1
0
Fork 0

Refactor tbprobe.cpp

This involves:
 * replacing the union hacks with simply reusing the EntryPiece arrays
   for the no-pawns case
 * merging the PairsData structure with the EntryPiece/-Pawn structs
   (with credit to Marco: @mcostalba)
 * simplifying some HashTable functions
 * thanks to previous changes, removing the ugly memsets
 * simplifying the template logic for WDL/DTZ distinction
   (now we distinguish based on an enum type, not the entry classes)
 * removing the unneeded Atomic wrapper

-----------------------------

For reference, here is a manual way to check that patches concerning
table bases code are non-functional changes:

0) Download the Syzygy table bases (up to 6 men).
1) Make sure you have branches master and the pull request pointing to
   the right commits.
2) Download the bench calculation scripts from the following URL:

        https://gist.github.com/WOnder93/b5fcf9c989b4a1715684d5c82367cdbe

   and copy into src inside your Stockfish repo.
3) Make the scripts executable (chmod +x *.sh).
4) Run the following command to use TBs located at <path>:

       export SYZYGY_PATH='<path>'

5) After that, run this (it will take a long time, this is a deep bench):

       BENCH_ARGS='128 1 22' ./check_benches.sh master tbprobe_cleanup 2>/dev/null`

==> You should see two equal numbers printed.
    (Of course, now we have to trust that the script itself is correct :)

-----------------------------

Closes https://github.com/official-stockfish/Stockfish/pull/1477

No functional change.
pull/1491/merge
Ondrej Mosnáček 2018-03-10 14:37:42 +01:00 committed by Stéphane Nicolet
parent 280022baf7
commit 8ff2fcf299
1 changed files with 136 additions and 219 deletions

View File

@ -20,7 +20,7 @@
#include <algorithm>
#include <atomic>
#include <cstdint>
#include <cstring> // For std::memset
#include <cstring> // For std::memset and std::memcpy
#include <deque>
#include <fstream>
#include <iostream>
@ -54,6 +54,10 @@ int Tablebases::MaxCardinality;
namespace {
constexpr int TBPIECES = 6; // Max number of supported pieces
enum TBType { WDL, DTZ }; // Used as template parameter
// Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables
enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 };
@ -102,8 +106,6 @@ struct LR {
static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes");
constexpr int TBPIECES = 6;
struct PairsData {
int flags;
size_t sizeofBlock; // Block size in bytes
@ -123,81 +125,81 @@ struct PairsData {
Piece pieces[TBPIECES]; // Position pieces: the order of pieces defines the groups
uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces
int groupLen[TBPIECES+1]; // Number of pieces in a given group: KRKN -> (3, 1)
uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss (used in DTZ)
};
// Helper struct to avoid manually defining entry copy constructor as we
// should because the default one is not compatible with std::atomic_bool.
struct Atomic {
Atomic() = default;
Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body
template<TBType Type>
struct TBEntry {
typedef typename std::conditional<Type == WDL, WDLScore, int>::type Result;
static constexpr int Sides = Type == WDL ? 2 : 1;
std::atomic_bool ready;
};
// We define types for the different parts of the WDLEntry and DTZEntry with
// corresponding specializations for pieces or pawns.
struct WDLEntryPiece {
PairsData* precomp;
};
struct WDLEntryPawn {
uint8_t pawnCount[2]; // [Lead color / other color]
WDLEntryPiece file[2][4]; // [wtm / btm][FILE_A..FILE_D]
};
struct DTZEntryPiece {
PairsData* precomp;
uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss
uint8_t* map;
};
struct DTZEntryPawn {
uint8_t pawnCount[2];
DTZEntryPiece file[4];
uint8_t* map;
};
struct TBEntry : public Atomic {
void* baseAddress;
uint8_t* map;
uint64_t mapping;
Key key;
Key key2;
int pieceCount;
bool hasPawns;
bool hasUniquePieces;
uint8_t pawnCount[2]; // [Lead color / other color]
PairsData items[Sides][4]; // [wtm / btm][FILE_A..FILE_D or 0]
PairsData* get(int stm, int f) {
return &items[stm % Sides][hasPawns ? f : 0];
}
TBEntry() : ready(false), baseAddress(nullptr) {}
explicit TBEntry(const std::string& code);
explicit TBEntry(const TBEntry<WDL>& wdl);
~TBEntry();
};
// Now the main types: WDLEntry and DTZEntry
struct WDLEntry : public TBEntry {
WDLEntry(const std::string& code);
~WDLEntry();
union {
WDLEntryPiece pieceTable[2]; // [wtm / btm]
WDLEntryPawn pawnTable;
};
};
template<>
TBEntry<WDL>::TBEntry(const std::string& code) : TBEntry() {
struct DTZEntry : public TBEntry {
DTZEntry(const WDLEntry& wdl);
~DTZEntry();
union {
DTZEntryPiece pieceTable;
DTZEntryPawn pawnTable;
};
};
StateInfo st;
Position pos;
typedef decltype(WDLEntry::pieceTable) WDLPieceTable;
typedef decltype(DTZEntry::pieceTable) DTZPieceTable;
typedef decltype(WDLEntry::pawnTable ) WDLPawnTable;
typedef decltype(DTZEntry::pawnTable ) DTZPawnTable;
key = pos.set(code, WHITE, &st).material_key();
pieceCount = popcount(pos.pieces());
hasPawns = pos.pieces(PAWN);
auto item(WDLPieceTable& e, int stm, int ) -> decltype(e[stm])& { return e[stm]; }
auto item(DTZPieceTable& e, int , int ) -> decltype(e)& { return e; }
auto item(WDLPawnTable& e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; }
auto item(DTZPawnTable& e, int , int f) -> decltype(e.file[f])& { return e.file[f]; }
hasUniquePieces = false;
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt = PAWN; pt < KING; ++pt)
if (popcount(pos.pieces(c, pt)) == 1)
hasUniquePieces = true;
template<typename E> struct Ret { typedef int type; };
template<> struct Ret<WDLEntry> { typedef WDLScore type; };
if (hasPawns) {
// Set the leading color. In case both sides have pawns the leading color
// is the side with less pawns because this leads to better compression.
bool c = !pos.count<PAWN>(BLACK)
|| ( pos.count<PAWN>(WHITE)
&& pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE));
pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK);
pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE);
}
key2 = pos.set(code, BLACK, &st).material_key();
}
template<>
TBEntry<DTZ>::TBEntry(const TBEntry<WDL>& wdl) : TBEntry() {
key = wdl.key;
key2 = wdl.key2;
pieceCount = wdl.pieceCount;
hasPawns = wdl.hasPawns;
hasUniquePieces = wdl.hasUniquePieces;
if (hasPawns) {
pawnCount[0] = wdl.pawnCount[0];
pawnCount[1] = wdl.pawnCount[1];
}
}
int MapPawns[SQUARE_NB];
int MapB1H1H7[SQUARE_NB];
@ -252,7 +254,7 @@ template<typename T, int LE> T number(void* addr)
class HashTable {
typedef std::pair<WDLEntry*, DTZEntry*> EntryPair;
typedef std::pair<TBEntry<WDL>*, TBEntry<DTZ>*> EntryPair;
typedef std::pair<Key, EntryPair> Entry;
static constexpr int TBHASHBITS = 10;
@ -260,15 +262,13 @@ class HashTable {
Entry hashTable[1 << TBHASHBITS][HSHMAX];
std::deque<WDLEntry> wdlTable;
std::deque<DTZEntry> dtzTable;
std::deque<TBEntry<WDL>> wdlTable;
std::deque<TBEntry<DTZ>> dtzTable;
void insert(Key key, WDLEntry* wdl, DTZEntry* dtz) {
Entry* entry = hashTable[key >> (64 - TBHASHBITS)];
for (int i = 0; i < HSHMAX; ++i, ++entry)
if (!entry->second.first || entry->first == key) {
*entry = std::make_pair(key, std::make_pair(wdl, dtz));
void insert(Key key, TBEntry<WDL>* wdl, TBEntry<DTZ>* dtz) {
for (Entry& entry : hashTable[key >> (64 - TBHASHBITS)])
if (!entry.second.first || entry.first == key) {
entry = std::make_pair(key, std::make_pair(wdl, dtz));
return;
}
@ -277,24 +277,22 @@ class HashTable {
}
public:
template<typename E, int I = std::is_same<E, WDLEntry>::value ? 0 : 1>
E* get(Key key) {
Entry* entry = hashTable[key >> (64 - TBHASHBITS)];
template<TBType Type>
TBEntry<Type>* get(Key key) {
for (Entry& entry : hashTable[key >> (64 - TBHASHBITS)])
if (entry.first == key)
return std::get<Type>(entry.second);
for (int i = 0; i < HSHMAX; ++i, ++entry)
if (entry->first == key)
return std::get<I>(entry->second);
return nullptr;
}
return nullptr;
}
void clear() {
std::memset(hashTable, 0, sizeof(hashTable));
wdlTable.clear();
dtzTable.clear();
}
size_t size() const { return wdlTable.size(); }
void insert(const std::vector<PieceType>& pieces);
void clear() {
memset(hashTable, 0, sizeof(hashTable));
wdlTable.clear();
dtzTable.clear();
}
size_t size() const { return wdlTable.size(); }
void insert(const std::vector<PieceType>& pieces);
};
HashTable EntryTable;
@ -407,77 +405,10 @@ public:
std::string TBFile::Paths;
WDLEntry::WDLEntry(const std::string& code) {
StateInfo st;
Position pos;
memset(this, 0, sizeof(WDLEntry));
ready = false;
key = pos.set(code, WHITE, &st).material_key();
pieceCount = popcount(pos.pieces());
hasPawns = pos.pieces(PAWN);
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt = PAWN; pt < KING; ++pt)
if (popcount(pos.pieces(c, pt)) == 1)
hasUniquePieces = true;
if (hasPawns) {
// Set the leading color. In case both sides have pawns the leading color
// is the side with less pawns because this leads to better compression.
bool c = !pos.count<PAWN>(BLACK)
|| ( pos.count<PAWN>(WHITE)
&& pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE));
pawnTable.pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK);
pawnTable.pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE);
}
key2 = pos.set(code, BLACK, &st).material_key();
}
WDLEntry::~WDLEntry() {
template<TBType Type>
TBEntry<Type>::~TBEntry() {
if (baseAddress)
TBFile::unmap(baseAddress, mapping);
for (int i = 0; i < 2; ++i)
if (hasPawns)
for (File f = FILE_A; f <= FILE_D; ++f)
delete pawnTable.file[i][f].precomp;
else
delete pieceTable[i].precomp;
}
DTZEntry::DTZEntry(const WDLEntry& wdl) {
memset(this, 0, sizeof(DTZEntry));
ready = false;
key = wdl.key;
key2 = wdl.key2;
pieceCount = wdl.pieceCount;
hasPawns = wdl.hasPawns;
hasUniquePieces = wdl.hasUniquePieces;
if (hasPawns) {
pawnTable.pawnCount[0] = wdl.pawnTable.pawnCount[0];
pawnTable.pawnCount[1] = wdl.pawnTable.pawnCount[1];
}
}
DTZEntry::~DTZEntry() {
if (baseAddress)
TBFile::unmap(baseAddress, mapping);
if (hasPawns)
for (File f = FILE_A; f <= FILE_D; ++f)
delete pawnTable.file[f].precomp;
else
delete pieceTable.precomp;
}
void HashTable::insert(const std::vector<PieceType>& pieces) {
@ -630,13 +561,11 @@ int decompress_pairs(PairsData* d, uint64_t idx) {
return d->btree[sym].get<LR::Value>();
}
bool check_dtz_stm(WDLEntry*, int, File) { return true; }
bool check_dtz_stm(TBEntry<WDL>*, int, File) { return true; }
bool check_dtz_stm(DTZEntry* entry, int stm, File f) {
int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags
: entry->pieceTable.precomp->flags;
bool check_dtz_stm(TBEntry<DTZ>* entry, int stm, File f) {
int flags = entry->get(stm, f)->flags;
return (flags & TBFlag::STM) == stm
|| ((entry->key == entry->key2) && !entry->hasPawns);
}
@ -645,20 +574,16 @@ bool check_dtz_stm(DTZEntry* entry, int stm, File f) {
// values 0, 1, 2, ... in order of decreasing frequency. This is done for each
// of the four WDLScore values. The mapping information necessary to reconstruct
// the original values is stored in the TB file and read during map[] init.
WDLScore map_score(WDLEntry*, File, int value, WDLScore) { return WDLScore(value - 2); }
WDLScore map_score(TBEntry<WDL>*, File, int value, WDLScore) { return WDLScore(value - 2); }
int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) {
int map_score(TBEntry<DTZ>* entry, File f, int value, WDLScore wdl) {
constexpr int WDLMap[] = { 1, 3, 0, 2, 0 };
int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags
: entry->pieceTable.precomp->flags;
int flags = entry->get(0, f)->flags;
uint8_t* map = entry->hasPawns ? entry->pawnTable.map
: entry->pieceTable.map;
uint16_t* idx = entry->hasPawns ? entry->pawnTable.file[f].map_idx
: entry->pieceTable.map_idx;
uint8_t* map = entry->map;
uint16_t* idx = entry->get(0, f)->map_idx;
if (flags & TBFlag::Mapped)
value = map[idx[WDLMap[wdl + 2]] + value];
@ -679,10 +604,8 @@ int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) {
//
// idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk]
//
template<typename Entry, typename T = typename Ret<Entry>::type>
T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* result) {
constexpr bool IsWDL = std::is_same<Entry, WDLEntry>::value;
template<TBType Type, typename T = typename TBEntry<Type>::Result>
T do_probe_table(const Position& pos, TBEntry<Type>* entry, WDLScore wdl, ProbeState* result) {
Square squares[TBPIECES];
Piece pieces[TBPIECES];
@ -715,7 +638,7 @@ T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* re
// In all the 4 tables, pawns are at the beginning of the piece sequence and
// their color is the reference one. So we just pick the first one.
Piece pc = Piece(item(entry->pawnTable, 0, 0).precomp->pieces[0] ^ flipColor);
Piece pc = Piece(entry->get(0, 0)->pieces[0] ^ flipColor);
assert(type_of(pc) == PAWN);
@ -731,15 +654,12 @@ T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* re
tbFile = file_of(squares[0]);
if (tbFile > FILE_D)
tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1
d = item(entry->pawnTable , stm, tbFile).precomp;
} else
d = item(entry->pieceTable, stm, tbFile).precomp;
}
// DTZ tables are one-sided, i.e. they store positions only for white to
// move or only for black to move, so check for side to move to be stm,
// early exit otherwise.
if (!IsWDL && !check_dtz_stm(entry, stm, tbFile))
if (Type == DTZ && !check_dtz_stm(entry, stm, tbFile))
return *result = CHANGE_STM, T();
// Now we are ready to get all the position pieces (but the lead pawns) and
@ -753,8 +673,10 @@ T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* re
assert(size >= 2);
d = entry->get(stm, tbFile);
// Then we reorder the pieces to have the same sequence as the one stored
// in precomp->pieces[i]: the sequence that ensures the best compression.
// in pieces[i]: the sequence that ensures the best compression.
for (int i = leadPawnsCnt; i < size; ++i)
for (int j = i; j < size; ++j)
if (d->pieces[i] == pieces[j])
@ -872,7 +794,7 @@ encode_remaining:
Square* groupSq = squares + d->groupLen[0];
// Encode remainig pawns then pieces according to square, in ascending order
bool remainingPawns = entry->hasPawns && entry->pawnTable.pawnCount[1];
bool remainingPawns = entry->hasPawns && entry->pawnCount[1];
while (d->groupLen[++next])
{
@ -907,8 +829,8 @@ encode_remaining:
//
// The actual grouping depends on the TB generator and can be inferred from the
// sequence of pieces in piece[] array.
template<typename T>
void set_groups(T& e, PairsData* d, int order[], File f) {
template<TBType Type>
void set_groups(TBEntry<Type>& e, PairsData* d, int order[], File f) {
int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2;
d->groupLen[n] = 1;
@ -934,7 +856,7 @@ void set_groups(T& e, PairsData* d, int order[], File f) {
// pawns/pieces -> remainig pawns -> remaining pieces. In particular the
// first group is at order[0] position and the remaining pawns, when present,
// are at order[1] position.
bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides
bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides
int next = pp ? 2 : 1;
int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0);
uint64_t idx = 1;
@ -1048,18 +970,16 @@ uint8_t* set_sizes(PairsData* d, uint8_t* data) {
return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1);
}
template<typename T>
uint8_t* set_dtz_map(WDLEntry&, T&, uint8_t*, File) { return nullptr; }
uint8_t* set_dtz_map(TBEntry<WDL>&, uint8_t*, File) { return nullptr; }
template<typename T>
uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile) {
uint8_t* set_dtz_map(TBEntry<DTZ>& e, uint8_t* data, File maxFile) {
p.map = data;
e.map = data;
for (File f = FILE_A; f <= maxFile; ++f) {
if (item(p, 0, f).precomp->flags & TBFlag::Mapped)
if (e.get(0, f)->flags & TBFlag::Mapped)
for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x
item(p, 0, f).map_idx[i] = (uint16_t)(data - p.map + 1);
e.get(0, f)->map_idx[i] = (uint16_t)(data - e.map + 1);
data += *data + 1;
}
}
@ -1067,10 +987,8 @@ uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile) {
return data += (uintptr_t)data & 1; // Word alignment
}
template<typename Entry, typename T>
void do_init(Entry& e, T& p, uint8_t* data) {
const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
template<TBType Type>
void do_init(TBEntry<Type>& e, uint8_t* data) {
PairsData* d;
@ -1081,17 +999,17 @@ void do_init(Entry& e, T& p, uint8_t* data) {
data++; // First byte stores flags
const int sides = IsWDL && (e.key != e.key2) ? 2 : 1;
const int sides = Type == WDL && (e.key != e.key2) ? 2 : 1;
const File maxFile = e.hasPawns ? FILE_D : FILE_A;
bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides
bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides
assert(!pp || e.pawnTable.pawnCount[0]);
assert(!pp || e.pawnCount[0]);
for (File f = FILE_A; f <= maxFile; ++f) {
for (int i = 0; i < sides; i++)
item(p, i, f).precomp = new PairsData();
*e.get(i, f) = PairsData();
int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF },
{ *data >> 4, pp ? *(data + 1) >> 4 : 0xF } };
@ -1099,45 +1017,43 @@ void do_init(Entry& e, T& p, uint8_t* data) {
for (int k = 0; k < e.pieceCount; ++k, ++data)
for (int i = 0; i < sides; i++)
item(p, i, f).precomp->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF);
e.get(i, f)->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF);
for (int i = 0; i < sides; ++i)
set_groups(e, item(p, i, f).precomp, order[i], f);
set_groups(e, e.get(i, f), order[i], f);
}
data += (uintptr_t)data & 1; // Word alignment
for (File f = FILE_A; f <= maxFile; ++f)
for (int i = 0; i < sides; i++)
data = set_sizes(item(p, i, f).precomp, data);
data = set_sizes(e.get(i, f), data);
if (!IsWDL)
data = set_dtz_map(e, p, data, maxFile);
if (Type == DTZ)
data = set_dtz_map(e, data, maxFile);
for (File f = FILE_A; f <= maxFile; ++f)
for (int i = 0; i < sides; i++) {
(d = item(p, i, f).precomp)->sparseIndex = (SparseEntry*)data;
(d = e.get(i, f))->sparseIndex = (SparseEntry*)data;
data += d->sparseIndexSize * sizeof(SparseEntry);
}
for (File f = FILE_A; f <= maxFile; ++f)
for (int i = 0; i < sides; i++) {
(d = item(p, i, f).precomp)->blockLength = (uint16_t*)data;
(d = e.get(i, f))->blockLength = (uint16_t*)data;
data += d->blockLengthSize * sizeof(uint16_t);
}
for (File f = FILE_A; f <= maxFile; ++f)
for (int i = 0; i < sides; i++) {
data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment
(d = item(p, i, f).precomp)->data = data;
(d = e.get(i, f))->data = data;
data += d->blocksNum * d->sizeofBlock;
}
}
template<typename Entry>
void* init(Entry& e, const Position& pos) {
constexpr bool IsWDL = std::is_same<Entry, WDLEntry>::value;
template<TBType Type>
void* init(TBEntry<Type>& e, const Position& pos) {
static Mutex mutex;
@ -1162,23 +1078,24 @@ void* init(Entry& e, const Position& pos) {
{ 0x71, 0xE8, 0x23, 0x5D } };
fname = (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w)
+ (IsWDL ? ".rtbw" : ".rtbz");
+ (Type == WDL ? ".rtbw" : ".rtbz");
uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, TB_MAGIC[IsWDL]);
uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping,
TB_MAGIC[Type == WDL]);
if (data)
e.hasPawns ? do_init(e, e.pawnTable, data) : do_init(e, e.pieceTable, data);
do_init(e, data);
e.ready.store(true, std::memory_order_release);
return e.baseAddress;
}
template<typename E, typename T = typename Ret<E>::type>
template<TBType Type, typename T = typename TBEntry<Type>::Result>
T probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) {
if (!(pos.pieces() ^ pos.pieces(KING)))
return T(WDLDraw); // KvK
E* entry = EntryTable.get<E>(pos.material_key());
TBEntry<Type>* entry = EntryTable.get<Type>(pos.material_key());
if (!entry || !init(*entry, pos))
return *result = FAIL, T();
@ -1247,7 +1164,7 @@ WDLScore search(Position& pos, ProbeState* result) {
value = bestValue;
else
{
value = probe_table<WDLEntry>(pos, result);
value = probe_table<WDL>(pos, result);
if (*result == FAIL)
return WDLDraw;
@ -1447,7 +1364,7 @@ int Tablebases::probe_dtz(Position& pos, ProbeState* result) {
if (*result == ZEROING_BEST_MOVE)
return dtz_before_zeroing(wdl);
int dtz = probe_table<DTZEntry>(pos, result, wdl);
int dtz = probe_table<DTZ>(pos, result, wdl);
if (*result == FAIL)
return 0;