1
0
Fork 0

Convert SearchStack ss[] to SearchStack*

Use a pointer to current SearchStack to avoid ss[ply]
address calculation.

Gives 1% speedup on Intel compiler

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
sf_2.3.1_base
Marco Costalba 2010-05-30 08:56:38 +01:00
parent d81def4fa9
commit e4e12ed595
1 changed files with 129 additions and 130 deletions

View File

@ -282,13 +282,13 @@ namespace {
/// Local functions
Value id_loop(const Position& pos, Move searchMoves[]);
Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value* alphaPtr, Value* betaPtr);
Value root_search(Position& pos, SearchStack* ss, RootMoveList& rml, Value* alphaPtr, Value* betaPtr);
template <NodeType PvNode>
Value search(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove = MOVE_NONE);
Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove = MOVE_NONE);
template <NodeType PvNode>
Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply, int threadID);
template <NodeType PvNode>
void sp_search(SplitPoint* sp, int threadID);
@ -296,18 +296,18 @@ namespace {
template <NodeType PvNode>
Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous);
void init_node(SearchStack ss[], int ply, int threadID);
void update_pv(SearchStack ss[], int ply);
void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply);
void init_node(SearchStack* ss, int ply, int threadID);
void update_pv(SearchStack* ss, int ply);
void sp_update_pv(SearchStack* pss, SearchStack* ss, int ply);
bool connected_moves(const Position& pos, Move m1, Move m2);
bool value_is_mate(Value value);
bool move_is_killer(Move m, const SearchStack& ss);
bool move_is_killer(Move m, SearchStack* ss);
bool ok_to_do_nullmove(const Position& pos);
bool ok_to_prune(const Position& pos, Move m, Move threat);
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
void update_killers(Move m, SearchStack& ss);
void update_killers(Move m, SearchStack* ss);
void update_gains(const Position& pos, Move move, Value before, Value after);
int current_search_time();
@ -315,8 +315,8 @@ namespace {
void poll();
void ponderhit();
void wait_for_stop_or_ponderhit();
void init_ss_array(SearchStack ss[]);
void print_pv_info(const Position& pos, SearchStack ss[], Value alpha, Value beta, Value value);
void init_ss_array(SearchStack* ss);
void print_pv_info(const Position& pos, SearchStack* ss, Value alpha, Value beta, Value value);
#if !defined(_MSC_VER)
void *init_thread(void *threadID);
@ -671,7 +671,7 @@ namespace {
// Write PV to transposition table, in case the relevant entries have
// been overwritten during the search.
TT.insert_pv(p, ss[0].pv);
TT.insert_pv(p, ss->pv);
if (AbortSearch)
break; // Value cannot be trusted. Break out immediately!
@ -680,7 +680,7 @@ namespace {
ValueByIteration[Iteration] = value;
// Drop the easy move if differs from the new best move
if (ss[0].pv[0] != EasyMove)
if (ss->pv[0] != EasyMove)
EasyMove = MOVE_NONE;
if (UseTimeManagement)
@ -702,7 +702,7 @@ namespace {
// Stop search early if one move seems to be much better than the others
int64_t nodes = TM.nodes_searched();
if ( Iteration >= 8
&& EasyMove == ss[0].pv[0]
&& EasyMove == ss->pv[0]
&& ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100
&& current_search_time() > MaxSearchTime / 16)
||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100
@ -745,18 +745,18 @@ namespace {
<< " hashfull " << TT.full() << endl;
// Print the best move and the ponder move to the standard output
if (ss[0].pv[0] == MOVE_NONE)
if (ss->pv[0] == MOVE_NONE)
{
ss[0].pv[0] = rml.get_move(0);
ss[0].pv[1] = MOVE_NONE;
ss->pv[0] = rml.get_move(0);
ss->pv[1] = MOVE_NONE;
}
assert(ss[0].pv[0] != MOVE_NONE);
assert(ss->pv[0] != MOVE_NONE);
cout << "bestmove " << ss[0].pv[0];
cout << "bestmove " << ss->pv[0];
if (ss[0].pv[1] != MOVE_NONE)
cout << " ponder " << ss[0].pv[1];
if (ss->pv[1] != MOVE_NONE)
cout << " ponder " << ss->pv[1];
cout << endl;
@ -770,12 +770,12 @@ namespace {
LogFile << "\nNodes: " << TM.nodes_searched()
<< "\nNodes/second: " << nps()
<< "\nBest move: " << move_to_san(p, ss[0].pv[0]);
<< "\nBest move: " << move_to_san(p, ss->pv[0]);
StateInfo st;
p.do_move(ss[0].pv[0], st);
p.do_move(ss->pv[0], st);
LogFile << "\nPonder move: "
<< move_to_san(p, ss[0].pv[1]) // Works also with MOVE_NONE
<< move_to_san(p, ss->pv[1]) // Works also with MOVE_NONE
<< endl;
}
return rml.get_move_score(0);
@ -787,7 +787,7 @@ namespace {
// scheme, prints some information to the standard output and handles
// the fail low/high loops.
Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value* alphaPtr, Value* betaPtr) {
Value root_search(Position& pos, SearchStack* ss, RootMoveList& rml, Value* alphaPtr, Value* betaPtr) {
EvalInfo ei;
StateInfo st;
@ -812,7 +812,7 @@ namespace {
// Step 5. Evaluate the position statically
// At root we do this only to get reference value for child nodes
if (!isCheck)
ss[0].eval = evaluate(pos, ei, 0);
ss->eval = evaluate(pos, ei, 0);
// Step 6. Razoring (omitted at root)
// Step 7. Static null move pruning (omitted at root)
@ -841,7 +841,7 @@ namespace {
// Pick the next root move, and print the move and the move number to
// the standard output.
move = ss[0].currentMove = rml.get_move(i);
move = ss->currentMove = rml.get_move(i);
if (current_search_time() >= 1000)
cout << "info currmove " << move
@ -877,7 +877,7 @@ namespace {
alpha = -VALUE_INFINITE;
// Full depth PV search, done on first move or after a fail high
value = -search<PV>(pos, ss, -beta, -alpha, newDepth, 1, false, 0);
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1, false, 0);
}
else
{
@ -890,11 +890,11 @@ namespace {
&& !captureOrPromotion
&& !move_is_castle(move))
{
ss[0].reduction = reduction<PV>(depth, i - MultiPV + 2);
if (ss[0].reduction)
ss->reduction = reduction<PV>(depth, i - MultiPV + 2);
if (ss->reduction)
{
// Reduced depth non-pv search using alpha as upperbound
value = -search<NonPV>(pos, ss, -(alpha+1), -alpha, newDepth-ss[0].reduction, 1, true, 0);
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, 1, true, 0);
doFullDepthSearch = (value > alpha);
}
}
@ -903,13 +903,13 @@ namespace {
if (doFullDepthSearch)
{
// Full depth non-pv search using alpha as upperbound
ss[0].reduction = Depth(0);
value = -search<NonPV>(pos, ss, -(alpha+1), -alpha, newDepth, 1, true, 0);
ss->reduction = Depth(0);
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, 1, true, 0);
// If we are above alpha then research at same depth but as PV
// to get a correct score or eventually a fail high above beta.
if (value > alpha)
value = -search<PV>(pos, ss, -beta, -alpha, newDepth, 1, false, 0);
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1, false, 0);
}
}
@ -924,8 +924,8 @@ namespace {
// the score before research in case we run out of time while researching.
rml.set_move_score(i, value);
update_pv(ss, 0);
TT.extract_pv(pos, ss[0].pv, PLY_MAX);
rml.set_move_pv(i, ss[0].pv);
TT.extract_pv(pos, ss->pv, PLY_MAX);
rml.set_move_pv(i, ss->pv);
// Print information to the standard output
print_pv_info(pos, ss, alpha, beta, value);
@ -964,8 +964,8 @@ namespace {
// Update PV
rml.set_move_score(i, value);
update_pv(ss, 0);
TT.extract_pv(pos, ss[0].pv, PLY_MAX);
rml.set_move_pv(i, ss[0].pv);
TT.extract_pv(pos, ss->pv, PLY_MAX);
rml.set_move_pv(i, ss->pv);
if (MultiPV == 1)
{
@ -1032,7 +1032,7 @@ namespace {
// search<>() is the main search function for both PV and non-PV nodes
template <NodeType PvNode>
Value search(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth,
Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth,
int ply, bool allowNullmove, int threadID, Move excludedMove) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
@ -1097,7 +1097,7 @@ namespace {
// Refresh tte entry to avoid aging
TT.store(posKey, tte->value(), tte->type(), tte->depth(), ttMove, tte->static_value(), tte->king_danger());
ss[ply].currentMove = ttMove; // Can be MOVE_NONE
ss->currentMove = ttMove; // Can be MOVE_NONE
return value_from_tt(tte->value(), ply);
}
@ -1108,21 +1108,21 @@ namespace {
{
if (tte && tte->static_value() != VALUE_NONE)
{
ss[ply].eval = tte->static_value();
ss->eval = tte->static_value();
ei.kingDanger[pos.side_to_move()] = tte->king_danger();
}
else
ss[ply].eval = evaluate(pos, ei, threadID);
ss->eval = evaluate(pos, ei, threadID);
refinedValue = refine_eval(tte, ss[ply].eval, ply); // Enhance accuracy with TT value if possible
update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
refinedValue = refine_eval(tte, ss->eval, ply); // Enhance accuracy with TT value if possible
update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
}
// Step 6. Razoring (is omitted in PV nodes)
if ( !PvNode
&& refinedValue < beta - razor_margin(depth)
&& ttMove == MOVE_NONE
&& ss[ply - 1].currentMove != MOVE_NULL
&& (ss-1)->currentMove != MOVE_NULL
&& depth < RazorDepth
&& !isCheck
&& !value_is_mate(beta)
@ -1160,7 +1160,7 @@ namespace {
&& ok_to_do_nullmove(pos)
&& refinedValue >= beta - (depth >= 4 * OnePly ? NullMoveMargin : 0))
{
ss[ply].currentMove = MOVE_NULL;
ss->currentMove = MOVE_NULL;
// Null move dynamic reduction based on depth
int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0);
@ -1171,7 +1171,7 @@ namespace {
pos.do_null_move(st);
nullValue = -search<NonPV>(pos, ss, -beta, -alpha, depth-R*OnePly, ply+1, false, threadID);
nullValue = -search<NonPV>(pos, ss+1, -beta, -alpha, depth-R*OnePly, ply+1, false, threadID);
pos.undo_null_move();
@ -1198,10 +1198,10 @@ namespace {
if (nullValue == value_mated_in(ply + 2))
mateThreat = true;
ss[ply].threatMove = ss[ply + 1].currentMove;
ss->threatMove = (ss+1)->currentMove;
if ( depth < ThreatDepth
&& ss[ply - 1].reduction
&& connected_moves(pos, ss[ply - 1].currentMove, ss[ply].threatMove))
&& (ss-1)->reduction
&& connected_moves(pos, (ss-1)->currentMove, ss->threatMove))
return beta - 1;
}
}
@ -1209,11 +1209,11 @@ namespace {
// Step 9. Internal iterative deepening
if ( depth >= IIDDepth[PvNode]
&& (ttMove == MOVE_NONE || (PvNode && tte->depth() <= depth - 4 * OnePly))
&& (PvNode || (!isCheck && ss[ply].eval >= beta - IIDMargin)))
&& (PvNode || (!isCheck && ss->eval >= beta - IIDMargin)))
{
Depth d = (PvNode ? depth - 2 * OnePly : depth / 2);
search<PvNode>(pos, ss, alpha, beta, d, ply, false, threadID);
ttMove = ss[ply].pv[ply];
ttMove = ss->pv[ply];
tte = TT.retrieve(posKey);
}
@ -1222,7 +1222,7 @@ namespace {
mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move()));
// Initialize a MovePicker object for the current position
MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply], (PvNode ? -VALUE_INFINITE : beta));
MovePicker mp = MovePicker(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta));
CheckInfo ci(pos);
// Step 10. Loop through moves
@ -1269,7 +1269,7 @@ namespace {
newDepth = depth - OnePly + ext;
// Update current move (this must be done after singular extension search)
movesSearched[moveCount++] = ss[ply].currentMove = move;
movesSearched[moveCount++] = ss->currentMove = move;
// Step 12. Futility pruning (is omitted in PV nodes)
if ( !PvNode
@ -1281,7 +1281,7 @@ namespace {
{
// Move count based pruning
if ( moveCount >= futility_move_count(depth)
&& ok_to_prune(pos, move, ss[ply].threatMove)
&& ok_to_prune(pos, move, ss->threatMove)
&& bestValue > value_mated_in(PLY_MAX))
continue;
@ -1289,7 +1289,7 @@ namespace {
// We illogically ignore reduction condition depth >= 3*OnePly for predicted depth,
// but fixing this made program slightly weaker.
Depth predictedDepth = newDepth - reduction<NonPV>(depth, moveCount);
futilityValueScaled = ss[ply].eval + futility_margin(predictedDepth, moveCount)
futilityValueScaled = ss->eval + futility_margin(predictedDepth, moveCount)
+ H.gain(pos.piece_on(move_from(move)), move_to(move));
if (futilityValueScaled < beta)
@ -1306,7 +1306,7 @@ namespace {
// Step extra. pv search (only in PV nodes)
// The first move in list is the expected PV
if (PvNode && moveCount == 1)
value = -search<PV>(pos, ss, -beta, -alpha, newDepth, ply+1, false, threadID);
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, ply+1, false, threadID);
else
{
// Step 14. Reduced depth search
@ -1317,22 +1317,22 @@ namespace {
&& !dangerous
&& !captureOrPromotion
&& !move_is_castle(move)
&& !move_is_killer(move, ss[ply]))
&& !move_is_killer(move, ss))
{
ss[ply].reduction = reduction<PvNode>(depth, moveCount);
if (ss[ply].reduction)
ss->reduction = reduction<PvNode>(depth, moveCount);
if (ss->reduction)
{
value = -search<NonPV>(pos, ss, -(alpha+1), -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID);
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, ply+1, true, threadID);
doFullDepthSearch = (value > alpha);
}
// The move failed high, but if reduction is very big we could
// face a false positive, retry with a less aggressive reduction,
// if the move fails high again then go with full depth search.
if (doFullDepthSearch && ss[ply].reduction > 2 * OnePly)
if (doFullDepthSearch && ss->reduction > 2 * OnePly)
{
ss[ply].reduction = OnePly;
value = -search<NonPV>(pos, ss, -(alpha+1), -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID);
ss->reduction = OnePly;
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, ply+1, true, threadID);
doFullDepthSearch = (value > alpha);
}
}
@ -1340,14 +1340,14 @@ namespace {
// Step 15. Full depth search
if (doFullDepthSearch)
{
ss[ply].reduction = Depth(0);
value = -search<NonPV>(pos, ss, -(alpha+1), -alpha, newDepth, ply+1, true, threadID);
ss->reduction = Depth(0);
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, ply+1, true, threadID);
// Step extra. pv search (only in PV nodes)
// Search only for possible new PV nodes, if instead value >= beta then
// parent node fails low with value <= alpha and tries another move.
if (PvNode && value > alpha && value < beta)
value = -search<PV>(pos, ss, -beta, -alpha, newDepth, ply+1, false, threadID);
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, ply+1, false, threadID);
}
}
@ -1368,7 +1368,7 @@ namespace {
update_pv(ss, ply);
if (value == value_mate_in(ply + 1))
ss[ply].mateKiller = move;
ss->mateKiller = move;
}
}
@ -1398,21 +1398,21 @@ namespace {
return bestValue;
if (bestValue <= oldAlpha)
TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE, ss[ply].eval, ei.kingDanger[pos.side_to_move()]);
TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]);
else if (bestValue >= beta)
{
TM.incrementBetaCounter(pos.side_to_move(), depth, threadID);
move = ss[ply].pv[ply];
TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move, ss[ply].eval, ei.kingDanger[pos.side_to_move()]);
move = ss->pv[ply];
TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move, ss->eval, ei.kingDanger[pos.side_to_move()]);
if (!pos.move_is_capture_or_promotion(move))
{
update_history(pos, move, depth, movesSearched, moveCount);
update_killers(move, ss[ply]);
update_killers(move, ss);
}
}
else
TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss[ply].pv[ply], ss[ply].eval, ei.kingDanger[pos.side_to_move()]);
TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss->pv[ply], ss->eval, ei.kingDanger[pos.side_to_move()]);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
@ -1425,7 +1425,7 @@ namespace {
// less than OnePly).
template <NodeType PvNode>
Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta,
Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta,
Depth depth, int ply, int threadID) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
@ -1462,7 +1462,7 @@ namespace {
if (!PvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
{
ss[ply].currentMove = ttMove; // Can be MOVE_NONE
ss->currentMove = ttMove; // Can be MOVE_NONE
return value_from_tt(tte->value(), ply);
}
@ -1481,8 +1481,8 @@ namespace {
if (!isCheck)
{
ss[ply].eval = staticValue;
update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
ss->eval = staticValue;
update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
}
// Initialize "stand pat score", and return it immediately if it is
@ -1493,7 +1493,7 @@ namespace {
{
// Store the score to avoid a future costly evaluation() call
if (!isCheck && !tte)
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, Depth(-127*OnePly), MOVE_NONE, ss[ply].eval, ei.kingDanger[pos.side_to_move()]);
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, Depth(-127*OnePly), MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]);
return bestValue;
}
@ -1523,7 +1523,7 @@ namespace {
// Update current move
moveCount++;
ss[ply].currentMove = move;
ss->currentMove = move;
// Futility pruning
if ( !PvNode
@ -1563,7 +1563,7 @@ namespace {
// Make and search the move
pos.do_move(move, st, ci, moveIsCheck);
value = -qsearch<PvNode>(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID);
value = -qsearch<PvNode>(pos, ss+1, -beta, -alpha, depth-OnePly, ply+1, threadID);
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
@ -1591,19 +1591,19 @@ namespace {
{
// If bestValue isn't changed it means it is still the static evaluation
// of the node, so keep this info to avoid a future evaluation() call.
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, d, MOVE_NONE, ss[ply].eval, ei.kingDanger[pos.side_to_move()]);
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, d, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]);
}
else if (bestValue >= beta)
{
move = ss[ply].pv[ply];
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move, ss[ply].eval, ei.kingDanger[pos.side_to_move()]);
move = ss->pv[ply];
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move, ss->eval, ei.kingDanger[pos.side_to_move()]);
// Update killers only for good checking moves
if (!pos.move_is_capture_or_promotion(move))
update_killers(move, ss[ply]);
update_killers(move, ss);
}
else
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, d, ss[ply].pv[ply], ss[ply].eval, ei.kingDanger[pos.side_to_move()]);
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, d, ss->pv[ply], ss->eval, ei.kingDanger[pos.side_to_move()]);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
@ -1636,7 +1636,7 @@ namespace {
Position pos(*sp->pos);
CheckInfo ci(pos);
SearchStack* ss = sp->sstack[threadID];
SearchStack* ss = sp->sstack[threadID] + 1;
isCheck = pos.is_check();
// Step 10. Loop through moves
@ -1660,7 +1660,7 @@ namespace {
newDepth = sp->depth - OnePly + ext;
// Update current move
ss[sp->ply].currentMove = move;
ss->currentMove = move;
// Step 12. Futility pruning (is omitted in PV nodes)
if ( !PvNode
@ -1671,7 +1671,7 @@ namespace {
{
// Move count based pruning
if ( moveCount >= futility_move_count(sp->depth)
&& ok_to_prune(pos, move, ss[sp->ply].threatMove)
&& ok_to_prune(pos, move, ss->threatMove)
&& sp->bestValue > value_mated_in(PLY_MAX))
{
lock_grab(&(sp->lock));
@ -1680,7 +1680,7 @@ namespace {
// Value based pruning
Depth predictedDepth = newDepth - reduction<NonPV>(sp->depth, moveCount);
futilityValueScaled = ss[sp->ply].eval + futility_margin(predictedDepth, moveCount)
futilityValueScaled = ss->eval + futility_margin(predictedDepth, moveCount)
+ H.gain(pos.piece_on(move_from(move)), move_to(move));
if (futilityValueScaled < sp->beta)
@ -1703,24 +1703,24 @@ namespace {
if ( !dangerous
&& !captureOrPromotion
&& !move_is_castle(move)
&& !move_is_killer(move, ss[sp->ply]))
&& !move_is_killer(move, ss))
{
ss[sp->ply].reduction = reduction<PvNode>(sp->depth, moveCount);
if (ss[sp->ply].reduction)
ss->reduction = reduction<PvNode>(sp->depth, moveCount);
if (ss->reduction)
{
Value localAlpha = sp->alpha;
value = -search<NonPV>(pos, ss, -(localAlpha+1), -localAlpha, newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
value = -search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth-ss->reduction, sp->ply+1, true, threadID);
doFullDepthSearch = (value > localAlpha);
}
// The move failed high, but if reduction is very big we could
// face a false positive, retry with a less aggressive reduction,
// if the move fails high again then go with full depth search.
if (doFullDepthSearch && ss[sp->ply].reduction > 2 * OnePly)
if (doFullDepthSearch && ss->reduction > 2 * OnePly)
{
ss[sp->ply].reduction = OnePly;
ss->reduction = OnePly;
Value localAlpha = sp->alpha;
value = -search<NonPV>(pos, ss, -(localAlpha+1), -localAlpha, newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
value = -search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth-ss->reduction, sp->ply+1, true, threadID);
doFullDepthSearch = (value > localAlpha);
}
}
@ -1728,12 +1728,12 @@ namespace {
// Step 15. Full depth search
if (doFullDepthSearch)
{
ss[sp->ply].reduction = Depth(0);
ss->reduction = Depth(0);
Value localAlpha = sp->alpha;
value = -search<NonPV>(pos, ss, -(localAlpha+1), -localAlpha, newDepth, sp->ply+1, true, threadID);
value = -search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth, sp->ply+1, true, threadID);
if (PvNode && value > localAlpha && value < sp->beta)
value = -search<PV>(pos, ss, -sp->beta, -sp->alpha, newDepth, sp->ply+1, false, threadID);
value = -search<PV>(pos, ss+1, -sp->beta, -sp->alpha, newDepth, sp->ply+1, false, threadID);
}
// Step 16. Undo move
@ -1774,7 +1774,7 @@ namespace {
// NodesBetweenPolls nodes, init_node() also calls poll(), which polls
// for user input and checks whether it is time to stop the search.
void init_node(SearchStack ss[], int ply, int threadID) {
void init_node(SearchStack* ss, int ply, int threadID) {
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < TM.active_threads());
@ -1790,26 +1790,26 @@ namespace {
NodesSincePoll = 0;
}
}
ss[ply].init(ply);
ss[ply + 2].initKillers();
ss->init(ply);
(ss + 2)->initKillers();
}
// update_pv() is called whenever a search returns a value > alpha.
// It updates the PV in the SearchStack object corresponding to the
// current node.
void update_pv(SearchStack ss[], int ply) {
void update_pv(SearchStack* ss, int ply) {
assert(ply >= 0 && ply < PLY_MAX);
int p;
ss[ply].pv[ply] = ss[ply].currentMove;
ss->pv[ply] = ss->currentMove;
for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
ss[ply].pv[p] = ss[ply + 1].pv[p];
for (p = ply + 1; (ss+1)->pv[p] != MOVE_NONE; p++)
ss->pv[p] = (ss+1)->pv[p];
ss[ply].pv[p] = MOVE_NONE;
ss->pv[p] = MOVE_NONE;
}
@ -1817,18 +1817,18 @@ namespace {
// difference between the two functions is that sp_update_pv also updates
// the PV at the parent node.
void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) {
void sp_update_pv(SearchStack* pss, SearchStack* ss, int ply) {
assert(ply >= 0 && ply < PLY_MAX);
int p;
ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove;
ss->pv[ply] = pss->pv[ply] = ss->currentMove;
for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
ss[ply].pv[p] = pss[ply].pv[p] = ss[ply + 1].pv[p];
for (p = ply + 1; (ss+1)->pv[p] != MOVE_NONE; p++)
ss->pv[p] = pss->pv[p] = (ss+1)->pv[p];
ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE;
ss->pv[p] = pss->pv[p] = MOVE_NONE;
}
@ -1903,9 +1903,9 @@ namespace {
// move_is_killer() checks if the given move is among the
// killer moves of that ply.
bool move_is_killer(Move m, const SearchStack& ss) {
bool move_is_killer(Move m, SearchStack* ss) {
const Move* k = ss.killers;
const Move* k = ss->killers;
for (int i = 0; i < KILLER_MAX; i++, k++)
if (*k == m)
return true;
@ -2099,15 +2099,15 @@ namespace {
// update_killers() add a good move that produced a beta-cutoff
// among the killer moves of that ply.
void update_killers(Move m, SearchStack& ss) {
void update_killers(Move m, SearchStack* ss) {
if (m == ss.killers[0])
if (m == ss->killers[0])
return;
for (int i = KILLER_MAX - 1; i > 0; i--)
ss.killers[i] = ss.killers[i - 1];
ss->killers[i] = ss->killers[i - 1];
ss.killers[0] = m;
ss->killers[0] = m;
}
@ -2242,12 +2242,12 @@ namespace {
// init_ss_array() does a fast reset of the first entries of a SearchStack array
void init_ss_array(SearchStack ss[]) {
void init_ss_array(SearchStack* ss) {
for (int i = 0; i < 3; i++)
for (int i = 0; i < 3; i++, ss++)
{
ss[i].init(i);
ss[i].initKillers();
ss->init(i);
ss->initKillers();
}
}
@ -2282,7 +2282,7 @@ namespace {
// print_pv_info() prints to standard output and eventually to log file information on
// the current PV line. It is called at each iteration or after a new pv is found.
void print_pv_info(const Position& pos, SearchStack ss[], Value alpha, Value beta, Value value) {
void print_pv_info(const Position& pos, SearchStack* ss, Value alpha, Value beta, Value value) {
cout << "info depth " << Iteration
<< " score " << value_to_string(value)
@ -2293,8 +2293,8 @@ namespace {
<< " nps " << nps()
<< " pv ";
for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
cout << ss[0].pv[j] << " ";
for (int j = 0; ss->pv[j] != MOVE_NONE && j < PLY_MAX; j++)
cout << ss->pv[j] << " ";
cout << endl;
@ -2304,7 +2304,7 @@ namespace {
: (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT));
LogFile << pretty_pv(pos, current_search_time(), Iteration,
TM.nodes_searched(), value, type, ss[0].pv) << endl;
TM.nodes_searched(), value, type, ss->pv) << endl;
}
}
@ -2622,12 +2622,11 @@ namespace {
// split() returns.
template <bool Fake>
void ThreadsManager::split(const Position& p, SearchStack* sstck, int ply, Value* alpha,
void ThreadsManager::split(const Position& p, SearchStack* ss, int ply, Value* alpha,
const Value beta, Value* bestValue, Depth depth, bool mateThreat,
int* moveCount, MovePicker* mp, int master, bool pvNode) {
assert(p.is_ok());
assert(sstck != NULL);
assert(ply >= 0 && ply < PLY_MAX);
assert(ply > 0 && ply < PLY_MAX);
assert(*bestValue >= -VALUE_INFINITE);
assert(*bestValue <= *alpha);
assert(*alpha < beta);
@ -2663,7 +2662,7 @@ namespace {
splitPoint->mp = mp;
splitPoint->moveCount = *moveCount;
splitPoint->pos = &p;
splitPoint->parentSstack = sstck;
splitPoint->parentSstack = ss;
for (int i = 0; i < ActiveThreads; i++)
splitPoint->slaves[i] = 0;
@ -2695,7 +2694,7 @@ namespace {
for (int i = 0; i < ActiveThreads; i++)
if (i == master || splitPoint->slaves[i])
{
memcpy(splitPoint->sstack[i] + ply - 1, sstck + ply - 1, 4 * sizeof(SearchStack));
memcpy(splitPoint->sstack[i], ss - 1, 4 * sizeof(SearchStack));
assert(i == master || threads[i].state == THREAD_BOOKED);