 = torch.empty(2, device=device)
out2 = torch.empty(2, device=device)
torch.split_copy(a, 2, out=(out1, out2))
expected1, expected2 = torch.split_copy(a, 2)
self.assertEqual(expected1, out1)
self.assertEqual(expected2, out2)
class TestOldViewOps(TestCase):
def test_ravel(self, device):
def _test_ravel(tensors, size, nc=False):
for src in tensors:
# Continuous Tensor -> View
flat = src.ravel()
self.assertEqual(flat.shape, torch.Size([size]))
self.assertEqual(src.view(-1), flat)
self.assertIs(flat._base, src)
self.assertTrue(flat.is_contiguous())
# Non-continuous Tensor -> Copy
if nc:
nc_src = src.t()
nc_flat = nc_src.ravel()
self.assertEqual(nc_flat.shape, torch.Size([size]))
self.assertEqual(nc_src.contiguous().view(-1), nc_flat)
self.assertIsNot(nc_flat._base, src)
self.assertTrue(nc_flat.is_contiguous())
# Test that flatten returns 1-dim tensor when given a 0-dim tensor
zero_dim_tensor = torch.tensor(123, device=device)
flat0 = zero_dim_tensor.ravel()
one_dim_tensor = torch.tensor([123], device=device)
flat1 = zero_dim_tensor.ravel()
nc_ones_tensor = torch.ones(10, device=device)[::2]
flat2 = nc_ones_tensor.ravel()
self.assertEqual(zero_dim_tensor.shape, torch.Size([]))
self.assertEqual(flat0.shape, torch.Size([1]))
self.assertEqual(one_dim_tensor.shape, torch.Size([1]))
self.assertEqual(flat1.shape, torch.Size([1]))
self.assertEqual(nc_ones_tensor.shape, torch.Size([5]))
self.assertEqual(flat2.shape, torch.Size([5]))
self.assertEqual(flat0, one_dim_tensor)
self.assertEqual(flat0, flat1)
self.assertEqual(flat0.shape, flat1.shape)
self.assertTrue(flat0.is_contiguous())
self.assertTrue(flat1.is_contiguous())
self.assertTrue(flat2.is_contiguous())
# Test both float tensor and quantized tensor
tensors = [torch.randn(5, 5, 5, 5, device=device),
torch._empty_affine_quantized([5, 5, 5, 5],
scale=2,
zero_point=3,
dtype=torch.quint8,
device=device)]
_test_ravel(tensors, 625)
tensors = [torch.randn(0, 2, 3, device=device),
torch.randn(3, 0, 2, device=device),
torch._empty_affine_quantized([0, 2, 3],
scale=2,
zero_point=3,
dtype=torch.quint8,
device=device),
torch._empty_affine_quantized([3, 0, 2],
scale=2,
zero_point=3,
dtype=torch.quint8,
device=device)]
_test_ravel(tensors, 0)
tensors = [torch.randn(5, 5, device=device),
torch._empty_affine_quantized([5, 5],
scale=2,
zero_point=3,
dtype=torch.quint8,
device=device)]
_test_ravel(tensors, 25, True)
# TODO: this should be refactored into the view ops test suite
def test_empty_reshape(self, device):
x = torch.randn(0, 6, device=device)
self.assertEqual((1, 0, 6, 1, 1), x.reshape(1, 0, 6, 1, 1).shape)
# should be viewable -- i.e. data_ptr is the same.
self.assertEqual(x.data_ptr(), x.reshape(1, 0, 6, 1, 1).data_ptr())
# match NumPy semantics -- don't infer the size of dimension with a degree of freedom
self.assertRaises(RuntimeError, lambda: x.reshape(0, -1))
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
def test_expand(self, device):
tensor = torch.rand(1, 8, 1, device=device)
tensor2 = torch.rand(5, device=device)
template = torch.rand(4, 8, 5, device=device)
target = template.size()
self.assertEqual(tensor.expand_as(template).size(), target)
self.assertEqual(tensor.expand(4, 8, 5).size(), target)
self.assertEqual(tensor.expand(target).size(), target)
self.assertEqual(tensor2.expand_as(template).size(), target)
self.assertEqual(tensor2.expand(4, 8, 5).size(), target)
self.assertEqual(tensor2.expand(target).size(), target)
# test double expand
self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1))
# test non-contiguous
noncontig = torch.randn(5, 2, 1, 3, device=device)[:, 0]
self.assertFalse(noncontig.is_contiguous())
self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1))
# make sure it's compatible with unsqueeze
expanded = tensor2.expand(1, 1, 5)
unsqueezed = tensor2.unsqueeze(0).unsqueeze(1)
self.assertEqual(expanded, unsqueezed)
self.assertEqual(expanded.stride(), unsqueezed.stride())
# test -1 as target size
self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5))
self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1))
# test expanding empty to empty
self.assertEqual(torch.zeros(0, device=device).expand((0,)), torch.zeros(0, device=device))
# TODO: this should be refactored into the view ops test suite
def test_view_empty(self, device):
x = torch.randn(0, 6, device=device)
self.assertEqual((1, 0, 6, 1, 1), x.view(1, 0, 6, 1, 1).shape)
# TODO: this should be refactored into the view ops test suite
@onlyNativeDeviceTypes
def test_reshape(self, device):
x = torch.randn(3, 3, device=device)
self.assertEqual(x.data_ptr(), x.reshape(-1).data_ptr())
self.assertEqual(x.data_ptr(), x.reshape(1, 9, 1).data_ptr())
self.assertEqual(torch.reshape(x, (9,)), x.reshape(9))
self.assertRaises(RuntimeError, lambda: x.reshape(-1, -1))
y = torch.randn(4, 4, 4, device=device)[:, 0, :]
# .data_ptr() on meta tensors is always 0 so they are equal regardless of the reshape
if device != "meta":
self.assertNotEqual(y.data_ptr(), y.reshape(-1).data_ptr())
self.assertEqual(y.contiguous().view(-1), y.reshape(-1))
self.assertEqual(y.reshape(2, 2, 4).data_ptr(), y.data_ptr())
s = torch.randn((), device=device)
self.assertEqual(s.data_ptr(), s.reshape(()).data_ptr())
self.assertEqual(s.reshape(-1).shape, (1,))
self.assertRaises(RuntimeError, lambda: s.reshape(2))
empty = torch.tensor([], device=device)
self.assertEqual(empty, empty.reshape(-1))
self.assertEqual(empty, empty.reshape([0]))
# TODO: fix these once we have multi-dimensional empty tensors
self.assertEqual(empty.reshape([0, 1]).shape, (0, 1))
self.assertEqual(empty.reshape([1, -1]).shape, (1, 0))
self.assertRaises(RuntimeError, lambda: empty.reshape(1))
x = torch.randn(3, 3, device=device)
self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(9)).data_ptr())
self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(1, 9, 1)).data_ptr())
self.assertRaises(RuntimeError, lambda: x.reshape_as(torch.rand(10, device=device)))
def test_flatten(self, device):
# Test that flatten returns 1-dim tensor when given a 0-dim tensor
zero_dim_tensor = torch.tensor(123, device=device)
flat0 = zero_dim_tensor.flatten()
one_dim_tensor = torch.tensor([123], device=device)
flat1 = zero_dim_tensor.flatten()
self.assertEqual(zero_dim_tensor.shape, torch.Size([]))
self.assertEqual(flat0.shape, torch.Size([1]))
self.assertEqual(one_dim_tensor.shape, torch.Size([1]))
self.assertEqual(flat1.shape, torch.Size([1]))
self.assertEqual(flat0, one_dim_tensor)
self.assertEqual(flat0, flat1)
self.assertEqual(flat0.shape, flat1.shape)
# Test both float tensor and quantized tensor
tensors = [torch.randn(5, 5, 5, 5, device=device),
torch._empty_affine_quantized([5, 5, 5, 5],
scale=2,
zero_point=3,
dtype=torch.quint8,
device=device)]
for src in tensors:
flat = src.flatten(0, -1)
self.assertEqual(flat.shape, torch.Size([625]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(0, 2)
self.assertEqual(flat.shape, torch.Size([125, 5]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(0, 1)
self.assertEqual(flat.shape, torch.Size([25, 5, 5]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(1, 2)
self.assertEqual(flat.shape, torch.Size([5, 25, 5]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(2, 3)
self.assertEqual(flat.shape, torch.Size([5, 5, 25]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(-2, -1)
self.assertEqual(flat.shape, torch.Size([5, 5, 25]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(2, 2)
self.assertEqual(flat, src)
# out of bounds index
with self.assertRaisesRegex(IndexError, 'Dimension out of range'):
src.flatten(5, 10)
# invalid start and end
with self.assertRaisesRegex(RuntimeError, 'start_dim cannot come after end_dim'):
src.flatten(2, 0)
# TODO: update to work on CUDA, too
@onlyCPU
def test_narrow(self, device):
x = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
self.assertEqual(x.narrow(0, 0, 1), torch.tensor([[0, 1, 2]]))
self.assertEqual(x.narrow(0, 0, 2), torch.tensor([[0, 1, 2], [3, 4, 5]]))
self.assertEqual(x.narrow(0, 1, 1), torch.tensor([[3, 4, 5]]))
self.assertEqual(x.narrow(0, -1, 1), torch.tensor([[6, 7, 8]]))
self.assertEqual(x.narrow(0, -2, 2), torch.tensor([[3, 4, 5], [6, 7, 8]]))
self.assertEqual(x.narrow(0, -3, 3), torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]))
self.assertEqual(x.narrow(-1, -1, 1), torch.tensor([[2], [5], [8]]))
self.assertEqual(x.narrow(-2, -1, 1), torch.tensor([[6, 7, 8]]))
# TODO: update to work on CUDA, too
@onlyCPU
def test_narrow_tensor(self, device):
x = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
self.assertEqual(x.narrow(0, torch.tensor(0), 1), torch.tensor([[0, 1, 2]]))
with self.assertRaises(Exception):
x.narrow(0, torch.tensor(0.), 1)
with self.assertRaises(Exception):
x.narrow(0, torch.tensor([0]), 1)
with self.assertRaises(Exception):
x.narrow(0, torch.tensor([0, 1]), 1)
# TODO: make work on CUDA, too
@onlyCPU
def test_t(self, device):
# Test 0D tensors
x = torch.randn(())
self.assertEqual(x, x.t())
x = x.to_sparse()
self.assertEqual(x, x.t())
# Test 1D tensors
x = torch.arange(4)
self.assertEqual(x, x.t())
x = x.to_sparse()
self.assertEqual(x, x.t())
# Test 2D tensors
x = torch.rand((2, 2))
self.assertEqual(x.t(), x.transpose(0, 1))
x = x.to_sparse()
self.assertEqual(x.t(), x.transpose(0, 1))
# Test 3D tensor
x = torch.rand((2, 2, 2))
with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 dimensions, but self is 3D'):
x.t()
x = x.to_sparse()
with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 sparse and 0 dense dimensions'):
x.t()
@onlyCPU
def test_split(self, device):
tensor = torch.rand(7, 4)
split_size = 3
dim = 0
target_sizes = ([3, 4], [3, 4], [1, 4])
splits = tensor.split(split_size, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, atol=0, rtol=0)
start = start + target_size[dim]
# Variable sections split
tensor = torch.randn(20, 10)
dim = 0
split_sizes = [5, 5, 10]
target_sizes = ([[5, 10], [5, 10], [10, 10]])
splits = tensor.split(split_sizes, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, atol=0, rtol=0)
start = start + target_size[dim]
split_sizes = [2, 2, 6]
target_sizes = ([20, 2], [20, 2], [20, 6])
dim = 1
splits = tensor.split(split_sizes, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, atol=0, rtol=0)
start = start + target_size[dim]
@onlyCPU
def test_chunk(self, device):
tensor = torch.rand(4, 7)
num_chunks = 3
dim = 1
target_sizes = ([4, 3], [4, 3], [4, 1])
splits = tensor.chunk(num_chunks, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split,
atol=0, rtol=0)
start = start + target_size[dim]
# Invalid chunk sizes
error_regex = 'chunk expects.*greater than 0'
with self.assertRaisesRegex(RuntimeError, error_regex):
tensor.chunk(0)
with self.assertRaisesRegex(RuntimeError, error_regex):
tensor.chunk(-2)
# TODO: make work on CUDA, too
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
@onlyCPU
def test_unsqueeze(self, device) -> None:
x = torch.randn(2, 3, 4)
y = x.unsqueeze(1)
self.assertEqual(y, x.view(2, 1, 3, 4))
y = x.clone().unsqueeze_(2)
self.assertEqual(y, x.view(2, 3, 1, 4))
x = x[:, 1]
self.assertFalse(x.is_contiguous())
y = x.unsqueeze(1)
self.assertEqual(y, x.contiguous().view(2, 1, 4))
y = x.clone().unsqueeze_(2)
self.assertEqual(y, x.contiguous().view(2, 4, 1))
# unit test for special case transposed copy (see ATen/native/Copy.cpp for details)
def test_big_transpose(self, device):
t = torch.rand(456, 789, device=device)
t1 = t.t().contiguous()
t2 = torch.from_numpy(t.cpu().numpy().transpose())
self.assertEqual(t1, t2)
def test_T(self, device):
a = torch.randn(2, 3, 4, device=device)
t1 = a.T
t2 = a.permute(2, 1, 0)
self.assertEqual(t2, t1)
b = torch.randn(10, device=device)
self.assertEqual(b, b.T)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_transposes(self, device, dtype):
for op in ("T", "H", "mT", "mH", "adjoint"):
shapes = ((2, 3), (2, 3, 4)) if op[0] == "m" or op == "adjoint" else ((2, 3),)
for shape in shapes:
a = make_tensor(shape, device=device, dtype=dtype)
t1 = getattr(a, op)
if op == "adjoint":
t1 = t1()
t2 = a
t2 = t2.transpose(-2, -1)
if op[-1] == "H" or op == "adjoint":
t2 = t2.conj()
self.assertEqual(t2, t1)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_transposes_errors(self, device, dtype):
for op in ("H", "mT", "mH", "adjoint"):
shapes = ((2,), (2, 3, 4)) if op == "H" else ((2,),)
for shape in shapes:
a = make_tensor(shape, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, "only supported on matrices"):
t1 = getattr(a, op)
if op == "adjoint":
t1 = t1()
def test_python_types(self, device):
a1 = torch.randn((1, 2), device=device, dtype=torch.float64)
a2 = torch.randn((1, 2), device=device, dtype=float)
self.assertEqual(a1.dtype, a2.dtype)
b1 = torch.arange(10, 20, dtype=torch.int64, device=device)
b2 = torch.arange(10, 20, dtype=int, device=device)
self.assertEqual(b1.dtype, b2.dtype)
c1 = torch.tensor([True, False], dtype=torch.bool, device=device)
c2 = torch.tensor([True, False], dtype=bool, device=device)
self.assertEqual(c1.dtype, c2.dtype)
# TODO: is resize best put in test_view_ops?
def test_resize_as_preserves_strides(self, device):
x = torch.empty(2, 3).t()
old_strides = x.stride()
x.resize_as_(x)
self.assertEqual(x.stride(), old_strides)
def test_memory_format_resize_as(self, device):
def test_helper(shape, memory_format, device):
xc = torch.randn(shape, device=device).contiguous(memory_format=memory_format)
flat = torch.randn(xc.numel(), device=device)
flat.resize_as_(xc, memory_format=torch.preserve_format)
self.assertTrue(flat.is_contiguous(memory_format=memory_format))
test_helper((10, 3, 32, 32), torch.channels_last, device)
test_helper((3, 10, 3, 32, 32), torch.channels_last_3d, device)
def test_memory_format_resize_(self, device):
def test_helper(shape, numel, memory_format, device):
flat = torch.randn(numel, device=device)
flat.resize_(shape, memory_format=memory_format)
self.assertTrue(flat.is_contiguous(memory_format=memory_format))
test_helper((10, 3, 32, 32), 10 * 3 * 32 * 32, torch.channels_last, device)
test_helper((3, 10, 3, 32, 32), 3 * 10 * 3 * 32 * 32, torch.channels_last_3d, device)
@onlyNativeDeviceTypes
@dtypes(torch.int64, torch.float, torch.complex128)
def test_transpose_invalid(self, device, dtype):
for fn in (torch.swapdims, torch.swapaxes, torch.transpose):
shape = _rand_shape(4, min_size=5, max_size=10)
x = _generate_input(shape, dtype, device, False)
# Invalid `source` and `destination` dimension
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
fn(x, 5, 0)
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
fn(x, 0, 5)
@dtypes(torch.int64, torch.float, torch.complex128)
def test_transpose_vs_numpy(self, device, dtype):
for fn in (torch.swapdims, torch.swapaxes, torch.transpose):
for nd in range(5):
shape = _rand_shape(nd, min_size=5, max_size=10)
x = _generate_input(shape, dtype, device, with_extremal=False)
for random_negative in [True, False]:
for src_dim, dst_dim in permutations(range(nd), r=2):
random_prob = random.random()
if random_negative and random_prob > 0.66:
src_dim = src_dim - nd
elif random_negative and random_prob > 0.33:
dst_dim = dst_dim - nd
elif random_negative:
src_dim = src_dim - nd
dst_dim = dst_dim - nd
partial_map = {
torch.swapdims: partial(torch.swapdims, dim0=src_dim, dim1=dst_dim),
torch.swapaxes: partial(torch.swapaxes, axis0=src_dim, axis1=dst_dim),
torch.transpose: partial(torch.transpose, dim0=src_dim, dim1=dst_dim),
}
torch_fn = partial_map[fn]
np_fn = partial(np.swapaxes, axis1=src_dim, axis2=dst_dim)
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
# Move dim to same position
x = torch.randn(2, 3, 5, 7, 11)
partial_map = {
torch.swapdims: partial(torch.swapdims, dim0=0, dim1=0),
torch.swapaxes: partial(torch.swapaxes, axis0=0, axis1=0),
torch.transpose: partial(torch.transpose, dim0=0, dim1=0),
}
torch_fn = partial_map[fn]
np_fn = partial(np.swapaxes, axis1=0, axis2=0)
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
def _test_atleast_dim(self, torch_fn, np_fn, device, dtype):
for ndims in range(0, 5):
shape = _rand_shape(ndims, min_size=5, max_size=10)
for n in range(ndims + 1):
for with_extremal in [False, True]:
for contiguous in [False, True]:
# Generate Input.
x = _generate_input(shape, dtype, device, with_extremal)
if contiguous:
x = x.T
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
# Compare sequence input
torch_sequence_x = (x,) * random.randint(3, 10)
np_sequence_x = tuple(np.array(x.detach().cpu().numpy()) for x in torch_sequence_x)
torch_res = torch_fn(*torch_sequence_x)
np_res = np_fn(*np_sequence_x)
torch_res = tuple(x.cpu() for x in torch_res)
np_res = tuple(torch.from_numpy(x) for x in np_res)
self.assertEqual(np_res, torch_res)
# TODO: are these view ops?
@dtypes(*all_types_and_complex_and(torch.half))
def test_atleast(self, device, dtype):
self._test_atleast_dim(torch.atleast_1d, np.atleast_1d, device, dtype)
self._test_atleast_dim(torch.atleast_2d, np.atleast_2d, device, dtype)
self._test_atleast_dim(torch.atleast_3d, np.atleast_3d, device, dtype)
# TODO: OpInfo this
def _test_atleast(self, device, torch_fn):
# 0-dim
s = torch.tensor(0.5, dtype=torch.double, requires_grad=True)
gradcheck(lambda x: torch_fn(x), s)
gradgradcheck(lambda x: torch_fn(x), s)
# 1-dim
a = torch.rand(4, dtype=torch.double, requires_grad=True)
gradcheck(lambda x: torch_fn(x), a)
gradgradcheck(lambda x: torch_fn(x), a)
# 2,3,4-dim
b = torch.rand(4, 3, dtype=torch.double, requires_grad=True)
c = torch.rand(4, 3, 2, dtype=torch.double, requires_grad=True)
d = torch.rand(4, 3, 2, 1, dtype=torch.double, requires_grad=True)
input_tuple = (s, a, b, c, d)
gradcheck(lambda s, w, x, y, z: torch_fn(s, w, x, y, z), input_tuple)
gradgradcheck(lambda s, w, x, y, z: torch_fn(s, w, x, y, z), input_tuple)
def test_atleast_gradient(self, device):
self._test_atleast(device, torch.atleast_1d)
self._test_atleast(device, torch.atleast_2d)
self._test_atleast(device, torch.atleast_3d)
@onlyCPU
@dtypes(torch.float)
def test_broadcast_tensors(self, device, dtype):
x0 = torch.randn(2, 1, 3, dtype=dtype, device=device)
x1 = torch.randn(3, dtype=dtype, device=device)
x2 = torch.randn(3, 1, dtype=dtype, device=device)
expected_size = (2, 3, 3)
y0, y1, y2 = torch.broadcast_tensors(x0, x1, x2)
self.assertTrue(y0.size() == expected_size)
self.assertTrue(y1.size() == expected_size)
self.assertTrue(y2.size() == expected_size)
@onlyCPU
def test_broadcast_shapes(self, device):
examples = [(), (1,), (2,), (1, 1), (3, 1), (3, 2), (4, 1, 1), (4, 3, 2)]
for s0 in examples:
x0 = torch.randn(s0)
expected = torch.broadcast_tensors(x0)[0].shape
actual = torch.broadcast_shapes(s0)
self.assertEqual(expected, actual)
for s1 in examples:
x1 = torch.randn(s1)
expected = torch.broadcast_tensors(x0, x1)[0].shape
actual = torch.broadcast_shapes(s0, s1)
self.assertEqual(expected, actual)
inputs_list = [[1, 4], [4, 1], [1, 1, 3]]
for integral_inputs in inputs_list:
res1 = torch.broadcast_shapes(*integral_inputs)
res2 = torch.broadcast_tensors(*map(torch.empty, integral_inputs))[0].shape
self.assertEqual(res1, res2)
inputs_with_neg_vals = [[1, 1, -12], [-1, 1], [-11, ]]
for integral_inputs_with_neg_vals in inputs_with_neg_vals:
with self.assertRaisesRegex(RuntimeError, "Trying to create tensor with negative dimension"):
torch.broadcast_shapes(*integral_inputs_with_neg_vals)
integral_inputs_error_case = [(3, 5), (2, 4, 1)]
for error_input in integral_inputs_error_case:
with self.assertRaisesRegex(RuntimeError, "Shape mismatch: objects cannot be broadcast to a single shape"):
torch.broadcast_shapes(*error_input)
negative_inputs = [(-1,), (1, -12), (4, -11), (-4, 1), (1, 1, -2)]
for s0 in negative_inputs:
with self.assertRaisesRegex(RuntimeError, "Trying to create tensor with negative dimension"):
torch.broadcast_shapes(s0)
for s1 in negative_inputs:
with self.assertRaisesRegex(RuntimeError, "Trying to create tensor with negative dimension"):
torch.broadcast_shapes(s0, s1)
float_inputs_error_case = [(1.1, 2.0), (1.1, 1.0)]
for error_case in float_inputs_error_case:
for float_input in error_case:
with self.assertRaisesRegex(RuntimeError, "Input shapes "
"should be of type ints, a tuple of ints, or a list of ints"):
torch.broadcast_shapes(float_input)
diff_input_types = [(1, (5,)), (3, (1,)), (1, (3, 4))]
for s0 in diff_input_types:
res1 = torch.broadcast_shapes(*s0)
res2 = torch.broadcast_tensors(*map(torch.empty, s0))[0].shape
self.assertEqual(res1, res2)
# Skip BFloat16 since numpy does not support it
@dtypes(*all_types_and_complex_and(torch.half, torch.bool))
def test_broadcast_to(self, device, dtype):
def can_broadcast(s0, s1):
# s0.dim() <= s1.dim(), reverse s0 and s1 to compare trailing dimension
s0 = tuple(reversed(s0))
s1 = tuple(reversed(s1))
for i in range(len(s0)):
if s0[i] != 1 and s0[i] != s1[i]:
return False
return True
sizes = (
(), (1,), (2,), (1, 1), (3, 1), (3, 2), (4, 1, 1), (4, 3, 2)
)
for s0, s1 in combinations(sizes, r=2):
t = make_tensor(s0, dtype=dtype, device=device, low=-9, high=9)
t_np = t.cpu().numpy()
if can_broadcast(s0, s1):
res = torch.broadcast_to(t, s1)
np_res = np.broadcast_to(t_np, s1)
self.assertEqual(res, np_res)
else:
with self.assertRaisesRegex(RuntimeError,
r"The expanded size of the tensor \(\d\) "
r"must match the existing size \(\d\)"):
torch.broadcast_to(t, s1)
def test_view(self, device):
tensor = torch.rand(15, device=device)
template = torch.rand(3, 5, device=device)
empty = torch.empty(0, device=device)
target = template.size()
self.assertEqual(tensor.view_as(template).size(), target)
self.assertEqual(tensor.view(3, 5).size(), target)
self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target)
self.assertEqual(tensor.view(-1, 5).size(), target)
self.assertEqual(tensor.view(3, -1).size(), target)
tensor_view = tensor.view(5, 3)
tensor_view.fill_(random.uniform(0, 1))
self.assertEqual(empty.view_as(empty), empty)
self.assertEqual(empty.view(0), empty)
self.assertEqual(empty.view(0, 3, 0, 1).size(), torch.Size([0, 3, 0, 1]))
self.assertEqual(empty.view(0, 3, 0, 1).view(0), empty)
# test size inference with empty tensors
self.assertEqual(empty.view(-1).size(), torch.Size([0]))
self.assertEqual(empty.view(10, 3, -1).size(), torch.Size([10, 3, 0]))
with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"):
empty.view(-1, 0)
with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"):
empty.view(3, 0, -1, 0)
self.assertRaises(RuntimeError, lambda: tensor.view(15, 0))
self.assertRaises(RuntimeError, lambda: tensor.view(7, -1))
self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1))
# test view when tensor is not contiguous in every dimension, but only
# contiguous dimensions are touched.
tensor = torch.rand(4, 2, 5, 1, 6, 2, 9, 3, device=device).transpose(-1, 2).transpose(-2, 3)
# size: [ 4, 2, 3, 9, 6, 2, 1, 5]
# stride: [3840, 1620, 1, 3, 54, 27, 324, 324]
# contiguous dim chunks: [__________, ____, ____, __________, ____, ____]
# merging 1 to chunk after: [__________, ____, ____, __________, __________]
contig_tensor = tensor.clone()
# [4, 2] => [8, 1]
# [3] => [3]
# [9] => [3, 3]
# [6, 2] => [4, 1, 3]
# [1, 5] => [5]
view_size = [8, 1, 3, 3, 3, 4, 1, 3, 5]
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
# [4, 2] => [2, 4]
# [3] => [3]
# [9] => [1, 9]
# [6, 2] => [2, 2, 3]
# [1, 5] => [5, 1]
view_size = [2, 4, 3, 1, 9, 2, 2, 3, 5, 1]
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
# adding size 1 dims
view_size = [1, 1, 2, 1, 4, 3, 1, 1, 9, 1, 2, 1, 2, 3, 1, 5, 1, 1]
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
# invalid views
self.assertRaises(RuntimeError, lambda: tensor.view(-1))
# crossing [4, 2], [3]
self.assertRaises(RuntimeError, lambda: tensor.view(24, 9, 6, 2, 1, 5))
# crossing [6, 2], [1, 5]
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 9, 6, 10))
# crossing [9], [6, 2]
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 54, 2, 1, 5))
# view with stride 0 dims
tensor = torch.empty(1, 1, device=device).expand(3, 4) # all dims are contiguous
contig_tensor = tensor.clone()
self.assertEqual(tensor.view(-1), contig_tensor.view(-1))
self.assertEqual(tensor.view(1, -1, 1), contig_tensor.view(1, -1, 1))
self.assertEqual(tensor.view(-1, 1), contig_tensor.view(-1, 1))
self.assertEqual(tensor.view(6, 2, 1), contig_tensor.view(6, 2, 1))
self.assertEqual(tensor.view(1, 6, 2, 1), contig_tensor.view(1, 6, 2, 1))
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_reshape_view_semantics(self, device, dtype):
tensor = make_tensor((15, 4), dtype=dtype, device=device)
target = (20, 3)
# Cases where the tensor can be returned as a view.
view_tensor = tensor.reshape(target)
self.assertEqual((view_tensor.size()), target)
self.assertEqual(tensor.storage().data_ptr(), view_tensor.storage().data_ptr())
# Cases where the tensor must be copied (transpose makes it non-contiguous forcing
# the copy).
copy_tensor = tensor.transpose(0, 1).reshape(target)
self.assertEqual(copy_tensor.size(), target)
self.assertNotEqual(tensor.storage().data_ptr(), copy_tensor.storage().data_ptr())
def test_contiguous(self, device):
x = torch.randn(1, 16, 5, 5, device=device)
self.assertTrue(x.is_contiguous())
stride = list(x.stride())
stride[0] = 20
# change the stride in dimension 0. the tensor is still contiguous because size[0] is 1
x.set_(x.storage(), 0, x.size(), stride)
self.assertTrue(x.is_contiguous())
@onlyNativeDeviceTypes
# Skip BFloat16 since numpy does not support it
@dtypes(*all_types_and_complex_and(torch.half, torch.bool))
def test_tensor_split_sections(self, device, dtype):
input_sizes = [
(0,),
(10,),
(10, 0),
(0, 10),
(4, 10),
(12, 3),
]
for input_size in input_sizes:
a_base = make_tensor(input_size, dtype=dtype, device=device, low=-9, high=9)
# Run tests on transposed input if it has at least 2 dims
for a in [a_base, a_base.t()] if a_base.dim() > 2 else [a_base]:
a_n = a.cpu().numpy()
for dim in range(-a.dim(), a.dim()):
for sections in range(1, 2 * a.size(dim)):
msg = f'input_size {input_size}, sections {sections}, dim {dim}'
result1 = torch.tensor_split(a, sections, dim)
result2 = torch.tensor_split(a, torch.tensor(sections, dtype=torch.int64), dim)
for r1, r2 in zip(result1, result2):
self.assertEqual(r1.device, torch.device(device), msg=msg)
self.assertEqual(r1.dtype, dtype, msg=msg)
self.assertEqual(r2.device, torch.device(device), msg=msg)
self.assertEqual(r2.dtype, dtype, msg=msg)
result_n = np.array_split(a_n, sections, dim)
self.assertEqual(result_n, result1, msg=msg)
self.assertEqual(result_n, result2, msg=msg)
@onlyNativeDeviceTypes
# Skip BFloat16 since numpy does not support it
@dtypes(*all_types_and_complex_and(torch.half, torch.bool))
def test_tensor_split_indices(self, device, dtype):
input_sizes = [
(0,),
(10,),
(10, 0),
(0, 10),
(4, 10),
(12, 3),
]
indices_args = [
(),
(0,),
(3,),
(10,),
(-1,),
(-10,),
(2, -1),
(3, 4, 10),
(0, -1, 0, 10),
(1, 5, 2, 8),
]
for input_size in input_sizes:
a_base = make_tensor(input_size, dtype=dtype, device=device, low=-9, high=9)
# Run tests on transposed input if it has at least 2 dims
for a in [a_base, a_base.t()] if a_base.dim() > 2 else [a_base]:
a_n = a.cpu().numpy()
for dim in range(-a.dim(), a.dim()):
for indices in indices_args:
result_1 = torch.tensor_split(a, indices, dim)
result_2 = torch.tensor_split(a, torch.tensor(indices, dtype=torch.int64), dim)
msg = f'input_size {input_size}, indices {indices}, dim {dim}'
for r1, r2 in zip(result_1, result_2):
self.assertEqual(r1.device, torch.device(device), msg=msg)
self.assertEqual(r1.dtype, dtype, msg=msg)
self.assertEqual(r2.device, torch.device(device), msg=msg)
self.assertEqual(r2.dtype, dtype, msg=msg)
result_n = np.array_split(a_n, indices, dim)
self.assertEqual(result_n, result_1, msg=msg)
self.assertEqual(result_n, result_2, msg=msg)
@onlyNativeDeviceTypes
def test_tensor_split_errors(self, device):
S = 10
test_cases = [
# input size, sections or indices, dim, error type, error message, numpy error type
[(S,), 10, 1, IndexError, r'Dimension out of range', IndexError],
[(), 10, 0, RuntimeError, r'tensor_split expected at least a 1-dimensional tensor, '
+ 'but got a tensor with 0 dims', IndexError],
[(S,), (10,), 1, IndexError, r'Dimension out of range', IndexError],
[(), (10,), 0, RuntimeError, r'tensor_split expected at least a 1-dimensional tensor, '
+ 'but got a tensor with 0 dims', IndexError],
[(S,), 0, 0, RuntimeError, r'number of sections must be larger than 0, got 0', ValueError],
[(S,), -1, 0, RuntimeError, r'number of sections must be larger than 0, got -1', ValueError],
]
for input_size, sections_or_indices, dim, err, err_msg, numpy_err in test_cases:
a = torch.randn(input_size, device=device)
msg = f'input_size {input_size}, sections_or_indices {sections_or_indices}, dim {dim}'
with self.assertRaisesRegex(err, err_msg, msg=msg):
torch.tensor_split(a, sections_or_indices, dim)
with self.assertRaisesRegex(err, err_msg, msg=msg):
torch.tensor_split(a, torch.tensor(sections_or_indices), dim)
with self.assertRaises(numpy_err, msg=msg):
np.array_split(a.cpu().numpy(), sections_or_indices, dim)
# addtional tests for tensor_split with tensor_indices_or_sections
with self.assertRaisesRegex(RuntimeError,
r'tensor_split expected tensor_indices_or_sections to have dtype of long, but got Float'):
torch.tensor_split(a, torch.tensor(1.1), dim)
with self.assertRaisesRegex(RuntimeError,
r'tensor_split expected tensor_indices_or_sections to be a'
+ ' zero-dimensional or one-dimensional tensor, but got a tensor with 2 dims'):
torch.tensor_split(torch.rand(S, device=device), torch.tensor(((1,),)), 0)
def test_resize_all_dtypes_and_devices(self, device):
shape = (2, 2)
for dt in all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool):
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
x.resize_(shape)
self.assertEqual(shape, x.shape)
def test_resize_as_all_dtypes_and_devices(self, device):
for dt in all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool):
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
y = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=dt, device=device)
x.resize_as_(y)
self.assertEqual(y.shape, x.shape)
@onlyNativeDeviceTypes
def test_resize_overflow(self, device):
x = torch.empty((), dtype=torch.float64)
with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'):
x.resize_([2, 4, 2**29, 2**29])
with self.assertRaisesRegex(RuntimeError, 'overflow'):
x.resize_([8, 8, 2**29, 2**29])
with self.assertRaisesRegex(RuntimeError, 'Stride calculation overflowed'):
x.resize_([0, 4, 2305843009213693952])
def test_view_all_dtypes_and_devices(self, device):
for dt in all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool):
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
self.assertEqual(x.view(6).shape, [6])
@onlyCPU
def test_conj_neg_view_numpy_error(self, device):
self.assertRaisesRegex(RuntimeError, "has conjugate bit set", lambda: torch.tensor([1 + 2j]).conj().numpy())
self.assertRaisesRegex(RuntimeError, "has negative bit set", lambda: torch.tensor([1 + 2j]).conj().imag.numpy())
self.assertRaisesRegex(RuntimeError, "not supported for conjugate view tensors",
lambda: torch.tensor([1 + 2j]).conj().view(torch.float64))
self.assertRaisesRegex(RuntimeError, "not supported for tensors with negative bit set",
lambda: torch.tensor([1 + 2j]).conj().imag.view(torch.int32))
@onlyCPU
def test_crow_col_indices(self, device):
crow_indices = (0, 1, 2)
col_indices = (1, 0)
values = (1, 2)
t = torch.sparse_csr_tensor(crow_indices, col_indices, values, size=(2, 2))
# This is the test. If crow_indices is not a view op it'll
# trigger an internal assert due to use count greater than 1
# in debug build.
t.crow_indices()
t.col_indices()
instantiate_device_type_tests(TestViewOps, globals(), include_lazy=True)
instantiate_device_type_tests(TestOldViewOps, globals())
if __name__ == '__main__':
run_tests()