1
0
Fork 0

Change evaluate() signature

Hide EvalInfo and return just the score and the margin.

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
sf_2.3.1_base
Marco Costalba 2010-08-25 19:56:01 +01:00
parent fff59319b0
commit 15d265cc66
5 changed files with 79 additions and 104 deletions

View File

@ -38,6 +38,54 @@
namespace {
// Struct EvalInfo contains various information computed and collected
// by the evaluation functions.
struct EvalInfo {
// Middle and end game position's static evaluations
Score value;
// margin[color] stores the evaluation margins we should consider for
// the given position. This is a kind of uncertainty estimation and
// typically is used by the search for pruning decisions.
Value margin[2];
// Pointers to material and pawn hash table entries
MaterialInfo* mi;
PawnInfo* pi;
// attackedBy[color][piece type] is a bitboard representing all squares
// attacked by a given color and piece type, attackedBy[color][0] contains
// all squares attacked by the given color.
Bitboard attackedBy[2][8];
// kingZone[color] is the zone around the enemy king which is considered
// by the king safety evaluation. This consists of the squares directly
// adjacent to the king, and the three (or two, for a king on an edge file)
// squares two ranks in front of the king. For instance, if black's king
// is on g8, kingZone[WHITE] is a bitboard containing the squares f8, h8,
// f7, g7, h7, f6, g6 and h6.
Bitboard kingZone[2];
// kingAttackersCount[color] is the number of pieces of the given color
// which attack a square in the kingZone of the enemy king.
int kingAttackersCount[2];
// kingAttackersWeight[color] is the sum of the "weight" of the pieces of the
// given color which attack a square in the kingZone of the enemy king. The
// weights of the individual piece types are given by the variables
// QueenAttackWeight, RookAttackWeight, BishopAttackWeight and
// KnightAttackWeight in evaluate.cpp
int kingAttackersWeight[2];
// kingAdjacentZoneAttacksCount[color] is the number of attacks to squares
// directly adjacent to the king of the given color. Pieces which attack
// more than one square are counted multiple times. For instance, if black's
// king is on g8 and there's a white knight on g5, this knight adds
// 2 to kingAdjacentZoneAttacksCount[BLACK].
int kingAdjacentZoneAttacksCount[2];
};
const int Sign[2] = { 1, -1 };
// Evaluation grain size, must be a power of 2
@ -187,7 +235,7 @@ namespace {
// Function prototypes
template<bool HasPopCnt>
Value do_evaluate(const Position& pos, EvalInfo& ei);
Value do_evaluate(const Position& pos, Value margins[]);
template<Color Us, bool HasPopCnt>
void init_attack_tables(const Position& pos, EvalInfo& ei);
@ -229,17 +277,18 @@ void prefetchPawn(Key key, int threadID) {
/// evaluate() is the main evaluation function. It always computes two
/// values, an endgame score and a middle game score, and interpolates
/// between them based on the remaining material.
Value evaluate(const Position& pos, EvalInfo& ei) {
Value evaluate(const Position& pos, Value margins[]) {
return CpuHasPOPCNT ? do_evaluate<true>(pos, ei)
: do_evaluate<false>(pos, ei);
return CpuHasPOPCNT ? do_evaluate<true>(pos, margins)
: do_evaluate<false>(pos, margins);
}
namespace {
template<bool HasPopCnt>
Value do_evaluate(const Position& pos, EvalInfo& ei) {
Value do_evaluate(const Position& pos, Value margins[]) {
EvalInfo ei;
ScaleFactor factor[2];
Score mobility;
@ -344,6 +393,10 @@ Value do_evaluate(const Position& pos, EvalInfo& ei) {
factor[BLACK] = sf;
}
// Populate margins[]
margins[WHITE] = ei.margin[WHITE];
margins[BLACK] = ei.margin[BLACK];
// Interpolate between the middle game and the endgame score
return Sign[pos.side_to_move()] * scale_by_game_phase(ei.value, phase, factor);
}

View File

@ -21,85 +21,14 @@
#if !defined(EVALUATE_H_INCLUDED)
#define EVALUATE_H_INCLUDED
////
//// Includes
////
#include "color.h"
#include "value.h"
#include <iostream>
#include "material.h"
#include "pawns.h"
////
//// Types
////
/// The EvalInfo struct contains various information computed and collected
/// by the evaluation function. An EvalInfo object is passed as one of the
/// arguments to the evaluation function, and the search can make use of its
/// contents to make intelligent search decisions.
///
/// At the moment, this is not utilized very much: The only part of the
/// EvalInfo object which is used by the search is margin.
class Position;
struct EvalInfo {
// Middle and end game position's static evaluations
Score value;
// margin[color] stores the evaluation margins we should consider for
// the given position. This is a kind of uncertainty estimation and
// typically is used by the search for pruning decisions.
Value margin[2];
// Pointers to material and pawn hash table entries
MaterialInfo* mi;
PawnInfo* pi;
// attackedBy[color][piece type] is a bitboard representing all squares
// attacked by a given color and piece type, attackedBy[color][0] contains
// all squares attacked by the given color.
Bitboard attackedBy[2][8];
// kingZone[color] is the zone around the enemy king which is considered
// by the king safety evaluation. This consists of the squares directly
// adjacent to the king, and the three (or two, for a king on an edge file)
// squares two ranks in front of the king. For instance, if black's king
// is on g8, kingZone[WHITE] is a bitboard containing the squares f8, h8,
// f7, g7, h7, f6, g6 and h6.
Bitboard kingZone[2];
// kingAttackersCount[color] is the number of pieces of the given color
// which attack a square in the kingZone of the enemy king.
int kingAttackersCount[2];
// kingAttackersWeight[color] is the sum of the "weight" of the pieces of the
// given color which attack a square in the kingZone of the enemy king. The
// weights of the individual piece types are given by the variables
// QueenAttackWeight, RookAttackWeight, BishopAttackWeight and
// KnightAttackWeight in evaluate.cpp
int kingAttackersWeight[2];
// kingAdjacentZoneAttacksCount[color] is the number of attacks to squares
// directly adjacent to the king of the given color. Pieces which attack
// more than one square are counted multiple times. For instance, if black's
// king is on g8 and there's a white knight on g5, this knight adds
// 2 to kingAdjacentZoneAttacksCount[BLACK].
int kingAdjacentZoneAttacksCount[2];
};
////
//// Prototypes
////
extern Value evaluate(const Position& pos, EvalInfo& ei);
extern Value evaluate(const Position& pos, Value margins[]);
extern void init_eval(int threads);
extern void quit_eval();
extern void read_weights(Color sideToMove);
#endif // !defined(EVALUATE_H_INCLUDED)

View File

@ -714,7 +714,7 @@ namespace {
Value root_search(Position& pos, SearchStack* ss, Move* pv, RootMoveList& rml, Value* alphaPtr, Value* betaPtr) {
EvalInfo ei;
Value margins[2];
StateInfo st;
CheckInfo ci(pos);
int64_t nodes;
@ -739,7 +739,7 @@ namespace {
// Step 5. Evaluate the position statically
// At root we do this only to get reference value for child nodes
ss->eval = isCheck ? VALUE_NONE : evaluate(pos, ei);
ss->eval = isCheck ? VALUE_NONE : evaluate(pos, margins);
// Step 6. Razoring (omitted at root)
// Step 7. Static null move pruning (omitted at root)
@ -975,7 +975,7 @@ namespace {
assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads());
Move movesSearched[256];
EvalInfo ei;
Value margins[2];
StateInfo st;
const TTEntry *tte;
Key posKey;
@ -1051,13 +1051,13 @@ namespace {
assert(tte->static_value() != VALUE_NONE);
ss->eval = tte->static_value();
ei.margin[pos.side_to_move()] = tte->static_value_margin();
margins[pos.side_to_move()] = tte->static_value_margin();
refinedValue = refine_eval(tte, ss->eval, ply);
}
else
{
refinedValue = ss->eval = evaluate(pos, ei);
TT.store(posKey, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, ei.margin[pos.side_to_move()]);
refinedValue = ss->eval = evaluate(pos, margins);
TT.store(posKey, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, margins[pos.side_to_move()]);
}
// Save gain for the parent non-capture move
@ -1371,7 +1371,7 @@ namespace {
ValueType vt = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT);
move = (bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove);
TT.store(posKey, value_to_tt(bestValue, ply), vt, depth, move, ss->eval, ei.margin[pos.side_to_move()]);
TT.store(posKey, value_to_tt(bestValue, ply), vt, depth, move, ss->eval, margins[pos.side_to_move()]);
// Update killers and history only for non capture moves that fails high
if ( bestValue >= beta
@ -1401,7 +1401,7 @@ namespace {
assert(ply > 0 && ply < PLY_MAX);
assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads());
EvalInfo ei;
Value margins[2];
StateInfo st;
Move ttMove, move;
Value bestValue, value, futilityValue, futilityBase;
@ -1442,11 +1442,11 @@ namespace {
{
assert(tte->static_value() != VALUE_NONE);
ei.margin[pos.side_to_move()] = tte->static_value_margin();
margins[pos.side_to_move()] = tte->static_value_margin();
bestValue = tte->static_value();
}
else
bestValue = evaluate(pos, ei);
bestValue = evaluate(pos, margins);
ss->eval = bestValue;
update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
@ -1455,7 +1455,7 @@ namespace {
if (bestValue >= beta)
{
if (!tte)
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, ei.margin[pos.side_to_move()]);
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, margins[pos.side_to_move()]);
return bestValue;
}
@ -1467,7 +1467,7 @@ namespace {
deepChecks = (depth == -ONE_PLY && bestValue >= beta - PawnValueMidgame / 8);
// Futility pruning parameters, not needed when in check
futilityBase = bestValue + FutilityMarginQS + ei.margin[pos.side_to_move()];
futilityBase = bestValue + FutilityMarginQS + margins[pos.side_to_move()];
enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame;
}
@ -1552,7 +1552,7 @@ namespace {
// Update transposition table
Depth d = (depth == DEPTH_ZERO ? DEPTH_ZERO : DEPTH_ZERO - ONE_PLY);
ValueType vt = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT);
TT.store(pos.get_key(), value_to_tt(bestValue, ply), vt, d, ss->bestMove, ss->eval, ei.margin[pos.side_to_move()]);
TT.store(pos.get_key(), value_to_tt(bestValue, ply), vt, d, ss->bestMove, ss->eval, margins[pos.side_to_move()]);
// Update killers only for checking moves that fails high
if ( bestValue >= beta
@ -2242,7 +2242,7 @@ namespace {
StateInfo st;
TTEntry* tte;
Position p(pos, pos.thread());
EvalInfo ei;
Value margins[2];
Value v;
for (int i = 0; pv[i] != MOVE_NONE; i++)
@ -2250,8 +2250,8 @@ namespace {
tte = TT.retrieve(p.get_key());
if (!tte || tte->move() != pv[i])
{
v = (p.is_check() ? VALUE_NONE : evaluate(p, ei));
TT.store(p.get_key(), VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, pv[i], v, ei.margin[pos.side_to_move()]);
v = (p.is_check() ? VALUE_NONE : evaluate(p, margins));
TT.store(p.get_key(), VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, pv[i], v, margins[pos.side_to_move()]);
}
p.do_move(pv[i], st);
}

View File

@ -150,10 +150,10 @@ namespace {
}
else if (token == "eval")
{
EvalInfo ei;
Value margins[2];
cout << "Incremental mg: " << mg_value(RootPosition.value())
<< "\nIncremental eg: " << eg_value(RootPosition.value())
<< "\nFull eval: " << evaluate(RootPosition, ei) << endl;
<< "\nFull eval: " << evaluate(RootPosition, margins) << endl;
}
else if (token == "key")
cout << "key: " << hex << RootPosition.get_key()

View File

@ -21,13 +21,6 @@
#if !defined(VALUE_H_INCLUDED)
#define VALUE_H_INCLUDED
////
//// Includes
////
#include "piece.h"
////
//// Types
////