/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef MISC_H_INCLUDED #define MISC_H_INCLUDED #include #include #include #include #include #include #include "types.h" namespace Stockfish { std::string engine_info(bool to_uci = false); std::string compiler_info(); void prefetch(void* addr); void start_logger(const std::string& fname); void* std_aligned_alloc(size_t alignment, size_t size); void std_aligned_free(void* ptr); void* aligned_large_pages_alloc(size_t size); // memory aligned by page size, min alignment: 4096 bytes void aligned_large_pages_free(void* mem); // nop if mem == nullptr void dbg_hit_on(bool b); void dbg_hit_on(bool c, bool b); void dbg_mean_of(int v); void dbg_print(); typedef std::chrono::milliseconds::rep TimePoint; // A value in milliseconds static_assert(sizeof(TimePoint) == sizeof(int64_t), "TimePoint should be 64 bits"); inline TimePoint now() { return std::chrono::duration_cast (std::chrono::steady_clock::now().time_since_epoch()).count(); } template struct HashTable { Entry* operator[](Key key) { return &table[(uint32_t)key & (Size - 1)]; } private: std::vector table = std::vector(Size); // Allocate on the heap }; enum SyncCout { IO_LOCK, IO_UNLOCK }; std::ostream& operator<<(std::ostream&, SyncCout); #define sync_cout std::cout << IO_LOCK #define sync_endl std::endl << IO_UNLOCK // align_ptr_up() : get the first aligned element of an array. // ptr must point to an array of size at least `sizeof(T) * N + alignment` bytes, // where N is the number of elements in the array. template T* align_ptr_up(T* ptr) { static_assert(alignof(T) < Alignment); const uintptr_t ptrint = reinterpret_cast(reinterpret_cast(ptr)); return reinterpret_cast(reinterpret_cast((ptrint + (Alignment - 1)) / Alignment * Alignment)); } // IsLittleEndian : true if and only if the binary is compiled on a little endian machine static inline const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; static inline const bool IsLittleEndian = (Le.c[0] == 4); // RunningAverage : a class to calculate a running average of a series of values. // For efficiency, all computations are done with integers. class RunningAverage { public: // Constructor RunningAverage() {} // Reset the running average to rational value p / q void set(int64_t p, int64_t q) { average = p * PERIOD * RESOLUTION / q; } // Update average with value v void update(int64_t v) { average = RESOLUTION * v + (PERIOD - 1) * average / PERIOD; } // Test if average is strictly greater than rational a / b bool is_greater(int64_t a, int64_t b) { return b * average > a * PERIOD * RESOLUTION ; } private : static constexpr int64_t PERIOD = 4096; static constexpr int64_t RESOLUTION = 1024; int64_t average; }; template class ValueList { public: std::size_t size() const { return size_; } void resize(std::size_t newSize) { size_ = newSize; } void push_back(const T& value) { values_[size_++] = value; } T& operator[](std::size_t index) { return values_[index]; } T* begin() { return values_; } T* end() { return values_ + size_; } const T& operator[](std::size_t index) const { return values_[index]; } const T* begin() const { return values_; } const T* end() const { return values_ + size_; } void swap(ValueList& other) { const std::size_t maxSize = std::max(size_, other.size_); for (std::size_t i = 0; i < maxSize; ++i) { std::swap(values_[i], other.values_[i]); } std::swap(size_, other.size_); } private: T values_[MaxSize]; std::size_t size_ = 0; }; /// xorshift64star Pseudo-Random Number Generator /// This class is based on original code written and dedicated /// to the public domain by Sebastiano Vigna (2014). /// It has the following characteristics: /// /// - Outputs 64-bit numbers /// - Passes Dieharder and SmallCrush test batteries /// - Does not require warm-up, no zeroland to escape /// - Internal state is a single 64-bit integer /// - Period is 2^64 - 1 /// - Speed: 1.60 ns/call (Core i7 @3.40GHz) /// /// For further analysis see /// class PRNG { uint64_t s; uint64_t rand64() { s ^= s >> 12, s ^= s << 25, s ^= s >> 27; return s * 2685821657736338717LL; } public: PRNG(uint64_t seed) : s(seed) { assert(seed); } template T rand() { return T(rand64()); } /// Special generator used to fast init magic numbers. /// Output values only have 1/8th of their bits set on average. template T sparse_rand() { return T(rand64() & rand64() & rand64()); } }; inline uint64_t mul_hi64(uint64_t a, uint64_t b) { #if defined(__GNUC__) && defined(IS_64BIT) __extension__ typedef unsigned __int128 uint128; return ((uint128)a * (uint128)b) >> 64; #else uint64_t aL = (uint32_t)a, aH = a >> 32; uint64_t bL = (uint32_t)b, bH = b >> 32; uint64_t c1 = (aL * bL) >> 32; uint64_t c2 = aH * bL + c1; uint64_t c3 = aL * bH + (uint32_t)c2; return aH * bH + (c2 >> 32) + (c3 >> 32); #endif } /// Under Windows it is not possible for a process to run on more than one /// logical processor group. This usually means to be limited to use max 64 /// cores. To overcome this, some special platform specific API should be /// called to set group affinity for each thread. Original code from Texel by /// Peter Ă–sterlund. namespace WinProcGroup { void bindThisThread(size_t idx); } namespace CommandLine { void init(int argc, char* argv[]); extern std::string binaryDirectory; // path of the executable directory extern std::string workingDirectory; // path of the working directory } } // namespace Stockfish #endif // #ifndef MISC_H_INCLUDED