1
0
Fork 0

Cleanup thread_win.h

No functional change.
c++11
Marco Costalba 2015-03-10 17:13:52 +01:00
parent 04372316b3
commit 6027652773
1 changed files with 33 additions and 42 deletions

View File

@ -20,15 +20,23 @@
#ifndef THREAD_WIN32_H_INCLUDED
#define THREAD_WIN32_H_INCLUDED
/// STL thread library uded by gcc and mingw compilers is implemented above
/// POSIX pthread. Unfortunatly this yields to a much slower speed (about 30%)
/// than the native Win32 calls. So use our own implementation that relies on
/// the Windows specific low level calls.
/// STL thread library used by mingw and gcc when cross compiling for Windows
/// relies on libwinpthread. Currently libwinpthread implements mutexes directly
/// on top of Windows semaphores. Semaphores, being kernel objects, require kernel
/// mode transition in order to lock or unlock, which is very slow compared to
/// interlocked operations (about 30% slower on bench test). To workaround this
/// issue, we define our wrappers to the low level Win32 calls. We use critical
/// sections to support Windows XP and older versions. Unfortunately, cond_wait()
/// is racy between unlock() and WaitForSingleObject() but they have the same
/// speed performance of SRW locks.
#include <condition_variable>
#include <mutex>
#if defined(_WIN32) && !defined(_MSC_VER)
#ifndef NOMINMAX
# define NOMINMAX // disable macros min() and max()
# define NOMINMAX // Disable macros min() and max()
#endif
#define WIN32_LEAN_AND_MEAN
@ -36,58 +44,41 @@
#undef WIN32_LEAN_AND_MEAN
#undef NOMINMAX
// We use critical sections on Windows to support Windows XP and older versions.
// Unfortunately, cond_wait() is racy between lock_release() and WaitForSingleObject()
// but apart from this they have the same speed performance of SRW locks.
typedef CRITICAL_SECTION Lock;
typedef HANDLE WaitCondition;
typedef HANDLE NativeHandle;
// On Windows 95 and 98 parameter lpThreadId may not be null
inline DWORD* dwWin9xKludge() { static DWORD dw; return &dw; }
# define lock_init(x) InitializeCriticalSection(&(x))
# define lock_grab(x) EnterCriticalSection(&(x))
# define lock_release(x) LeaveCriticalSection(&(x))
# define lock_destroy(x) DeleteCriticalSection(&(x))
# define cond_init(x) { x = CreateEvent(0, FALSE, FALSE, 0); }
# define cond_destroy(x) CloseHandle(x)
# define cond_signal(x) SetEvent(x)
# define cond_wait(x,y) { lock_release(y); WaitForSingleObject(x, INFINITE); lock_grab(y); }
# define cond_timedwait(x,y,z) { lock_release(y); WaitForSingleObject(x,z); lock_grab(y); }
/// Mutex and ConditionVariable struct are wrappers of the low level locking
/// machinery and are modeled after the corresponding C++11 classes.
struct Mutex {
Mutex() { lock_init(l); }
~Mutex() { lock_destroy(l); }
void lock() { lock_grab(l); }
void unlock() { lock_release(l); }
Mutex() { InitializeCriticalSection(&cs); }
~Mutex() { DeleteCriticalSection(&cs); }
void lock() { EnterCriticalSection(&cs); }
void unlock() { LeaveCriticalSection(&cs); }
private:
friend struct ConditionVariable;
Lock l;
CRITICAL_SECTION cs;
};
struct ConditionVariable {
ConditionVariable() { cond_init(c); }
~ConditionVariable() { cond_destroy(c); }
ConditionVariable() { hn = CreateEvent(0, FALSE, FALSE, 0); }
~ConditionVariable() { CloseHandle(hn); }
void notify_one() { SetEvent(hn); }
void notify_one() { cond_signal(c); }
void wait(std::unique_lock<Mutex>& lk) { cond_wait(c, lk.mutex()->l); }
void wait(std::unique_lock<Mutex>& lk) {
lk.unlock();
WaitForSingleObject(hn, INFINITE);
lk.lock();
}
void wait_for(std::unique_lock<Mutex>& lk, const std::chrono::milliseconds& ms) {
lk.unlock();
WaitForSingleObject(hn, ms.count());
lk.lock();
}
template<class Predicate>
void wait(std::unique_lock<Mutex>& lk, Predicate p) { while (!p()) this->wait(lk); }
void wait_for(std::unique_lock<Mutex>& lk, const std::chrono::milliseconds& ms) {
cond_timedwait(c, lk.mutex()->l, ms.count());
}
private:
WaitCondition c;
HANDLE hn;
};
#else // Default case: use STL classes