1
0
Fork 0
stockfish/src/tt.cpp

225 lines
6.7 KiB
C++
Raw Normal View History

2008-08-31 23:59:13 -06:00
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
2008-08-31 23:59:13 -06:00
Stockfish is free software: you can redistribute it and/or modify
2008-08-31 23:59:13 -06:00
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
2008-08-31 23:59:13 -06:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2008-08-31 23:59:13 -06:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <cmath>
#include <cstring>
2008-08-31 23:59:13 -06:00
#include "movegen.h"
2008-08-31 23:59:13 -06:00
#include "tt.h"
// The main transposition table
TranspositionTable TT;
2008-08-31 23:59:13 -06:00
////
//// Functions
////
TranspositionTable::TranspositionTable() {
2008-08-31 23:59:13 -06:00
size = writes = 0;
2008-08-31 23:59:13 -06:00
entries = 0;
generation = 0;
2008-08-31 23:59:13 -06:00
}
TranspositionTable::~TranspositionTable() {
2008-08-31 23:59:13 -06:00
delete [] entries;
}
/// TranspositionTable::set_size sets the size of the transposition table,
/// measured in megabytes.
void TranspositionTable::set_size(size_t mbSize) {
2008-08-31 23:59:13 -06:00
size_t newSize = 1024;
2008-08-31 23:59:13 -06:00
// We store a cluster of ClusterSize number of TTEntry for each position
// and newSize is the maximum number of storable positions.
while ((2 * newSize) * sizeof(TTCluster) <= (mbSize << 20))
newSize *= 2;
if (newSize != size)
{
size = newSize;
delete [] entries;
entries = new TTCluster[size];
if (!entries)
{
std::cerr << "Failed to allocate " << mbSize
<< " MB for transposition table." << std::endl;
Application::exit_with_failure();
}
clear();
2008-08-31 23:59:13 -06:00
}
}
/// TranspositionTable::clear overwrites the entire transposition table
/// with zeroes. It is called whenever the table is resized, or when the
2008-08-31 23:59:13 -06:00
/// user asks the program to clear the table (from the UCI interface).
/// Perhaps we should also clear it when the "ucinewgame" command is recieved?
void TranspositionTable::clear() {
memset(entries, 0, size * sizeof(TTCluster));
2008-08-31 23:59:13 -06:00
}
/// TranspositionTable::store writes a new entry containing a position,
/// a value, a value type, a search depth, and a best move to the
/// transposition table. Transposition table is organized in clusters of
/// four TTEntry objects, and when a new entry is written, it replaces
/// the least valuable of the four entries in a cluster. A TTEntry t1 is
2008-08-31 23:59:13 -06:00
/// considered to be more valuable than a TTEntry t2 if t1 is from the
/// current search and t2 is from a previous search, or if the depth of t1
/// is bigger than the depth of t2. A TTEntry of type VALUE_TYPE_EVAL
/// never replaces another entry for the same position.
2008-08-31 23:59:13 -06:00
void TranspositionTable::store(const Key posKey, Value v, ValueType t, Depth d, Move m, Value statV, Value kingD) {
2008-08-31 23:59:13 -06:00
TTEntry *tte, *replace;
uint32_t posKey32 = posKey >> 32; // Use the high 32 bits as key
2008-08-31 23:59:13 -06:00
tte = replace = first_entry(posKey);
for (int i = 0; i < ClusterSize; i++, tte++)
{
if (!tte->key() || tte->key() == posKey32) // empty or overwrite old
{
// Preserve any exsisting ttMove
if (m == MOVE_NONE)
m = tte->move();
tte->save(posKey32, v, t, d, m, generation, statV, kingD);
return;
}
else if (i == 0) // replace would be a no-op in this common case
continue;
int c1 = (replace->generation() == generation ? 2 : 0);
int c2 = (tte->generation() == generation ? -2 : 0);
int c3 = (tte->depth() < replace->depth() ? 1 : 0);
if (c1 + c2 + c3 > 0)
replace = tte;
2008-08-31 23:59:13 -06:00
}
replace->save(posKey32, v, t, d, m, generation, statV, kingD);
2008-08-31 23:59:13 -06:00
writes++;
}
/// TranspositionTable::retrieve looks up the current position in the
/// transposition table. Returns a pointer to the TTEntry or NULL
/// if position is not found.
TTEntry* TranspositionTable::retrieve(const Key posKey) const {
2008-08-31 23:59:13 -06:00
uint32_t posKey32 = posKey >> 32;
TTEntry* tte = first_entry(posKey);
2008-08-31 23:59:13 -06:00
for (int i = 0; i < ClusterSize; i++, tte++)
if (tte->key() == posKey32)
return tte;
return NULL;
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
/// TranspositionTable::new_search() is called at the beginning of every new
/// search. It increments the "generation" variable, which is used to
2008-08-31 23:59:13 -06:00
/// distinguish transposition table entries from previous searches from
/// entries from the current search.
void TranspositionTable::new_search() {
2008-08-31 23:59:13 -06:00
generation++;
writes = 0;
}
/// TranspositionTable::insert_pv() is called at the end of a search
/// iteration, and inserts the PV back into the PV. This makes sure
/// the old PV moves are searched first, even if the old TT entries
/// have been overwritten.
2008-08-31 23:59:13 -06:00
void TranspositionTable::insert_pv(const Position& pos, Move pv[]) {
StateInfo st;
Position p(pos, pos.thread());
2008-08-31 23:59:13 -06:00
for (int i = 0; pv[i] != MOVE_NONE; i++)
{
TTEntry *tte = retrieve(p.get_key());
if (!tte || tte->move() != pv[i])
store(p.get_key(), VALUE_NONE, VALUE_TYPE_NONE, Depth(-127*OnePly), pv[i], VALUE_NONE, VALUE_NONE);
p.do_move(pv[i], st);
2008-08-31 23:59:13 -06:00
}
}
/// TranspositionTable::extract_pv() extends a PV by adding moves from the
/// transposition table at the end. This should ensure that the PV is almost
/// always at least two plies long, which is important, because otherwise we
/// will often get single-move PVs when the search stops while failing high,
/// and a single-move PV means that we don't have a ponder move.
void TranspositionTable::extract_pv(const Position& pos, Move bestMove, Move pv[], const int PLY_MAX) {
const TTEntry* tte;
StateInfo st;
Position p(pos, pos.thread());
int ply = 0;
assert(bestMove != MOVE_NONE);
pv[ply] = bestMove;
p.do_move(pv[ply++], st);
// Extract moves from TT when possible. We try hard to always
// get a ponder move, that's the reason of ply < 2 conditions.
while ( (tte = retrieve(p.get_key())) != NULL
&& tte->move() != MOVE_NONE
&& (tte->type() == VALUE_TYPE_EXACT || ply < 2)
&& move_is_legal(p, tte->move())
&& (!p.is_draw() || ply < 2)
&& ply < PLY_MAX)
{
pv[ply] = tte->move();
p.do_move(pv[ply++], st);
}
pv[ply] = MOVE_NONE;
}
2008-08-31 23:59:13 -06:00
/// TranspositionTable::full() returns the permill of all transposition table
/// entries which have received at least one write during the current search.
/// It is used to display the "info hashfull ..." information in UCI.
int TranspositionTable::full() const {
double N = double(size) * ClusterSize;
2008-08-31 23:59:13 -06:00
return int(1000 * (1 - exp(writes * log(1.0 - 1.0/N))));
}