/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED #include #include "types.h" namespace Stockfish { namespace Bitbases { void init(); bool probe(Square wksq, Square wpsq, Square bksq, Color us); } // namespace Stockfish::Bitbases namespace Bitboards { void init(); std::string pretty(Bitboard b); } // namespace Stockfish::Bitboards constexpr Bitboard AllSquares = ~Bitboard(0); constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; constexpr Bitboard FileABB = 0x0101010101010101ULL; constexpr Bitboard FileBBB = FileABB << 1; constexpr Bitboard FileCBB = FileABB << 2; constexpr Bitboard FileDBB = FileABB << 3; constexpr Bitboard FileEBB = FileABB << 4; constexpr Bitboard FileFBB = FileABB << 5; constexpr Bitboard FileGBB = FileABB << 6; constexpr Bitboard FileHBB = FileABB << 7; constexpr Bitboard Rank1BB = 0xFF; constexpr Bitboard Rank2BB = Rank1BB << (8 * 1); constexpr Bitboard Rank3BB = Rank1BB << (8 * 2); constexpr Bitboard Rank4BB = Rank1BB << (8 * 3); constexpr Bitboard Rank5BB = Rank1BB << (8 * 4); constexpr Bitboard Rank6BB = Rank1BB << (8 * 5); constexpr Bitboard Rank7BB = Rank1BB << (8 * 6); constexpr Bitboard Rank8BB = Rank1BB << (8 * 7); constexpr Bitboard QueenSide = FileABB | FileBBB | FileCBB | FileDBB; constexpr Bitboard CenterFiles = FileCBB | FileDBB | FileEBB | FileFBB; constexpr Bitboard KingSide = FileEBB | FileFBB | FileGBB | FileHBB; constexpr Bitboard Center = (FileDBB | FileEBB) & (Rank4BB | Rank5BB); constexpr Bitboard KingFlank[FILE_NB] = { QueenSide ^ FileDBB, QueenSide, QueenSide, CenterFiles, CenterFiles, KingSide, KingSide, KingSide ^ FileEBB }; extern uint8_t PopCnt16[1 << 16]; extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; extern Bitboard SquareBB[SQUARE_NB]; extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; /// Magic holds all magic bitboards relevant data for a single square struct Magic { Bitboard mask; Bitboard magic; Bitboard* attacks; unsigned shift; // Compute the attack's index using the 'magic bitboards' approach unsigned index(Bitboard occupied) const { if (HasPext) return unsigned(pext(occupied, mask)); if (Is64Bit) return unsigned(((occupied & mask) * magic) >> shift); unsigned lo = unsigned(occupied) & unsigned(mask); unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32); return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift; } }; extern Magic RookMagics[SQUARE_NB]; extern Magic BishopMagics[SQUARE_NB]; inline Bitboard square_bb(Square s) { assert(is_ok(s)); return SquareBB[s]; } /// Overloads of bitwise operators between a Bitboard and a Square for testing /// whether a given bit is set in a bitboard, and for setting and clearing bits. inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); } inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); } inline Bitboard operator^( Bitboard b, Square s) { return b ^ square_bb(s); } inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); } inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); } inline Bitboard operator&(Square s, Bitboard b) { return b & s; } inline Bitboard operator|(Square s, Bitboard b) { return b | s; } inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; } inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; } constexpr bool more_than_one(Bitboard b) { return b & (b - 1); } constexpr bool opposite_colors(Square s1, Square s2) { return (s1 + rank_of(s1) + s2 + rank_of(s2)) & 1; } /// rank_bb() and file_bb() return a bitboard representing all the squares on /// the given file or rank. constexpr Bitboard rank_bb(Rank r) { return Rank1BB << (8 * r); } constexpr Bitboard rank_bb(Square s) { return rank_bb(rank_of(s)); } constexpr Bitboard file_bb(File f) { return FileABB << f; } constexpr Bitboard file_bb(Square s) { return file_bb(file_of(s)); } /// shift() moves a bitboard one or two steps as specified by the direction D template constexpr Bitboard shift(Bitboard b) { return D == NORTH ? b << 8 : D == SOUTH ? b >> 8 : D == NORTH+NORTH? b <<16 : D == SOUTH+SOUTH? b >>16 : D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1 : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7 : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9 : 0; } /// pawn_attacks_bb() returns the squares attacked by pawns of the given color /// from the squares in the given bitboard. template constexpr Bitboard pawn_attacks_bb(Bitboard b) { return C == WHITE ? shift(b) | shift(b) : shift(b) | shift(b); } inline Bitboard pawn_attacks_bb(Color c, Square s) { assert(is_ok(s)); return PawnAttacks[c][s]; } /// pawn_double_attacks_bb() returns the squares doubly attacked by pawns of the /// given color from the squares in the given bitboard. template constexpr Bitboard pawn_double_attacks_bb(Bitboard b) { return C == WHITE ? shift(b) & shift(b) : shift(b) & shift(b); } /// adjacent_files_bb() returns a bitboard representing all the squares on the /// adjacent files of a given square. constexpr Bitboard adjacent_files_bb(Square s) { return shift(file_bb(s)) | shift(file_bb(s)); } /// line_bb() returns a bitboard representing an entire line (from board edge /// to board edge) that intersects the two given squares. If the given squares /// are not on a same file/rank/diagonal, the function returns 0. For instance, /// line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal. inline Bitboard line_bb(Square s1, Square s2) { assert(is_ok(s1) && is_ok(s2)); return LineBB[s1][s2]; } /// between_bb(s1, s2) returns a bitboard representing the squares in the semi-open /// segment between the squares s1 and s2 (excluding s1 but including s2). If the /// given squares are not on a same file/rank/diagonal, it returns s2. For instance, /// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but /// between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick /// allows to generate non-king evasion moves faster: the defending piece must either /// interpose itself to cover the check or capture the checking piece. inline Bitboard between_bb(Square s1, Square s2) { assert(is_ok(s1) && is_ok(s2)); return BetweenBB[s1][s2]; } /// forward_ranks_bb() returns a bitboard representing the squares on the ranks in /// front of the given one, from the point of view of the given color. For instance, /// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2. constexpr Bitboard forward_ranks_bb(Color c, Square s) { return c == WHITE ? ~Rank1BB << 8 * relative_rank(WHITE, s) : ~Rank8BB >> 8 * relative_rank(BLACK, s); } /// forward_file_bb() returns a bitboard representing all the squares along the /// line in front of the given one, from the point of view of the given color. constexpr Bitboard forward_file_bb(Color c, Square s) { return forward_ranks_bb(c, s) & file_bb(s); } /// pawn_attack_span() returns a bitboard representing all the squares that can /// be attacked by a pawn of the given color when it moves along its file, starting /// from the given square. constexpr Bitboard pawn_attack_span(Color c, Square s) { return forward_ranks_bb(c, s) & adjacent_files_bb(s); } /// passed_pawn_span() returns a bitboard which can be used to test if a pawn of /// the given color and on the given square is a passed pawn. constexpr Bitboard passed_pawn_span(Color c, Square s) { return pawn_attack_span(c, s) | forward_file_bb(c, s); } /// aligned() returns true if the squares s1, s2 and s3 are aligned either on a /// straight or on a diagonal line. inline bool aligned(Square s1, Square s2, Square s3) { return line_bb(s1, s2) & s3; } /// distance() functions return the distance between x and y, defined as the /// number of steps for a king in x to reach y. template inline int distance(Square x, Square y); template<> inline int distance(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); } template<> inline int distance(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); } template<> inline int distance(Square x, Square y) { return SquareDistance[x][y]; } inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); } inline int edge_distance(Rank r) { return std::min(r, Rank(RANK_8 - r)); } /// attacks_bb(Square) returns the pseudo attacks of the give piece type /// assuming an empty board. template inline Bitboard attacks_bb(Square s) { assert((Pt != PAWN) && (is_ok(s))); return PseudoAttacks[Pt][s]; } /// attacks_bb(Square, Bitboard) returns the attacks by the given piece /// assuming the board is occupied according to the passed Bitboard. /// Sliding piece attacks do not continue passed an occupied square. template inline Bitboard attacks_bb(Square s, Bitboard occupied) { assert((Pt != PAWN) && (is_ok(s))); switch (Pt) { case BISHOP: return BishopMagics[s].attacks[BishopMagics[s].index(occupied)]; case ROOK : return RookMagics[s].attacks[ RookMagics[s].index(occupied)]; case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); default : return PseudoAttacks[Pt][s]; } } inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) { assert((pt != PAWN) && (is_ok(s))); switch (pt) { case BISHOP: return attacks_bb(s, occupied); case ROOK : return attacks_bb< ROOK>(s, occupied); case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); default : return PseudoAttacks[pt][s]; } } /// popcount() counts the number of non-zero bits in a bitboard inline int popcount(Bitboard b) { #ifndef USE_POPCNT union { Bitboard bb; uint16_t u[4]; } v = { b }; return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]]; #elif defined(_MSC_VER) || defined(__INTEL_COMPILER) return (int)_mm_popcnt_u64(b); #else // Assumed gcc or compatible compiler return __builtin_popcountll(b); #endif } /// lsb() and msb() return the least/most significant bit in a non-zero bitboard #if defined(__GNUC__) // GCC, Clang, ICC inline Square lsb(Bitboard b) { assert(b); return Square(__builtin_ctzll(b)); } inline Square msb(Bitboard b) { assert(b); return Square(63 ^ __builtin_clzll(b)); } #elif defined(_MSC_VER) // MSVC #ifdef _WIN64 // MSVC, WIN64 inline Square lsb(Bitboard b) { assert(b); unsigned long idx; _BitScanForward64(&idx, b); return (Square) idx; } inline Square msb(Bitboard b) { assert(b); unsigned long idx; _BitScanReverse64(&idx, b); return (Square) idx; } #else // MSVC, WIN32 inline Square lsb(Bitboard b) { assert(b); unsigned long idx; if (b & 0xffffffff) { _BitScanForward(&idx, int32_t(b)); return Square(idx); } else { _BitScanForward(&idx, int32_t(b >> 32)); return Square(idx + 32); } } inline Square msb(Bitboard b) { assert(b); unsigned long idx; if (b >> 32) { _BitScanReverse(&idx, int32_t(b >> 32)); return Square(idx + 32); } else { _BitScanReverse(&idx, int32_t(b)); return Square(idx); } } #endif #else // Compiler is neither GCC nor MSVC compatible #error "Compiler not supported." #endif /// least_significant_square_bb() returns the bitboard of the least significant /// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)). inline Bitboard least_significant_square_bb(Bitboard b) { assert(b); return b & -b; } /// pop_lsb() finds and clears the least significant bit in a non-zero bitboard inline Square pop_lsb(Bitboard& b) { assert(b); const Square s = lsb(b); b &= b - 1; return s; } /// frontmost_sq() returns the most advanced square for the given color, /// requires a non-zero bitboard. inline Square frontmost_sq(Color c, Bitboard b) { assert(b); return c == WHITE ? msb(b) : lsb(b); } } // namespace Stockfish #endif // #ifndef BITBOARD_H_INCLUDED