1
0
Fork 0

Small trivial cleanups

closes https://github.com/official-stockfish/Stockfish/pull/2801

No functional change
pull/3053/head
Joost VandeVondele 2020-07-11 16:59:33 +02:00 committed by Stéphane Nicolet
parent 3542033342
commit 5f1843c9cb
17 changed files with 96 additions and 95 deletions

View File

@ -4,17 +4,17 @@
[![Build Status](https://ci.appveyor.com/api/projects/status/github/official-stockfish/Stockfish?branch=master&svg=true)](https://ci.appveyor.com/project/mcostalba/stockfish/branch/master)
[Stockfish](https://stockfishchess.org) is a free, powerful UCI chess engine
derived from Glaurung 2.1. It features two evaluation functions, the classical
evaluation based on handcrafted terms, and the NNUE evaluation based on
efficiently updateable neural networks. The classical evaluation runs efficiently
on most 64bit CPU architectures, while the NNUE evaluation benefits strongly from the
vector intrinsics available on modern CPUs (avx2 or similar).
derived from Glaurung 2.1. Stockfish is not a complete chess program and requires a
UCI-compatible graphical user interface (GUI) (e.g. XBoard with PolyGlot, Scid,
Cute Chess, eboard, Arena, Sigma Chess, Shredder, Chess Partner or Fritz) in order
to be used comfortably. Read the documentation for your GUI of choice for information
about how to use Stockfish with it.
Stockfish is not a complete chess program and requires a
UCI-compatible GUI (e.g. XBoard with PolyGlot, Scid, Cute Chess, eboard, Arena,
Sigma Chess, Shredder, Chess Partner or Fritz) in order to be used comfortably.
Read the documentation for your GUI of choice for information about how to use
Stockfish with it.
The Stockfish engine features two evaluation functions for chess, the classical
evaluation based on handcrafted terms, and the NNUE evaluation based on efficiently
updateable neural networks. The classical evaluation runs efficiently on most 64bit
CPU architectures, while the NNUE evaluation benefits strongly from the vector
intrinsics available on modern CPUs (avx2 or similar).
## Files
@ -28,10 +28,13 @@ This distribution of Stockfish consists of the following files:
* src, a subdirectory containing the full source code, including a Makefile
that can be used to compile Stockfish on Unix-like systems.
To use the NNUE evaluation an additional data file with neural network parameters
needs to be downloaded. The filename for the default set can be found as the default
value of the `EvalFile` UCI option, with the format
`nn-[SHA256 first 12 digits].nnue` (e.g. nn-c157e0a5755b.nnue). This file can be downloaded from
* a file with the .nnue extension, storing the neural network for the NNUE
evaluation.
Note: to use the NNUE evaluation, the additional data file with neural network parameters
needs to be downloaded. The filename for the default net can be found as the default
value of the `EvalFile` UCI option, with the format `nn-[SHA256 first 12 digits].nnue`
(for instance, `nn-c157e0a5755b.nnue`). This file can be downloaded from
```
https://tests.stockfishchess.org/api/nn/[filename]
```
@ -64,14 +67,6 @@ Currently, Stockfish has the following UCI options:
The name of the file of the NNUE evaluation parameters. Depending on the GUI the
filename should include the full path to the folder/directory that contains the file.
* #### Contempt
A positive value for contempt favors middle game positions and avoids draws,
effective for the classical evaluation only.
* #### Analysis Contempt
By default, contempt is set to prefer the side to move. Set this option to "White"
or "Black" to analyse with contempt for that side, or "Off" to disable contempt.
* #### UCI_AnalyseMode
An option handled by your GUI.
@ -120,6 +115,14 @@ Currently, Stockfish has the following UCI options:
Limit Syzygy tablebase probing to positions with at most this many pieces left
(including kings and pawns).
* #### Contempt
A positive value for contempt favors middle game positions and avoids draws,
effective for the classical evaluation only.
* #### Analysis Contempt
By default, contempt is set to prefer the side to move. Set this option to "White"
or "Black" to analyse with contempt for that side, or "Off" to disable contempt.
* #### Move Overhead
Assume a time delay of x ms due to network and GUI overheads. This is useful to
avoid losses on time in those cases.
@ -138,7 +141,7 @@ Currently, Stockfish has the following UCI options:
* #### Debug Log File
Write all communication to and from the engine into a text file.
## Classical and NNUE evaluation
## A note on classical and NNUE evaluation
Both approaches assign a value to a position that is used in alpha-beta (PVS) search
to find the best move. The classical evaluation computes this value as a function
@ -226,6 +229,7 @@ targets with corresponding descriptions.
cd src
make help
make build ARCH=x86-64-modern
make net
```
When not using the Makefile to compile (for instance with Microsoft MSVC) you
@ -237,8 +241,7 @@ compiler you used to create your executable. These informations can
be found by typing the following commands in a console:
```
./stockfish
compiler
./stockfish compiler
```
## Understanding the code base and participating in the project

View File

@ -370,7 +370,7 @@ else
endif
endif
ifeq ($(KERNEL),Darwin)
ifeq ($(KERNEL),Darwin)
CXXFLAGS += -arch $(arch) -mmacosx-version-min=10.14
LDFLAGS += -arch $(arch) -mmacosx-version-min=10.14
XCRUN = xcrun

View File

@ -39,6 +39,16 @@ namespace {
Bitboard BishopTable[0x1480]; // To store bishop attacks
void init_magics(PieceType pt, Bitboard table[], Magic magics[]);
}
/// safe_destination() returns the bitboard of target square for the given step
/// from the given square. If the step is off the board, returns empty bitboard.
inline Bitboard safe_destination(Square s, int step) {
Square to = Square(s + step);
return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0);
}
@ -110,7 +120,7 @@ namespace {
Direction RookDirections[4] = {NORTH, SOUTH, EAST, WEST};
Direction BishopDirections[4] = {NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST};
for(Direction d : (pt == ROOK ? RookDirections : BishopDirections))
for (Direction d : (pt == ROOK ? RookDirections : BishopDirections))
{
Square s = sq;
while(safe_destination(s, d) && !(occupied & s))

View File

@ -279,16 +279,6 @@ inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
inline int edge_distance(Rank r) { return std::min(r, Rank(RANK_8 - r)); }
/// safe_destination() returns the bitboard of target square for the given step
/// from the given square. If the step is off the board, returns empty bitboard.
inline Bitboard safe_destination(Square s, int step)
{
Square to = Square(s + step);
return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0);
}
/// attacks_bb(Square) returns the pseudo attacks of the give piece type
/// assuming an empty board.

View File

@ -288,8 +288,8 @@ namespace {
attackedBy2[Us] = dblAttackByPawn | (attackedBy[Us][KING] & attackedBy[Us][PAWN]);
// Init our king safety tables
Square s = make_square(Utility::clamp(file_of(ksq), FILE_B, FILE_G),
Utility::clamp(rank_of(ksq), RANK_2, RANK_7));
Square s = make_square(std::clamp(file_of(ksq), FILE_B, FILE_G),
std::clamp(rank_of(ksq), RANK_2, RANK_7));
kingRing[Us] = attacks_bb<KING>(s) | s;
kingAttackersCount[Them] = popcount(kingRing[Us] & pe->pawn_attacks(Them));
@ -686,8 +686,8 @@ namespace {
Square blockSq = s + Up;
// Adjust bonus based on the king's proximity
bonus += make_score(0, ( (king_proximity(Them, blockSq) * 19) / 4
- king_proximity(Us, blockSq) * 2) * w);
bonus += make_score(0, ( king_proximity(Them, blockSq) * 19 / 4
- king_proximity(Us, blockSq) * 2) * w);
// If blockSq is not the queening square then consider also a second push
if (r != RANK_7)
@ -731,7 +731,7 @@ namespace {
// Evaluation::space() computes a space evaluation for a given side, aiming to improve game
// play in the opening. It is based on the number of safe squares on the 4 central files
// play in the opening. It is based on the number of safe squares on the four central files
// on ranks 2 to 4. Completely safe squares behind a friendly pawn are counted twice.
// Finally, the space bonus is multiplied by a weight which decreases according to occupancy.
@ -804,7 +804,7 @@ namespace {
// Now apply the bonus: note that we find the attacking side by extracting the
// sign of the midgame or endgame values, and that we carefully cap the bonus
// so that the midgame and endgame scores do not change sign after the bonus.
int u = ((mg > 0) - (mg < 0)) * Utility::clamp(complexity + 50, -abs(mg), 0);
int u = ((mg > 0) - (mg < 0)) * std::clamp(complexity + 50, -abs(mg), 0);
int v = ((eg > 0) - (eg < 0)) * std::max(complexity, -abs(eg));
mg += u;
@ -951,8 +951,8 @@ Value Eval::evaluate(const Position& pos) {
// Damp down the evaluation linearly when shuffling
v = v * (100 - pos.rule50_count()) / 100;
// Guarantee evalution outside of TB range
v = Utility::clamp(v, VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1);
// Guarantee evaluation does not hit the tablebase range
v = std::clamp(v, VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1);
return v;
}
@ -1013,6 +1013,5 @@ std::string Eval::trace(const Position& pos) {
v = pos.side_to_move() == WHITE ? v : -v;
ss << "\nFinal evaluation: " << to_cp(v) << " (white side)\n";
return ss.str();
}

View File

@ -130,7 +130,7 @@ Entry* probe(const Position& pos) {
Value npm_w = pos.non_pawn_material(WHITE);
Value npm_b = pos.non_pawn_material(BLACK);
Value npm = Utility::clamp(npm_w + npm_b, EndgameLimit, MidgameLimit);
Value npm = std::clamp(npm_w + npm_b, EndgameLimit, MidgameLimit);
// Map total non-pawn material into [PHASE_ENDGAME, PHASE_MIDGAME]
e->gamePhase = Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit));

View File

@ -328,16 +328,16 @@ void prefetch(void* addr) {
#endif
/// Wrappers for systems where the c++17 implementation doesn't guarantee the availability of aligned_alloc.
/// Memory allocated with std_aligned_alloc must be freed with std_aligned_free.
///
/// std_aligned_alloc() is our wrapper for systems where the c++17 implementation
/// does not guarantee the availability of aligned_alloc(). Memory allocated with
/// std_aligned_alloc() must be freed with std_aligned_free().
void* std_aligned_alloc(size_t alignment, size_t size) {
#if defined(POSIXALIGNEDALLOC)
void *pointer;
if(posix_memalign(&pointer, alignment, size) == 0)
return pointer;
return nullptr;
void *mem;
return posix_memalign(&mem, alignment, size) ? nullptr : mem;
#elif defined(_WIN32)
return _mm_malloc(size, alignment);
#else
@ -346,6 +346,7 @@ void* std_aligned_alloc(size_t alignment, size_t size) {
}
void std_aligned_free(void* ptr) {
#if defined(POSIXALIGNEDALLOC)
free(ptr);
#elif defined(_WIN32)
@ -355,7 +356,7 @@ void std_aligned_free(void* ptr) {
#endif
}
/// aligned_ttmem_alloc() will return suitably aligned memory, and if possible use large pages.
/// aligned_ttmem_alloc() will return suitably aligned memory, if possible using large pages.
/// The returned pointer is the aligned one, while the mem argument is the one that needs
/// to be passed to free. With c++17 some of this functionality could be simplified.

View File

@ -65,14 +65,6 @@ std::ostream& operator<<(std::ostream&, SyncCout);
#define sync_cout std::cout << IO_LOCK
#define sync_endl std::endl << IO_UNLOCK
namespace Utility {
/// Clamp a value between lo and hi. Available in c++17.
template<class T> constexpr const T& clamp(const T& v, const T& lo, const T& hi) {
return v < lo ? lo : v > hi ? hi : v;
}
}
/// xorshift64star Pseudo-Random Number Generator
/// This class is based on original code written and dedicated

View File

@ -248,7 +248,7 @@ namespace {
*moveList++ = make_move(ksq, pop_lsb(&b));
if ((Type != CAPTURES) && pos.can_castle(Us & ANY_CASTLING))
for(CastlingRights cr : { Us & KING_SIDE, Us & QUEEN_SIDE } )
for (CastlingRights cr : { Us & KING_SIDE, Us & QUEEN_SIDE } )
if (!pos.castling_impeded(cr) && pos.can_castle(cr))
*moveList++ = make<CASTLING>(ksq, pos.castling_rook_square(cr));
}

View File

@ -182,7 +182,7 @@ top:
--endMoves;
++stage;
/* fallthrough */
[[fallthrough]];
case REFUTATION:
if (select<Next>([&](){ return *cur != MOVE_NONE
@ -190,7 +190,7 @@ top:
&& pos.pseudo_legal(*cur); }))
return *(cur - 1);
++stage;
/* fallthrough */
[[fallthrough]];
case QUIET_INIT:
if (!skipQuiets)
@ -203,7 +203,7 @@ top:
}
++stage;
/* fallthrough */
[[fallthrough]];
case QUIET:
if ( !skipQuiets
@ -217,7 +217,7 @@ top:
endMoves = endBadCaptures;
++stage;
/* fallthrough */
[[fallthrough]];
case BAD_CAPTURE:
return select<Next>([](){ return true; });
@ -228,7 +228,7 @@ top:
score<EVASIONS>();
++stage;
/* fallthrough */
[[fallthrough]];
case EVASION:
return select<Best>([](){ return true; });
@ -246,14 +246,14 @@ top:
return MOVE_NONE;
++stage;
/* fallthrough */
[[fallthrough]];
case QCHECK_INIT:
cur = moves;
endMoves = generate<QUIET_CHECKS>(pos, cur);
++stage;
/* fallthrough */
[[fallthrough]];
case QCHECK:
return select<Next>([](){ return true; });

View File

@ -86,14 +86,14 @@ enum StatsType { NoCaptures, Captures };
/// the move's from and to squares, see www.chessprogramming.org/Butterfly_Boards
typedef Stats<int16_t, 10692, COLOR_NB, int(SQUARE_NB) * int(SQUARE_NB)> ButterflyHistory;
/// At higher depths LowPlyHistory records successful quiet moves near the root and quiet
/// moves which are/were in the PV (ttPv)
/// It is cleared with each new search and filled during iterative deepening
/// At higher depths LowPlyHistory records successful quiet moves near the root
/// and quiet moves which are/were in the PV (ttPv). It is cleared with each new
/// search and filled during iterative deepening.
constexpr int MAX_LPH = 4;
typedef Stats<int16_t, 10692, MAX_LPH, int(SQUARE_NB) * int(SQUARE_NB)> LowPlyHistory;
/// CounterMoveHistory stores counter moves indexed by [piece][to] of the previous
/// move, see www.chessprogramming.org/Countermove_Heuristic
/// move, see www.chessprogramming.org/Countermove_Heuristic
typedef Stats<Move, NOT_USED, PIECE_NB, SQUARE_NB> CounterMoveHistory;
/// CapturePieceToHistory is addressed by a move's [piece][to][captured piece type]

View File

@ -219,7 +219,7 @@ Score Entry::evaluate_shelter(const Position& pos, Square ksq) const {
Score bonus = make_score(5, 5);
File center = Utility::clamp(file_of(ksq), FILE_B, FILE_G);
File center = std::clamp(file_of(ksq), FILE_B, FILE_G);
for (File f = File(center - 1); f <= File(center + 1); ++f)
{
b = ourPawns & file_bb(f);

View File

@ -1145,8 +1145,8 @@ bool Position::see_ge(Move m, Value threshold) const {
// Don't allow pinned pieces to attack (except the king) as long as
// there are pinners on their original square.
if (st->pinners[~stm] & occupied)
stmAttackers &= ~st->blockersForKing[stm];
if (pinners(~stm) & occupied)
stmAttackers &= ~blockers_for_king(stm);
if (!stmAttackers)
break;

View File

@ -113,6 +113,7 @@ public:
Bitboard checkers() const;
Bitboard blockers_for_king(Color c) const;
Bitboard check_squares(PieceType pt) const;
Bitboard pinners(Color c) const;
bool is_discovery_check_on_king(Color c, Move m) const;
// Attacks to/from a given square
@ -309,6 +310,10 @@ inline Bitboard Position::blockers_for_king(Color c) const {
return st->blockersForKing[c];
}
inline Bitboard Position::pinners(Color c) const {
return st->pinners[c];
}
inline Bitboard Position::check_squares(PieceType pt) const {
return st->checkSquares[pt];
}

View File

@ -335,7 +335,7 @@ void Thread::search() {
// for match (TC 60+0.6) results spanning a wide range of k values.
PRNG rng(now());
double floatLevel = Options["UCI_LimitStrength"] ?
Utility::clamp(std::pow((Options["UCI_Elo"] - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0) :
std::clamp(std::pow((Options["UCI_Elo"] - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0) :
double(Options["Skill Level"]);
int intLevel = int(floatLevel) +
((floatLevel - int(floatLevel)) * 1024 > rng.rand<unsigned>() % 1024 ? 1 : 0);
@ -508,7 +508,7 @@ void Thread::search() {
{
double fallingEval = (318 + 6 * (mainThread->bestPreviousScore - bestValue)
+ 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 825.0;
fallingEval = Utility::clamp(fallingEval, 0.5, 1.5);
fallingEval = std::clamp(fallingEval, 0.5, 1.5);
// If the bestMove is stable over several iterations, reduce time accordingly
timeReduction = lastBestMoveDepth + 9 < completedDepth ? 1.92 : 0.95;
@ -807,8 +807,9 @@ namespace {
&& eval <= alpha - RazorMargin)
return qsearch<NT>(pos, ss, alpha, beta);
improving = (ss-2)->staticEval == VALUE_NONE ? (ss->staticEval > (ss-4)->staticEval
|| (ss-4)->staticEval == VALUE_NONE) : ss->staticEval > (ss-2)->staticEval;
improving = (ss-2)->staticEval == VALUE_NONE
? ss->staticEval > (ss-4)->staticEval || (ss-4)->staticEval == VALUE_NONE
: ss->staticEval > (ss-2)->staticEval;
// Step 8. Futility pruning: child node (~50 Elo)
if ( !PvNode
@ -879,8 +880,8 @@ namespace {
// there and in further interactions with transposition table cutoff depth is set to depth - 3
// because probCut search has depth set to depth - 4 but we also do a move before it
// so effective depth is equal to depth - 3
&& !( ttHit
&& tte->depth() >= depth - 3
&& !( ttHit
&& tte->depth() >= depth - 3
&& ttValue != VALUE_NONE
&& ttValue < probCutBeta))
{
@ -1238,7 +1239,7 @@ moves_loop: // When in check, search starts from here
r++;
}
Depth d = Utility::clamp(newDepth - r, 1, newDepth);
Depth d = std::clamp(newDepth - r, 1, newDepth);
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);

View File

@ -38,9 +38,9 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
TimePoint slowMover = TimePoint(Options["Slow Mover"]);
TimePoint npmsec = TimePoint(Options["nodestime"]);
// opt_scale is a percentage of available time to use for the current move.
// max_scale is a multiplier applied to optimumTime.
double opt_scale, max_scale;
// optScale is a percentage of available time to use for the current move.
// maxScale is a multiplier applied to optimumTime.
double optScale, maxScale;
// If we have to play in 'nodes as time' mode, then convert from time
// to nodes, and use resulting values in time management formulas.
@ -75,22 +75,22 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
// game time for the current move, so also cap to 20% of available game time.
if (limits.movestogo == 0)
{
opt_scale = std::min(0.008 + std::pow(ply + 3.0, 0.5) / 250.0,
optScale = std::min(0.008 + std::pow(ply + 3.0, 0.5) / 250.0,
0.2 * limits.time[us] / double(timeLeft));
max_scale = std::min(7.0, 4.0 + ply / 12.0);
maxScale = std::min(7.0, 4.0 + ply / 12.0);
}
// x moves in y seconds (+ z increment)
else
{
opt_scale = std::min((0.8 + ply / 128.0) / mtg,
optScale = std::min((0.8 + ply / 128.0) / mtg,
0.8 * limits.time[us] / double(timeLeft));
max_scale = std::min(6.3, 1.5 + 0.11 * mtg);
maxScale = std::min(6.3, 1.5 + 0.11 * mtg);
}
// Never use more than 80% of the available time for this move
optimumTime = TimePoint(opt_scale * timeLeft);
maximumTime = TimePoint(std::min(0.8 * limits.time[us] - moveOverhead, max_scale * optimumTime));
optimumTime = TimePoint(optScale * timeLeft);
maximumTime = TimePoint(std::min(0.8 * limits.time[us] - moveOverhead, maxScale * optimumTime));
if (Options["Ponder"])
optimumTime += optimumTime / 4;

View File

@ -211,7 +211,7 @@ namespace {
double b = (((bs[0] * m + bs[1]) * m + bs[2]) * m) + bs[3];
// Transform eval to centipawns with limited range
double x = Utility::clamp(double(100 * v) / PawnValueEg, -1000.0, 1000.0);
double x = std::clamp(double(100 * v) / PawnValueEg, -1000.0, 1000.0);
// Return win rate in per mille (rounded to nearest)
return int(0.5 + 1000 / (1 + std::exp((a - x) / b)));