/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include // For offsetof() #include // For std::memset, std::memcmp #include #include #include "bitboard.h" #include "misc.h" #include "movegen.h" #include "position.h" #include "thread.h" #include "tt.h" #include "uci.h" #include "syzygy/tbprobe.h" using std::string; namespace Stockfish { namespace Zobrist { Key psq[PIECE_NB][SQUARE_NB]; Key enpassant[FILE_NB]; Key castling[CASTLING_RIGHT_NB]; Key side, noPawns; } namespace { const string PieceToChar(" PNBRQK pnbrqk"); constexpr Piece Pieces[] = { W_PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING, B_PAWN, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING }; } // namespace /// operator<<(Position) returns an ASCII representation of the position std::ostream& operator<<(std::ostream& os, const Position& pos) { os << "\n +---+---+---+---+---+---+---+---+\n"; for (Rank r = RANK_8; r >= RANK_1; --r) { for (File f = FILE_A; f <= FILE_H; ++f) os << " | " << PieceToChar[pos.piece_on(make_square(f, r))]; os << " | " << (1 + r) << "\n +---+---+---+---+---+---+---+---+\n"; } os << " a b c d e f g h\n" << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase << std::setfill('0') << std::setw(16) << pos.key() << std::setfill(' ') << std::dec << "\nCheckers: "; for (Bitboard b = pos.checkers(); b; ) os << UCI::square(pop_lsb(b)) << " "; if ( int(Tablebases::MaxCardinality) >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING)) { StateInfo st; ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize); Position p; p.set(pos.fen(), pos.is_chess960(), &st, pos.this_thread()); Tablebases::ProbeState s1, s2; Tablebases::WDLScore wdl = Tablebases::probe_wdl(p, &s1); int dtz = Tablebases::probe_dtz(p, &s2); os << "\nTablebases WDL: " << std::setw(4) << wdl << " (" << s1 << ")" << "\nTablebases DTZ: " << std::setw(4) << dtz << " (" << s2 << ")"; } return os; } // Marcel van Kervinck's cuckoo algorithm for fast detection of "upcoming repetition" // situations. Description of the algorithm in the following paper: // https://marcelk.net/2013-04-06/paper/upcoming-rep-v2.pdf // First and second hash functions for indexing the cuckoo tables inline int H1(Key h) { return h & 0x1fff; } inline int H2(Key h) { return (h >> 16) & 0x1fff; } // Cuckoo tables with Zobrist hashes of valid reversible moves, and the moves themselves Key cuckoo[8192]; Move cuckooMove[8192]; /// Position::init() initializes at startup the various arrays used to compute hash keys void Position::init() { PRNG rng(1070372); for (Piece pc : Pieces) for (Square s = SQ_A1; s <= SQ_H8; ++s) Zobrist::psq[pc][s] = rng.rand(); for (File f = FILE_A; f <= FILE_H; ++f) Zobrist::enpassant[f] = rng.rand(); for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr) Zobrist::castling[cr] = rng.rand(); Zobrist::side = rng.rand(); Zobrist::noPawns = rng.rand(); // Prepare the cuckoo tables std::memset(cuckoo, 0, sizeof(cuckoo)); std::memset(cuckooMove, 0, sizeof(cuckooMove)); int count = 0; for (Piece pc : Pieces) for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) for (Square s2 = Square(s1 + 1); s2 <= SQ_H8; ++s2) if ((type_of(pc) != PAWN) && (attacks_bb(type_of(pc), s1, 0) & s2)) { Move move = make_move(s1, s2); Key key = Zobrist::psq[pc][s1] ^ Zobrist::psq[pc][s2] ^ Zobrist::side; int i = H1(key); while (true) { std::swap(cuckoo[i], key); std::swap(cuckooMove[i], move); if (move == MOVE_NONE) // Arrived at empty slot? break; i = (i == H1(key)) ? H2(key) : H1(key); // Push victim to alternative slot } count++; } assert(count == 3668); } /// Position::set() initializes the position object with the given FEN string. /// This function is not very robust - make sure that input FENs are correct, /// this is assumed to be the responsibility of the GUI. Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) { /* A FEN string defines a particular position using only the ASCII character set. A FEN string contains six fields separated by a space. The fields are: 1) Piece placement (from white's perspective). Each rank is described, starting with rank 8 and ending with rank 1. Within each rank, the contents of each square are described from file A through file H. Following the Standard Algebraic Notation (SAN), each piece is identified by a single letter taken from the standard English names. White pieces are designated using upper-case letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are noted using digits 1 through 8 (the number of blank squares), and "/" separates ranks. 2) Active color. "w" means white moves next, "b" means black. 3) Castling availability. If neither side can castle, this is "-". Otherwise, this has one or more letters: "K" (White can castle kingside), "Q" (White can castle queenside), "k" (Black can castle kingside), and/or "q" (Black can castle queenside). 4) En passant target square (in algebraic notation). If there's no en passant target square, this is "-". If a pawn has just made a 2-square move, this is the position "behind" the pawn. Following X-FEN standard, this is recorded only if there is a pawn in position to make an en passant capture, and if there really is a pawn that might have advanced two squares. 5) Halfmove clock. This is the number of halfmoves since the last pawn advance or capture. This is used to determine if a draw can be claimed under the fifty-move rule. 6) Fullmove number. The number of the full move. It starts at 1, and is incremented after Black's move. */ unsigned char col, row, token; size_t idx; Square sq = SQ_A8; std::istringstream ss(fenStr); std::memset(this, 0, sizeof(Position)); std::memset(si, 0, sizeof(StateInfo)); st = si; ss >> std::noskipws; // 1. Piece placement while ((ss >> token) && !isspace(token)) { if (isdigit(token)) sq += (token - '0') * EAST; // Advance the given number of files else if (token == '/') sq += 2 * SOUTH; else if ((idx = PieceToChar.find(token)) != string::npos) { put_piece(Piece(idx), sq); ++sq; } } // 2. Active color ss >> token; sideToMove = (token == 'w' ? WHITE : BLACK); ss >> token; // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, // Shredder-FEN that uses the letters of the columns on which the rooks began // the game instead of KQkq and also X-FEN standard that, in case of Chess960, // if an inner rook is associated with the castling right, the castling tag is // replaced by the file letter of the involved rook, as for the Shredder-FEN. while ((ss >> token) && !isspace(token)) { Square rsq; Color c = islower(token) ? BLACK : WHITE; Piece rook = make_piece(c, ROOK); token = char(toupper(token)); if (token == 'K') for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {} else if (token == 'Q') for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {} else if (token >= 'A' && token <= 'H') rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); else continue; set_castling_right(c, rsq); } // 4. En passant square. // Ignore if square is invalid or not on side to move relative rank 6. bool enpassant = false; if ( ((ss >> col) && (col >= 'a' && col <= 'h')) && ((ss >> row) && (row == (sideToMove == WHITE ? '6' : '3')))) { st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); // En passant square will be considered only if // a) side to move have a pawn threatening epSquare // b) there is an enemy pawn in front of epSquare // c) there is no piece on epSquare or behind epSquare enpassant = pawn_attacks_bb(~sideToMove, st->epSquare) & pieces(sideToMove, PAWN) && (pieces(~sideToMove, PAWN) & (st->epSquare + pawn_push(~sideToMove))) && !(pieces() & (st->epSquare | (st->epSquare + pawn_push(sideToMove)))); } if (!enpassant) st->epSquare = SQ_NONE; // 5-6. Halfmove clock and fullmove number ss >> std::skipws >> st->rule50 >> gamePly; // Convert from fullmove starting from 1 to gamePly starting from 0, // handle also common incorrect FEN with fullmove = 0. gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK); chess960 = isChess960; thisThread = th; set_state(st); assert(pos_is_ok()); return *this; } /// Position::set_castling_right() is a helper function used to set castling /// rights given the corresponding color and the rook starting square. void Position::set_castling_right(Color c, Square rfrom) { Square kfrom = square(c); CastlingRights cr = c & (kfrom < rfrom ? KING_SIDE: QUEEN_SIDE); st->castlingRights |= cr; castlingRightsMask[kfrom] |= cr; castlingRightsMask[rfrom] |= cr; castlingRookSquare[cr] = rfrom; Square kto = relative_square(c, cr & KING_SIDE ? SQ_G1 : SQ_C1); Square rto = relative_square(c, cr & KING_SIDE ? SQ_F1 : SQ_D1); castlingPath[cr] = (between_bb(rfrom, rto) | between_bb(kfrom, kto)) & ~(kfrom | rfrom); } /// Position::set_check_info() sets king attacks to detect if a move gives check void Position::set_check_info(StateInfo* si) const { si->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square(WHITE), si->pinners[BLACK]); si->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square(BLACK), si->pinners[WHITE]); Square ksq = square(~sideToMove); si->checkSquares[PAWN] = pawn_attacks_bb(~sideToMove, ksq); si->checkSquares[KNIGHT] = attacks_bb(ksq); si->checkSquares[BISHOP] = attacks_bb(ksq, pieces()); si->checkSquares[ROOK] = attacks_bb(ksq, pieces()); si->checkSquares[QUEEN] = si->checkSquares[BISHOP] | si->checkSquares[ROOK]; si->checkSquares[KING] = 0; } /// Position::set_state() computes the hash keys of the position, and other /// data that once computed is updated incrementally as moves are made. /// The function is only used when a new position is set up, and to verify /// the correctness of the StateInfo data when running in debug mode. void Position::set_state(StateInfo* si) const { si->key = si->materialKey = 0; si->pawnKey = Zobrist::noPawns; si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO; si->checkersBB = attackers_to(square(sideToMove)) & pieces(~sideToMove); set_check_info(si); for (Bitboard b = pieces(); b; ) { Square s = pop_lsb(b); Piece pc = piece_on(s); si->key ^= Zobrist::psq[pc][s]; if (type_of(pc) == PAWN) si->pawnKey ^= Zobrist::psq[pc][s]; else if (type_of(pc) != KING) si->nonPawnMaterial[color_of(pc)] += PieceValue[MG][pc]; } if (si->epSquare != SQ_NONE) si->key ^= Zobrist::enpassant[file_of(si->epSquare)]; if (sideToMove == BLACK) si->key ^= Zobrist::side; si->key ^= Zobrist::castling[si->castlingRights]; for (Piece pc : Pieces) for (int cnt = 0; cnt < pieceCount[pc]; ++cnt) si->materialKey ^= Zobrist::psq[pc][cnt]; } /// Position::set() is an overload to initialize the position object with /// the given endgame code string like "KBPKN". It is mainly a helper to /// get the material key out of an endgame code. Position& Position::set(const string& code, Color c, StateInfo* si) { assert(code[0] == 'K'); string sides[] = { code.substr(code.find('K', 1)), // Weak code.substr(0, std::min(code.find('v'), code.find('K', 1))) }; // Strong assert(sides[0].length() > 0 && sides[0].length() < 8); assert(sides[1].length() > 0 && sides[1].length() < 8); std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower); string fenStr = "8/" + sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/" + sides[1] + char(8 - sides[1].length() + '0') + "/8 w - - 0 10"; return set(fenStr, false, si, nullptr); } /// Position::fen() returns a FEN representation of the position. In case of /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. string Position::fen() const { int emptyCnt; std::ostringstream ss; for (Rank r = RANK_8; r >= RANK_1; --r) { for (File f = FILE_A; f <= FILE_H; ++f) { for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f) ++emptyCnt; if (emptyCnt) ss << emptyCnt; if (f <= FILE_H) ss << PieceToChar[piece_on(make_square(f, r))]; } if (r > RANK_1) ss << '/'; } ss << (sideToMove == WHITE ? " w " : " b "); if (can_castle(WHITE_OO)) ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE_OO ))) : 'K'); if (can_castle(WHITE_OOO)) ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE_OOO))) : 'Q'); if (can_castle(BLACK_OO)) ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK_OO ))) : 'k'); if (can_castle(BLACK_OOO)) ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK_OOO))) : 'q'); if (!can_castle(ANY_CASTLING)) ss << '-'; ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ") << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2; return ss.str(); } /// Position::slider_blockers() returns a bitboard of all the pieces (both colors) /// that are blocking attacks on the square 's' from 'sliders'. A piece blocks a /// slider if removing that piece from the board would result in a position where /// square 's' is attacked. For example, a king-attack blocking piece can be either /// a pinned or a discovered check piece, according if its color is the opposite /// or the same of the color of the slider. Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const { Bitboard blockers = 0; pinners = 0; // Snipers are sliders that attack 's' when a piece and other snipers are removed Bitboard snipers = ( (attacks_bb< ROOK>(s) & pieces(QUEEN, ROOK)) | (attacks_bb(s) & pieces(QUEEN, BISHOP))) & sliders; Bitboard occupancy = pieces() ^ snipers; while (snipers) { Square sniperSq = pop_lsb(snipers); Bitboard b = between_bb(s, sniperSq) & occupancy; if (b && !more_than_one(b)) { blockers |= b; if (b & pieces(color_of(piece_on(s)))) pinners |= sniperSq; } } return blockers; } /// Position::attackers_to() computes a bitboard of all pieces which attack a /// given square. Slider attacks use the occupied bitboard to indicate occupancy. Bitboard Position::attackers_to(Square s, Bitboard occupied) const { return (pawn_attacks_bb(BLACK, s) & pieces(WHITE, PAWN)) | (pawn_attacks_bb(WHITE, s) & pieces(BLACK, PAWN)) | (attacks_bb(s) & pieces(KNIGHT)) | (attacks_bb< ROOK>(s, occupied) & pieces( ROOK, QUEEN)) | (attacks_bb(s, occupied) & pieces(BISHOP, QUEEN)) | (attacks_bb(s) & pieces(KING)); } /// Position::legal() tests whether a pseudo-legal move is legal bool Position::legal(Move m) const { assert(is_ok(m)); Color us = sideToMove; Square from = from_sq(m); Square to = to_sq(m); assert(color_of(moved_piece(m)) == us); assert(piece_on(square(us)) == make_piece(us, KING)); // En passant captures are a tricky special case. Because they are rather // uncommon, we do it simply by testing whether the king is attacked after // the move is made. if (type_of(m) == EN_PASSANT) { Square ksq = square(us); Square capsq = to - pawn_push(us); Bitboard occupied = (pieces() ^ from ^ capsq) | to; assert(to == ep_square()); assert(moved_piece(m) == make_piece(us, PAWN)); assert(piece_on(capsq) == make_piece(~us, PAWN)); assert(piece_on(to) == NO_PIECE); return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK)) && !(attacks_bb(ksq, occupied) & pieces(~us, QUEEN, BISHOP)); } // Castling moves generation does not check if the castling path is clear of // enemy attacks, it is delayed at a later time: now! if (type_of(m) == CASTLING) { // After castling, the rook and king final positions are the same in // Chess960 as they would be in standard chess. to = relative_square(us, to > from ? SQ_G1 : SQ_C1); Direction step = to > from ? WEST : EAST; for (Square s = to; s != from; s += step) if (attackers_to(s) & pieces(~us)) return false; // In case of Chess960, verify if the Rook blocks some checks // For instance an enemy queen in SQ_A1 when castling rook is in SQ_B1. return !chess960 || !(blockers_for_king(us) & to_sq(m)); } // If the moving piece is a king, check whether the destination square is // attacked by the opponent. if (type_of(piece_on(from)) == KING) return !(attackers_to(to, pieces() ^ from) & pieces(~us)); // A non-king move is legal if and only if it is not pinned or it // is moving along the ray towards or away from the king. return !(blockers_for_king(us) & from) || aligned(from, to, square(us)); } /// Position::pseudo_legal() takes a random move and tests whether the move is /// pseudo legal. It is used to validate moves from TT that can be corrupted /// due to SMP concurrent access or hash position key aliasing. bool Position::pseudo_legal(const Move m) const { Color us = sideToMove; Square from = from_sq(m); Square to = to_sq(m); Piece pc = moved_piece(m); // Use a slower but simpler function for uncommon cases // yet we skip the legality check of MoveList(). if (type_of(m) != NORMAL) return checkers() ? MoveList< EVASIONS>(*this).contains(m) : MoveList(*this).contains(m); // Is not a promotion, so promotion piece must be empty if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE) return false; // If the 'from' square is not occupied by a piece belonging to the side to // move, the move is obviously not legal. if (pc == NO_PIECE || color_of(pc) != us) return false; // The destination square cannot be occupied by a friendly piece if (pieces(us) & to) return false; // Handle the special case of a pawn move if (type_of(pc) == PAWN) { // We have already handled promotion moves, so destination // cannot be on the 8th/1st rank. if ((Rank8BB | Rank1BB) & to) return false; if ( !(pawn_attacks_bb(us, from) & pieces(~us) & to) // Not a capture && !((from + pawn_push(us) == to) && empty(to)) // Not a single push && !( (from + 2 * pawn_push(us) == to) // Not a double push && (relative_rank(us, from) == RANK_2) && empty(to) && empty(to - pawn_push(us)))) return false; } else if (!(attacks_bb(type_of(pc), from, pieces()) & to)) return false; // Evasions generator already takes care to avoid some kind of illegal moves // and legal() relies on this. We therefore have to take care that the same // kind of moves are filtered out here. if (checkers()) { if (type_of(pc) != KING) { // Double check? In this case a king move is required if (more_than_one(checkers())) return false; // Our move must be a blocking interposition or a capture of the checking piece if (!(between_bb(square(us), lsb(checkers())) & to)) return false; } // In case of king moves under check we have to remove king so as to catch // invalid moves like b1a1 when opposite queen is on c1. else if (attackers_to(to, pieces() ^ from) & pieces(~us)) return false; } return true; } /// Position::gives_check() tests whether a pseudo-legal move gives a check bool Position::gives_check(Move m) const { assert(is_ok(m)); assert(color_of(moved_piece(m)) == sideToMove); Square from = from_sq(m); Square to = to_sq(m); // Is there a direct check? if (check_squares(type_of(piece_on(from))) & to) return true; // Is there a discovered check? if ( (blockers_for_king(~sideToMove) & from) && !aligned(from, to, square(~sideToMove))) return true; switch (type_of(m)) { case NORMAL: return false; case PROMOTION: return attacks_bb(promotion_type(m), to, pieces() ^ from) & square(~sideToMove); // En passant capture with check? We have already handled the case // of direct checks and ordinary discovered check, so the only case we // need to handle is the unusual case of a discovered check through // the captured pawn. case EN_PASSANT: { Square capsq = make_square(file_of(to), rank_of(from)); Bitboard b = (pieces() ^ from ^ capsq) | to; return (attacks_bb< ROOK>(square(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK)) | (attacks_bb(square(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP)); } default: //CASTLING { // Castling is encoded as 'king captures the rook' Square ksq = square(~sideToMove); Square rto = relative_square(sideToMove, to > from ? SQ_F1 : SQ_D1); return (attacks_bb(rto) & ksq) && (attacks_bb(rto, pieces() ^ from ^ to) & ksq); } } } /// Position::do_move() makes a move, and saves all information necessary /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal /// moves should be filtered out before this function is called. void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { assert(is_ok(m)); assert(&newSt != st); thisThread->nodes.fetch_add(1, std::memory_order_relaxed); Key k = st->key ^ Zobrist::side; // Copy some fields of the old state to our new StateInfo object except the // ones which are going to be recalculated from scratch anyway and then switch // our state pointer to point to the new (ready to be updated) state. std::memcpy(&newSt, st, offsetof(StateInfo, key)); newSt.previous = st; st = &newSt; // Increment ply counters. In particular, rule50 will be reset to zero later on // in case of a capture or a pawn move. ++gamePly; ++st->rule50; ++st->pliesFromNull; // Used by NNUE st->accumulator.computed[WHITE] = false; st->accumulator.computed[BLACK] = false; auto& dp = st->dirtyPiece; dp.dirty_num = 1; Color us = sideToMove; Color them = ~us; Square from = from_sq(m); Square to = to_sq(m); Piece pc = piece_on(from); Piece captured = type_of(m) == EN_PASSANT ? make_piece(them, PAWN) : piece_on(to); assert(color_of(pc) == us); assert(captured == NO_PIECE || color_of(captured) == (type_of(m) != CASTLING ? them : us)); assert(type_of(captured) != KING); if (type_of(m) == CASTLING) { assert(pc == make_piece(us, KING)); assert(captured == make_piece(us, ROOK)); Square rfrom, rto; do_castling(us, from, to, rfrom, rto); k ^= Zobrist::psq[captured][rfrom] ^ Zobrist::psq[captured][rto]; captured = NO_PIECE; } if (captured) { Square capsq = to; // If the captured piece is a pawn, update pawn hash key, otherwise // update non-pawn material. if (type_of(captured) == PAWN) { if (type_of(m) == EN_PASSANT) { capsq -= pawn_push(us); assert(pc == make_piece(us, PAWN)); assert(to == st->epSquare); assert(relative_rank(us, to) == RANK_6); assert(piece_on(to) == NO_PIECE); assert(piece_on(capsq) == make_piece(them, PAWN)); } st->pawnKey ^= Zobrist::psq[captured][capsq]; } else st->nonPawnMaterial[them] -= PieceValue[MG][captured]; if (Eval::useNNUE) { dp.dirty_num = 2; // 1 piece moved, 1 piece captured dp.piece[1] = captured; dp.from[1] = capsq; dp.to[1] = SQ_NONE; } // Update board and piece lists remove_piece(capsq); if (type_of(m) == EN_PASSANT) board[capsq] = NO_PIECE; // Update material hash key and prefetch access to materialTable k ^= Zobrist::psq[captured][capsq]; st->materialKey ^= Zobrist::psq[captured][pieceCount[captured]]; prefetch(thisThread->materialTable[st->materialKey]); // Reset rule 50 counter st->rule50 = 0; } // Update hash key k ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; // Reset en passant square if (st->epSquare != SQ_NONE) { k ^= Zobrist::enpassant[file_of(st->epSquare)]; st->epSquare = SQ_NONE; } // Update castling rights if needed if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to])) { k ^= Zobrist::castling[st->castlingRights]; st->castlingRights &= ~(castlingRightsMask[from] | castlingRightsMask[to]); k ^= Zobrist::castling[st->castlingRights]; } // Move the piece. The tricky Chess960 castling is handled earlier if (type_of(m) != CASTLING) { if (Eval::useNNUE) { dp.piece[0] = pc; dp.from[0] = from; dp.to[0] = to; } move_piece(from, to); } // If the moving piece is a pawn do some special extra work if (type_of(pc) == PAWN) { // Set en passant square if the moved pawn can be captured if ( (int(to) ^ int(from)) == 16 && (pawn_attacks_bb(us, to - pawn_push(us)) & pieces(them, PAWN))) { st->epSquare = to - pawn_push(us); k ^= Zobrist::enpassant[file_of(st->epSquare)]; } else if (type_of(m) == PROMOTION) { Piece promotion = make_piece(us, promotion_type(m)); assert(relative_rank(us, to) == RANK_8); assert(type_of(promotion) >= KNIGHT && type_of(promotion) <= QUEEN); remove_piece(to); put_piece(promotion, to); if (Eval::useNNUE) { // Promoting pawn to SQ_NONE, promoted piece from SQ_NONE dp.to[0] = SQ_NONE; dp.piece[dp.dirty_num] = promotion; dp.from[dp.dirty_num] = SQ_NONE; dp.to[dp.dirty_num] = to; dp.dirty_num++; } // Update hash keys k ^= Zobrist::psq[pc][to] ^ Zobrist::psq[promotion][to]; st->pawnKey ^= Zobrist::psq[pc][to]; st->materialKey ^= Zobrist::psq[promotion][pieceCount[promotion]-1] ^ Zobrist::psq[pc][pieceCount[pc]]; // Update material st->nonPawnMaterial[us] += PieceValue[MG][promotion]; } // Update pawn hash key st->pawnKey ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; // Reset rule 50 draw counter st->rule50 = 0; } // Set capture piece st->capturedPiece = captured; // Update the key with the final value st->key = k; // Calculate checkers bitboard (if move gives check) st->checkersBB = givesCheck ? attackers_to(square(them)) & pieces(us) : 0; sideToMove = ~sideToMove; // Update king attacks used for fast check detection set_check_info(st); // Calculate the repetition info. It is the ply distance from the previous // occurrence of the same position, negative in the 3-fold case, or zero // if the position was not repeated. st->repetition = 0; int end = std::min(st->rule50, st->pliesFromNull); if (end >= 4) { StateInfo* stp = st->previous->previous; for (int i = 4; i <= end; i += 2) { stp = stp->previous->previous; if (stp->key == st->key) { st->repetition = stp->repetition ? -i : i; break; } } } assert(pos_is_ok()); } /// Position::undo_move() unmakes a move. When it returns, the position should /// be restored to exactly the same state as before the move was made. void Position::undo_move(Move m) { assert(is_ok(m)); sideToMove = ~sideToMove; Color us = sideToMove; Square from = from_sq(m); Square to = to_sq(m); Piece pc = piece_on(to); assert(empty(from) || type_of(m) == CASTLING); assert(type_of(st->capturedPiece) != KING); if (type_of(m) == PROMOTION) { assert(relative_rank(us, to) == RANK_8); assert(type_of(pc) == promotion_type(m)); assert(type_of(pc) >= KNIGHT && type_of(pc) <= QUEEN); remove_piece(to); pc = make_piece(us, PAWN); put_piece(pc, to); } if (type_of(m) == CASTLING) { Square rfrom, rto; do_castling(us, from, to, rfrom, rto); } else { move_piece(to, from); // Put the piece back at the source square if (st->capturedPiece) { Square capsq = to; if (type_of(m) == EN_PASSANT) { capsq -= pawn_push(us); assert(type_of(pc) == PAWN); assert(to == st->previous->epSquare); assert(relative_rank(us, to) == RANK_6); assert(piece_on(capsq) == NO_PIECE); assert(st->capturedPiece == make_piece(~us, PAWN)); } put_piece(st->capturedPiece, capsq); // Restore the captured piece } } // Finally point our state pointer back to the previous state st = st->previous; --gamePly; assert(pos_is_ok()); } /// Position::do_castling() is a helper used to do/undo a castling move. This /// is a bit tricky in Chess960 where from/to squares can overlap. template void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) { bool kingSide = to > from; rfrom = to; // Castling is encoded as "king captures friendly rook" rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); if (Do && Eval::useNNUE) { auto& dp = st->dirtyPiece; dp.piece[0] = make_piece(us, KING); dp.from[0] = from; dp.to[0] = to; dp.piece[1] = make_piece(us, ROOK); dp.from[1] = rfrom; dp.to[1] = rto; dp.dirty_num = 2; } // Remove both pieces first since squares could overlap in Chess960 remove_piece(Do ? from : to); remove_piece(Do ? rfrom : rto); board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do this for us put_piece(make_piece(us, KING), Do ? to : from); put_piece(make_piece(us, ROOK), Do ? rto : rfrom); } /// Position::do_null_move() is used to do a "null move": it flips /// the side to move without executing any move on the board. void Position::do_null_move(StateInfo& newSt) { assert(!checkers()); assert(&newSt != st); std::memcpy(&newSt, st, offsetof(StateInfo, accumulator)); newSt.previous = st; st = &newSt; st->dirtyPiece.dirty_num = 0; st->dirtyPiece.piece[0] = NO_PIECE; // Avoid checks in UpdateAccumulator() st->accumulator.computed[WHITE] = false; st->accumulator.computed[BLACK] = false; if (st->epSquare != SQ_NONE) { st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; st->epSquare = SQ_NONE; } st->key ^= Zobrist::side; ++st->rule50; prefetch(TT.first_entry(key())); st->pliesFromNull = 0; sideToMove = ~sideToMove; set_check_info(st); st->repetition = 0; assert(pos_is_ok()); } /// Position::undo_null_move() must be used to undo a "null move" void Position::undo_null_move() { assert(!checkers()); st = st->previous; sideToMove = ~sideToMove; } /// Position::key_after() computes the new hash key after the given move. Needed /// for speculative prefetch. It doesn't recognize special moves like castling, /// en passant and promotions. Key Position::key_after(Move m) const { Square from = from_sq(m); Square to = to_sq(m); Piece pc = piece_on(from); Piece captured = piece_on(to); Key k = st->key ^ Zobrist::side; if (captured) k ^= Zobrist::psq[captured][to]; return k ^ Zobrist::psq[pc][to] ^ Zobrist::psq[pc][from]; } /// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the /// SEE value of move is greater or equal to the given threshold. We'll use an /// algorithm similar to alpha-beta pruning with a null window. bool Position::see_ge(Move m, Value threshold) const { assert(is_ok(m)); // Only deal with normal moves, assume others pass a simple SEE if (type_of(m) != NORMAL) return VALUE_ZERO >= threshold; Square from = from_sq(m), to = to_sq(m); int swap = PieceValue[MG][piece_on(to)] - threshold; if (swap < 0) return false; swap = PieceValue[MG][piece_on(from)] - swap; if (swap <= 0) return true; assert(color_of(piece_on(from)) == sideToMove); Bitboard occupied = pieces() ^ from ^ to; Color stm = sideToMove; Bitboard attackers = attackers_to(to, occupied); Bitboard stmAttackers, bb; int res = 1; while (true) { stm = ~stm; attackers &= occupied; // If stm has no more attackers then give up: stm loses if (!(stmAttackers = attackers & pieces(stm))) break; // Don't allow pinned pieces to attack as long as there are // pinners on their original square. if (pinners(~stm) & occupied) stmAttackers &= ~blockers_for_king(stm); if (!stmAttackers) break; res ^= 1; // Locate and remove the next least valuable attacker, and add to // the bitboard 'attackers' any X-ray attackers behind it. if ((bb = stmAttackers & pieces(PAWN))) { if ((swap = PawnValueMg - swap) < res) break; occupied ^= least_significant_square_bb(bb); attackers |= attacks_bb(to, occupied) & pieces(BISHOP, QUEEN); } else if ((bb = stmAttackers & pieces(KNIGHT))) { if ((swap = KnightValueMg - swap) < res) break; occupied ^= least_significant_square_bb(bb); } else if ((bb = stmAttackers & pieces(BISHOP))) { if ((swap = BishopValueMg - swap) < res) break; occupied ^= least_significant_square_bb(bb); attackers |= attacks_bb(to, occupied) & pieces(BISHOP, QUEEN); } else if ((bb = stmAttackers & pieces(ROOK))) { if ((swap = RookValueMg - swap) < res) break; occupied ^= least_significant_square_bb(bb); attackers |= attacks_bb(to, occupied) & pieces(ROOK, QUEEN); } else if ((bb = stmAttackers & pieces(QUEEN))) { if ((swap = QueenValueMg - swap) < res) break; occupied ^= least_significant_square_bb(bb); attackers |= (attacks_bb(to, occupied) & pieces(BISHOP, QUEEN)) | (attacks_bb(to, occupied) & pieces(ROOK , QUEEN)); } else // KING // If we "capture" with the king but opponent still has attackers, // reverse the result. return (attackers & ~pieces(stm)) ? res ^ 1 : res; } return bool(res); } /// Position::is_draw() tests whether the position is drawn by 50-move rule /// or by repetition. It does not detect stalemates. bool Position::is_draw(int ply) const { if (st->rule50 > 99 && (!checkers() || MoveList(*this).size())) return true; // Return a draw score if a position repeats once earlier but strictly // after the root, or repeats twice before or at the root. return st->repetition && st->repetition < ply; } // Position::has_repeated() tests whether there has been at least one repetition // of positions since the last capture or pawn move. bool Position::has_repeated() const { StateInfo* stc = st; int end = std::min(st->rule50, st->pliesFromNull); while (end-- >= 4) { if (stc->repetition) return true; stc = stc->previous; } return false; } /// Position::has_game_cycle() tests if the position has a move which draws by repetition, /// or an earlier position has a move that directly reaches the current position. bool Position::has_game_cycle(int ply) const { int j; int end = std::min(st->rule50, st->pliesFromNull); if (end < 3) return false; Key originalKey = st->key; StateInfo* stp = st->previous; for (int i = 3; i <= end; i += 2) { stp = stp->previous->previous; Key moveKey = originalKey ^ stp->key; if ( (j = H1(moveKey), cuckoo[j] == moveKey) || (j = H2(moveKey), cuckoo[j] == moveKey)) { Move move = cuckooMove[j]; Square s1 = from_sq(move); Square s2 = to_sq(move); if (!((between_bb(s1, s2) ^ s2) & pieces())) { if (ply > i) return true; // For nodes before or at the root, check that the move is a // repetition rather than a move to the current position. // In the cuckoo table, both moves Rc1c5 and Rc5c1 are stored in // the same location, so we have to select which square to check. if (color_of(piece_on(empty(s1) ? s2 : s1)) != side_to_move()) continue; // For repetitions before or at the root, require one more if (stp->repetition) return true; } } } return false; } /// Position::flip() flips position with the white and black sides reversed. This /// is only useful for debugging e.g. for finding evaluation symmetry bugs. void Position::flip() { string f, token; std::stringstream ss(fen()); for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement { std::getline(ss, token, r > RANK_1 ? '/' : ' '); f.insert(0, token + (f.empty() ? " " : "/")); } ss >> token; // Active color f += (token == "w" ? "B " : "W "); // Will be lowercased later ss >> token; // Castling availability f += token + " "; std::transform(f.begin(), f.end(), f.begin(), [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); }); ss >> token; // En passant square f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3")); std::getline(ss, token); // Half and full moves f += token; set(f, is_chess960(), st, this_thread()); assert(pos_is_ok()); } /// Position::pos_is_ok() performs some consistency checks for the /// position object and raises an asserts if something wrong is detected. /// This is meant to be helpful when debugging. bool Position::pos_is_ok() const { constexpr bool Fast = true; // Quick (default) or full check? if ( (sideToMove != WHITE && sideToMove != BLACK) || piece_on(square(WHITE)) != W_KING || piece_on(square(BLACK)) != B_KING || ( ep_square() != SQ_NONE && relative_rank(sideToMove, ep_square()) != RANK_6)) assert(0 && "pos_is_ok: Default"); if (Fast) return true; if ( pieceCount[W_KING] != 1 || pieceCount[B_KING] != 1 || attackers_to(square(~sideToMove)) & pieces(sideToMove)) assert(0 && "pos_is_ok: Kings"); if ( (pieces(PAWN) & (Rank1BB | Rank8BB)) || pieceCount[W_PAWN] > 8 || pieceCount[B_PAWN] > 8) assert(0 && "pos_is_ok: Pawns"); if ( (pieces(WHITE) & pieces(BLACK)) || (pieces(WHITE) | pieces(BLACK)) != pieces() || popcount(pieces(WHITE)) > 16 || popcount(pieces(BLACK)) > 16) assert(0 && "pos_is_ok: Bitboards"); for (PieceType p1 = PAWN; p1 <= KING; ++p1) for (PieceType p2 = PAWN; p2 <= KING; ++p2) if (p1 != p2 && (pieces(p1) & pieces(p2))) assert(0 && "pos_is_ok: Bitboards"); StateInfo si = *st; ASSERT_ALIGNED(&si, Eval::NNUE::CacheLineSize); set_state(&si); if (std::memcmp(&si, st, sizeof(StateInfo))) assert(0 && "pos_is_ok: State"); for (Piece pc : Pieces) if ( pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc))) || pieceCount[pc] != std::count(board, board + SQUARE_NB, pc)) assert(0 && "pos_is_ok: Pieces"); for (Color c : { WHITE, BLACK }) for (CastlingRights cr : {c & KING_SIDE, c & QUEEN_SIDE}) { if (!can_castle(cr)) continue; if ( piece_on(castlingRookSquare[cr]) != make_piece(c, ROOK) || castlingRightsMask[castlingRookSquare[cr]] != cr || (castlingRightsMask[square(c)] & cr) != cr) assert(0 && "pos_is_ok: Castling"); } return true; } } // namespace Stockfish