/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "bitboard.h" #include "bitcount.h" #include "endgame.h" #include "movegen.h" using std::string; namespace { // Table used to drive the king towards the edge of the board // in KX vs K and KQ vs KR endgames. const int PushToEdges[SQUARE_NB] = { 100, 90, 80, 70, 70, 80, 90, 100, 90, 70, 60, 50, 50, 60, 70, 90, 80, 60, 40, 30, 30, 40, 60, 80, 70, 50, 30, 20, 20, 30, 50, 70, 70, 50, 30, 20, 20, 30, 50, 70, 80, 60, 40, 30, 30, 40, 60, 80, 90, 70, 60, 50, 50, 60, 70, 90, 100, 90, 80, 70, 70, 80, 90, 100, }; // Table used to drive the king towards a corner square of the // right color in KBN vs K endgames. const int PushToCorners[SQUARE_NB] = { 200, 190, 180, 170, 160, 150, 140, 130, 190, 180, 170, 160, 150, 140, 130, 140, 180, 170, 155, 140, 140, 125, 140, 150, 170, 160, 140, 120, 110, 140, 150, 160, 160, 150, 140, 110, 120, 140, 160, 170, 150, 140, 125, 140, 140, 155, 170, 180, 140, 130, 140, 150, 160, 170, 180, 190, 130, 140, 150, 160, 170, 180, 190, 200 }; // Tables used to drive a piece towards or away from another piece const int PushClose[8] = { 0, 0, 100, 80, 60, 40, 20, 10 }; const int PushAway [8] = { 0, 5, 20, 40, 60, 80, 90, 100 }; #ifndef NDEBUG bool verify_material(const Position& pos, Color c, Value npm, int num_pawns) { return pos.non_pawn_material(c) == npm && pos.count(c) == num_pawns; } #endif // Get the material key of a Position out of the given endgame key code // like "KBPKN". The trick here is to first forge an ad-hoc fen string // and then let a Position object to do the work for us. Note that the // fen string could correspond to an illegal position. Key key(const string& code, Color c) { assert(code.length() > 0 && code.length() < 8); assert(code[0] == 'K'); string sides[] = { code.substr(code.find('K', 1)), // Weaker code.substr(0, code.find('K', 1)) }; // Stronger std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower); string fen = sides[0] + char('0' + int(8 - code.length())) + sides[1] + "/8/8/8/8/8/8/8 w - - 0 10"; return Position(fen, false, NULL).material_key(); } template void delete_endgame(const typename M::value_type& p) { delete p.second; } } // namespace /// Endgames members definitions Endgames::Endgames() { add("KPK"); add("KNNK"); add("KBNK"); add("KRKP"); add("KRKB"); add("KRKN"); add("KQKP"); add("KQKR"); add("KBBKN"); add("KNPK"); add("KNPKB"); add("KRPKR"); add("KRPKB"); add("KBPKB"); add("KBPKN"); add("KBPPKB"); add("KRPPKRP"); } Endgames::~Endgames() { for_each(m1.begin(), m1.end(), delete_endgame); for_each(m2.begin(), m2.end(), delete_endgame); } template void Endgames::add(const string& code) { map((Endgame*)0)[key(code, WHITE)] = new Endgame(WHITE); map((Endgame*)0)[key(code, BLACK)] = new Endgame(BLACK); } /// Mate with KX vs K. This function is used to evaluate positions with /// King and plenty of material vs a lone king. It simply gives the /// attacking side a bonus for driving the defending king towards the edge /// of the board, and for keeping the distance between the two kings small. template<> Value Endgame::operator()(const Position& pos) const { assert(verify_material(pos, weakerSide, VALUE_ZERO, 0)); assert(!pos.checkers()); // Eval is never called when in check // Stalemate detection with lone king if (pos.side_to_move() == weakerSide && !MoveList(pos).size()) return VALUE_DRAW; Square winnerKSq = pos.king_square(strongerSide); Square loserKSq = pos.king_square(weakerSide); Value result = pos.non_pawn_material(strongerSide) + pos.count(strongerSide) * PawnValueEg + PushToEdges[loserKSq] + PushClose[square_distance(winnerKSq, loserKSq)]; if ( pos.count(strongerSide) || pos.count(strongerSide) || pos.bishop_pair(strongerSide)) result += VALUE_KNOWN_WIN; return strongerSide == pos.side_to_move() ? result : -result; } /// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the /// defending king towards a corner square of the right color. template<> Value Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, KnightValueMg + BishopValueMg, 0)); assert(verify_material(pos, weakerSide, VALUE_ZERO, 0)); Square winnerKSq = pos.king_square(strongerSide); Square loserKSq = pos.king_square(weakerSide); Square bishopSq = pos.list(strongerSide)[0]; // kbnk_mate_table() tries to drive toward corners A1 or H8, // if we have a bishop that cannot reach the above squares we // mirror the kings so to drive enemy toward corners A8 or H1. if (opposite_colors(bishopSq, SQ_A1)) { winnerKSq = mirror(winnerKSq); loserKSq = mirror(loserKSq); } Value result = VALUE_KNOWN_WIN + PushClose[square_distance(winnerKSq, loserKSq)] + PushToCorners[loserKSq]; return strongerSide == pos.side_to_move() ? result : -result; } /// KP vs K. This endgame is evaluated with the help of a bitbase. template<> Value Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, VALUE_ZERO, 1)); assert(verify_material(pos, weakerSide, VALUE_ZERO, 0)); Square wksq = pos.king_square(strongerSide); Square bksq = pos.king_square(weakerSide); Square psq = pos.list(strongerSide)[0]; Color us = pos.side_to_move(); if (strongerSide == BLACK) { wksq = ~wksq; bksq = ~bksq; psq = ~psq; us = ~us; } if (file_of(psq) >= FILE_E) { wksq = mirror(wksq); bksq = mirror(bksq); psq = mirror(psq); } if (!Bitbases::probe_kpk(wksq, psq, bksq, us)) return VALUE_DRAW; Value result = VALUE_KNOWN_WIN + PawnValueEg + Value(rank_of(psq)); return strongerSide == pos.side_to_move() ? result : -result; } /// KR vs KP. This is a somewhat tricky endgame to evaluate precisely without /// a bitbase. The function below returns drawish scores when the pawn is /// far advanced with support of the king, while the attacking king is far /// away. template<> Value Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, RookValueMg, 0)); assert(verify_material(pos, weakerSide, VALUE_ZERO, 1)); Square wksq = pos.king_square(strongerSide); Square bksq = pos.king_square(weakerSide); Square rsq = pos.list(strongerSide)[0]; Square psq = pos.list(weakerSide)[0]; if (strongerSide == BLACK) { wksq = ~wksq; bksq = ~bksq; rsq = ~rsq; psq = ~psq; } Square queeningSq = file_of(psq) | RANK_1; Value result; // If the stronger side's king is in front of the pawn, it's a win if (wksq < psq && file_of(wksq) == file_of(psq)) result = RookValueEg - Value(square_distance(wksq, psq)); // If the weaker side's king is too far from the pawn and the rook, // it's a win. else if ( square_distance(bksq, psq) >= 3 + (pos.side_to_move() == weakerSide) && square_distance(bksq, rsq) >= 3) result = RookValueEg - Value(square_distance(wksq, psq)); // If the pawn is far advanced and supported by the defending king, // the position is drawish else if ( rank_of(bksq) <= RANK_3 && square_distance(bksq, psq) == 1 && rank_of(wksq) >= RANK_4 && square_distance(wksq, psq) > 2 + (pos.side_to_move() == strongerSide)) result = Value(80 - square_distance(wksq, psq) * 8); else result = Value(200) - Value(square_distance(wksq, psq + DELTA_S) * 8) + Value(square_distance(bksq, psq + DELTA_S) * 8) + Value(square_distance(psq, queeningSq) * 8); return strongerSide == pos.side_to_move() ? result : -result; } /// KR vs KB. This is very simple, and always returns drawish scores. The /// score is slightly bigger when the defending king is close to the edge. template<> Value Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, RookValueMg, 0)); assert(verify_material(pos, weakerSide, BishopValueMg, 0)); Value result = Value(PushToEdges[pos.king_square(weakerSide)]); return strongerSide == pos.side_to_move() ? result : -result; } /// KR vs KN. The attacking side has slightly better winning chances than /// in KR vs KB, particularly if the king and the knight are far apart. template<> Value Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, RookValueMg, 0)); assert(verify_material(pos, weakerSide, KnightValueMg, 0)); Square bksq = pos.king_square(weakerSide); Square bnsq = pos.list(weakerSide)[0]; Value result = Value(PushToEdges[bksq] + PushAway[square_distance(bksq, bnsq)]); return strongerSide == pos.side_to_move() ? result : -result; } /// KQ vs KP. In general, a win for the stronger side, however, there are a few /// important exceptions. Pawn on 7th rank, A,C,F or H file, with king next can /// be a draw, so we scale down to distance between kings only. template<> Value Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, QueenValueMg, 0)); assert(verify_material(pos, weakerSide, VALUE_ZERO, 1)); Square winnerKSq = pos.king_square(strongerSide); Square loserKSq = pos.king_square(weakerSide); Square pawnSq = pos.list(weakerSide)[0]; Value result = Value(PushClose[square_distance(winnerKSq, loserKSq)]); if ( relative_rank(weakerSide, pawnSq) != RANK_7 || square_distance(loserKSq, pawnSq) != 1 || !((FileABB | FileCBB | FileFBB | FileHBB) & pawnSq)) result += QueenValueEg - PawnValueEg; return strongerSide == pos.side_to_move() ? result : -result; } /// KQ vs KR. This is almost identical to KX vs K: We give the attacking /// king a bonus for having the kings close together, and for forcing the /// defending king towards the edge. If we also take care to avoid null move /// for the defending side in the search, this is usually sufficient to be /// able to win KQ vs KR. template<> Value Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, QueenValueMg, 0)); assert(verify_material(pos, weakerSide, RookValueMg, 0)); Square winnerKSq = pos.king_square(strongerSide); Square loserKSq = pos.king_square(weakerSide); Value result = QueenValueEg - RookValueEg + PushToEdges[loserKSq] + PushClose[square_distance(winnerKSq, loserKSq)]; return strongerSide == pos.side_to_move() ? result : -result; } /// KBB vs KN. This is almost always a win. We try to push enemy king to a corner /// and away from his knight. For a reference of this difficult endgame see: /// en.wikipedia.org/wiki/Chess_endgame#Effect_of_tablebases_on_endgame_theory template<> Value Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, 2 * BishopValueMg, 0)); assert(verify_material(pos, weakerSide, KnightValueMg, 0)); Square winnerKSq = pos.king_square(strongerSide); Square loserKSq = pos.king_square(weakerSide); Square knightSq = pos.list(weakerSide)[0]; Value result = VALUE_KNOWN_WIN + PushToCorners[loserKSq] + PushClose[square_distance(winnerKSq, loserKSq)] + PushAway[square_distance(loserKSq, knightSq)]; return strongerSide == pos.side_to_move() ? result : -result; } /// Some cases of trivial draws template<> Value Endgame::operator()(const Position&) const { return VALUE_DRAW; } template<> Value Endgame::operator()(const Position&) const { return VALUE_DRAW; } /// K, bishop and one or more pawns vs K. It checks for draws with rook pawns and /// a bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_DRAW /// is returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling /// will be used. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == BishopValueMg); assert(pos.count(strongerSide) >= 1); // No assertions about the material of weakerSide, because we want draws to // be detected even when the weaker side has some pawns. Bitboard pawns = pos.pieces(strongerSide, PAWN); File pawnFile = file_of(pos.list(strongerSide)[0]); // All pawns are on a single rook file ? if ( (pawnFile == FILE_A || pawnFile == FILE_H) && !(pawns & ~file_bb(pawnFile))) { Square bishopSq = pos.list(strongerSide)[0]; Square queeningSq = relative_square(strongerSide, pawnFile | RANK_8); Square kingSq = pos.king_square(weakerSide); if ( opposite_colors(queeningSq, bishopSq) && abs(file_of(kingSq) - pawnFile) <= 1) { // The bishop has the wrong color, and the defending king is on the // file of the pawn(s) or the adjacent file. Find the rank of the // frontmost pawn. Square pawnSq = frontmost_sq(strongerSide, pawns); // If the defending king has distance 1 to the promotion square or // is placed somewhere in front of the pawn, it's a draw. if ( square_distance(kingSq, queeningSq) <= 1 || relative_rank(weakerSide, kingSq) <= relative_rank(weakerSide, pawnSq)) return SCALE_FACTOR_DRAW; } } // All pawns on same B or G file? Then potential draw if ( (pawnFile == FILE_B || pawnFile == FILE_G) && !(pos.pieces(PAWN) & ~file_bb(pawnFile)) && pos.non_pawn_material(weakerSide) == 0 && pos.count(weakerSide) >= 1) { // Get weakerSide pawn that is closest to home rank Square weakerPawnSq = backmost_sq(weakerSide, pos.pieces(weakerSide, PAWN)); Square strongerKingSq = pos.king_square(strongerSide); Square weakerKingSq = pos.king_square(weakerSide); Square bishopSq = pos.list(strongerSide)[0]; // Potential for a draw if our pawn is blocked on the 7th rank // the bishop cannot attack it or they only have one pawn left if ( relative_rank(strongerSide, weakerPawnSq) == RANK_7 && (pos.pieces(strongerSide, PAWN) & (weakerPawnSq + pawn_push(weakerSide))) && (opposite_colors(bishopSq, weakerPawnSq) || pos.count(strongerSide) == 1)) { int strongerKingDist = square_distance(weakerPawnSq, strongerKingSq); int weakerKingDist = square_distance(weakerPawnSq, weakerKingSq); // Draw if the weak king is on it's back two ranks, within 2 // squares of the blocking pawn and the strong king is not // closer. (I think this rule only fails in practically // unreachable positions such as 5k1K/6p1/6P1/8/8/3B4/8/8 w // and positions where qsearch will immediately correct the // problem such as 8/4k1p1/6P1/1K6/3B4/8/8/8 w) if ( relative_rank(strongerSide, weakerKingSq) >= RANK_7 && weakerKingDist <= 2 && weakerKingDist <= strongerKingDist) return SCALE_FACTOR_DRAW; } } return SCALE_FACTOR_NONE; } /// K and queen vs K, rook and one or more pawns. It tests for fortress draws with /// a rook on the third rank defended by a pawn. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, QueenValueMg, 0)); assert(pos.count(weakerSide) == 1); assert(pos.count(weakerSide) >= 1); Square kingSq = pos.king_square(weakerSide); Square rsq = pos.list(weakerSide)[0]; if ( relative_rank(weakerSide, kingSq) <= RANK_2 && relative_rank(weakerSide, pos.king_square(strongerSide)) >= RANK_4 && (pos.pieces(weakerSide, ROOK) & rank_bb(relative_rank(weakerSide, RANK_3))) && (pos.pieces(weakerSide, PAWN) & rank_bb(relative_rank(weakerSide, RANK_2))) && (pos.attacks_from(kingSq) & pos.pieces(weakerSide, PAWN)) && (pos.attacks_from(rsq, strongerSide) & pos.pieces(weakerSide, PAWN))) return SCALE_FACTOR_DRAW; return SCALE_FACTOR_NONE; } /// K, rook and one pawn vs K and a rook. This function knows a handful of the /// most important classes of drawn positions, but is far from perfect. It would /// probably be a good idea to add more knowledge in the future. /// /// It would also be nice to rewrite the actual code for this function, /// which is mostly copied from Glaurung 1.x, and not very pretty. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, RookValueMg, 1)); assert(verify_material(pos, weakerSide, RookValueMg, 0)); Square wksq = pos.king_square(strongerSide); Square bksq = pos.king_square(weakerSide); Square wrsq = pos.list(strongerSide)[0]; Square wpsq = pos.list(strongerSide)[0]; Square brsq = pos.list(weakerSide)[0]; // Orient the board in such a way that the stronger side is white, and the // pawn is on the left half of the board. if (strongerSide == BLACK) { wksq = ~wksq; wrsq = ~wrsq; wpsq = ~wpsq; bksq = ~bksq; brsq = ~brsq; } if (file_of(wpsq) > FILE_D) { wksq = mirror(wksq); wrsq = mirror(wrsq); wpsq = mirror(wpsq); bksq = mirror(bksq); brsq = mirror(brsq); } File f = file_of(wpsq); Rank r = rank_of(wpsq); Square queeningSq = f | RANK_8; int tempo = (pos.side_to_move() == strongerSide); // If the pawn is not too far advanced and the defending king defends the // queening square, use the third-rank defence. if ( r <= RANK_5 && square_distance(bksq, queeningSq) <= 1 && wksq <= SQ_H5 && (rank_of(brsq) == RANK_6 || (r <= RANK_3 && rank_of(wrsq) != RANK_6))) return SCALE_FACTOR_DRAW; // The defending side saves a draw by checking from behind in case the pawn // has advanced to the 6th rank with the king behind. if ( r == RANK_6 && square_distance(bksq, queeningSq) <= 1 && rank_of(wksq) + tempo <= RANK_6 && (rank_of(brsq) == RANK_1 || (!tempo && abs(file_of(brsq) - f) >= 3))) return SCALE_FACTOR_DRAW; if ( r >= RANK_6 && bksq == queeningSq && rank_of(brsq) == RANK_1 && (!tempo || square_distance(wksq, wpsq) >= 2)) return SCALE_FACTOR_DRAW; // White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7 // and the black rook is behind the pawn. if ( wpsq == SQ_A7 && wrsq == SQ_A8 && (bksq == SQ_H7 || bksq == SQ_G7) && file_of(brsq) == FILE_A && (rank_of(brsq) <= RANK_3 || file_of(wksq) >= FILE_D || rank_of(wksq) <= RANK_5)) return SCALE_FACTOR_DRAW; // If the defending king blocks the pawn and the attacking king is too far // away, it's a draw. if ( r <= RANK_5 && bksq == wpsq + DELTA_N && square_distance(wksq, wpsq) - tempo >= 2 && square_distance(wksq, brsq) - tempo >= 2) return SCALE_FACTOR_DRAW; // Pawn on the 7th rank supported by the rook from behind usually wins if the // attacking king is closer to the queening square than the defending king, // and the defending king cannot gain tempi by threatening the attacking rook. if ( r == RANK_7 && f != FILE_A && file_of(wrsq) == f && wrsq != queeningSq && (square_distance(wksq, queeningSq) < square_distance(bksq, queeningSq) - 2 + tempo) && (square_distance(wksq, queeningSq) < square_distance(bksq, wrsq) + tempo)) return ScaleFactor(SCALE_FACTOR_MAX - 2 * square_distance(wksq, queeningSq)); // Similar to the above, but with the pawn further back if ( f != FILE_A && file_of(wrsq) == f && wrsq < wpsq && (square_distance(wksq, queeningSq) < square_distance(bksq, queeningSq) - 2 + tempo) && (square_distance(wksq, wpsq + DELTA_N) < square_distance(bksq, wpsq + DELTA_N) - 2 + tempo) && ( square_distance(bksq, wrsq) + tempo >= 3 || ( square_distance(wksq, queeningSq) < square_distance(bksq, wrsq) + tempo && (square_distance(wksq, wpsq + DELTA_N) < square_distance(bksq, wrsq) + tempo)))) return ScaleFactor( SCALE_FACTOR_MAX - 8 * square_distance(wpsq, queeningSq) - 2 * square_distance(wksq, queeningSq)); // If the pawn is not far advanced, and the defending king is somewhere in // the pawn's path, it's probably a draw. if (r <= RANK_4 && bksq > wpsq) { if (file_of(bksq) == file_of(wpsq)) return ScaleFactor(10); if ( abs(file_of(bksq) - file_of(wpsq)) == 1 && square_distance(wksq, bksq) > 2) return ScaleFactor(24 - 2 * square_distance(wksq, bksq)); } return SCALE_FACTOR_NONE; } template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, RookValueMg, 1)); assert(verify_material(pos, weakerSide, BishopValueMg, 0)); // Test for a rook pawn if (pos.pieces(PAWN) & (FileABB | FileHBB)) { Square ksq = pos.king_square(weakerSide); Square bsq = pos.list(weakerSide)[0]; Square psq = pos.list(strongerSide)[0]; Rank rk = relative_rank(strongerSide, psq); Square push = pawn_push(strongerSide); // If the pawn is on the 5th rank and the pawn (currently) is on // the same color square as the bishop then there is a chance of // a fortress. Depending on the king position give a moderate // reduction or a stronger one if the defending king is near the // corner but not trapped there. if (rk == RANK_5 && !opposite_colors(bsq, psq)) { int d = square_distance(psq + 3 * push, ksq); if (d <= 2 && !(d == 0 && ksq == pos.king_square(strongerSide) + 2 * push)) return ScaleFactor(24); else return ScaleFactor(48); } // When the pawn has moved to the 6th rank we can be fairly sure // it's drawn if the bishop attacks the square in front of the // pawn from a reasonable distance and the defending king is near // the corner if ( rk == RANK_6 && square_distance(psq + 2 * push, ksq) <= 1 && (PseudoAttacks[BISHOP][bsq] & (psq + push)) && file_distance(bsq, psq) >= 2) return ScaleFactor(8); } return SCALE_FACTOR_NONE; } /// K, rook and two pawns vs K, rook and one pawn. There is only a single /// pattern: If the stronger side has no passed pawns and the defending king /// is actively placed, the position is drawish. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, RookValueMg, 2)); assert(verify_material(pos, weakerSide, RookValueMg, 1)); Square wpsq1 = pos.list(strongerSide)[0]; Square wpsq2 = pos.list(strongerSide)[1]; Square bksq = pos.king_square(weakerSide); // Does the stronger side have a passed pawn? if (pos.pawn_passed(strongerSide, wpsq1) || pos.pawn_passed(strongerSide, wpsq2)) return SCALE_FACTOR_NONE; Rank r = std::max(relative_rank(strongerSide, wpsq1), relative_rank(strongerSide, wpsq2)); if ( file_distance(bksq, wpsq1) <= 1 && file_distance(bksq, wpsq2) <= 1 && relative_rank(strongerSide, bksq) > r) { switch (r) { case RANK_2: return ScaleFactor(10); case RANK_3: return ScaleFactor(10); case RANK_4: return ScaleFactor(15); case RANK_5: return ScaleFactor(20); case RANK_6: return ScaleFactor(40); default: assert(false); } } return SCALE_FACTOR_NONE; } /// K and two or more pawns vs K. There is just a single rule here: If all pawns /// are on the same rook file and are blocked by the defending king, it's a draw. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO); assert(pos.count(strongerSide) >= 2); assert(verify_material(pos, weakerSide, VALUE_ZERO, 0)); Square ksq = pos.king_square(weakerSide); Bitboard pawns = pos.pieces(strongerSide, PAWN); // Are all pawns on the 'a' file? if (!(pawns & ~FileABB)) { // Does the defending king block the pawns? if ( square_distance(ksq, relative_square(strongerSide, SQ_A8)) <= 1 || ( file_of(ksq) == FILE_A && !(in_front_bb(strongerSide, rank_of(ksq)) & pawns))) return SCALE_FACTOR_DRAW; } // Are all pawns on the 'h' file? else if (!(pawns & ~FileHBB)) { // Does the defending king block the pawns? if ( square_distance(ksq, relative_square(strongerSide, SQ_H8)) <= 1 || ( file_of(ksq) == FILE_H && !(in_front_bb(strongerSide, rank_of(ksq)) & pawns))) return SCALE_FACTOR_DRAW; } return SCALE_FACTOR_NONE; } /// K, bishop and a pawn vs K and a bishop. There are two rules: If the defending /// king is somewhere along the path of the pawn, and the square of the king is /// not of the same color as the stronger side's bishop, it's a draw. If the two /// bishops have opposite color, it's almost always a draw. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, BishopValueMg, 1)); assert(verify_material(pos, weakerSide, BishopValueMg, 0)); Square pawnSq = pos.list(strongerSide)[0]; Square strongerBishopSq = pos.list(strongerSide)[0]; Square weakerBishopSq = pos.list(weakerSide)[0]; Square weakerKingSq = pos.king_square(weakerSide); // Case 1: Defending king blocks the pawn, and cannot be driven away if ( file_of(weakerKingSq) == file_of(pawnSq) && relative_rank(strongerSide, pawnSq) < relative_rank(strongerSide, weakerKingSq) && ( opposite_colors(weakerKingSq, strongerBishopSq) || relative_rank(strongerSide, weakerKingSq) <= RANK_6)) return SCALE_FACTOR_DRAW; // Case 2: Opposite colored bishops if (opposite_colors(strongerBishopSq, weakerBishopSq)) { // We assume that the position is drawn in the following three situations: // // a. The pawn is on rank 5 or further back. // b. The defending king is somewhere in the pawn's path. // c. The defending bishop attacks some square along the pawn's path, // and is at least three squares away from the pawn. // // These rules are probably not perfect, but in practice they work // reasonably well. if (relative_rank(strongerSide, pawnSq) <= RANK_5) return SCALE_FACTOR_DRAW; else { Bitboard path = forward_bb(strongerSide, pawnSq); if (path & pos.pieces(weakerSide, KING)) return SCALE_FACTOR_DRAW; if ( (pos.attacks_from(weakerBishopSq) & path) && square_distance(weakerBishopSq, pawnSq) >= 3) return SCALE_FACTOR_DRAW; } } return SCALE_FACTOR_NONE; } /// K, bishop and two pawns vs K and bishop. It detects a few basic draws with /// opposite-colored bishops. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, BishopValueMg, 2)); assert(verify_material(pos, weakerSide, BishopValueMg, 0)); Square wbsq = pos.list(strongerSide)[0]; Square bbsq = pos.list(weakerSide)[0]; if (!opposite_colors(wbsq, bbsq)) return SCALE_FACTOR_NONE; Square ksq = pos.king_square(weakerSide); Square psq1 = pos.list(strongerSide)[0]; Square psq2 = pos.list(strongerSide)[1]; Rank r1 = rank_of(psq1); Rank r2 = rank_of(psq2); Square blockSq1, blockSq2; if (relative_rank(strongerSide, psq1) > relative_rank(strongerSide, psq2)) { blockSq1 = psq1 + pawn_push(strongerSide); blockSq2 = file_of(psq2) | rank_of(psq1); } else { blockSq1 = psq2 + pawn_push(strongerSide); blockSq2 = file_of(psq1) | rank_of(psq2); } switch (file_distance(psq1, psq2)) { case 0: // Both pawns are on the same file. Easy draw if defender firmly controls // some square in the frontmost pawn's path. if ( file_of(ksq) == file_of(blockSq1) && relative_rank(strongerSide, ksq) >= relative_rank(strongerSide, blockSq1) && opposite_colors(ksq, wbsq)) return SCALE_FACTOR_DRAW; else return SCALE_FACTOR_NONE; case 1: // Pawns on adjacent files. Draw if defender firmly controls the square // in front of the frontmost pawn's path, and the square diagonally behind // this square on the file of the other pawn. if ( ksq == blockSq1 && opposite_colors(ksq, wbsq) && ( bbsq == blockSq2 || (pos.attacks_from(blockSq2) & pos.pieces(weakerSide, BISHOP)) || abs(r1 - r2) >= 2)) return SCALE_FACTOR_DRAW; else if ( ksq == blockSq2 && opposite_colors(ksq, wbsq) && ( bbsq == blockSq1 || (pos.attacks_from(blockSq1) & pos.pieces(weakerSide, BISHOP)))) return SCALE_FACTOR_DRAW; else return SCALE_FACTOR_NONE; default: // The pawns are not on the same file or adjacent files. No scaling. return SCALE_FACTOR_NONE; } } /// K, bisop and a pawn vs K and knight. There is a single rule: If the defending /// king is somewhere along the path of the pawn, and the square of the king is /// not of the same color as the stronger side's bishop, it's a draw. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, BishopValueMg, 1)); assert(verify_material(pos, weakerSide, KnightValueMg, 0)); Square pawnSq = pos.list(strongerSide)[0]; Square strongerBishopSq = pos.list(strongerSide)[0]; Square weakerKingSq = pos.king_square(weakerSide); if ( file_of(weakerKingSq) == file_of(pawnSq) && relative_rank(strongerSide, pawnSq) < relative_rank(strongerSide, weakerKingSq) && ( opposite_colors(weakerKingSq, strongerBishopSq) || relative_rank(strongerSide, weakerKingSq) <= RANK_6)) return SCALE_FACTOR_DRAW; return SCALE_FACTOR_NONE; } /// K, knight and a pawn vs K. There is a single rule: If the pawn is a rook pawn /// on the 7th rank and the defending king prevents the pawn from advancing, the /// position is drawn. template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, KnightValueMg, 1)); assert(verify_material(pos, weakerSide, VALUE_ZERO, 0)); Square pawnSq = pos.list(strongerSide)[0]; Square weakerKingSq = pos.king_square(weakerSide); if ( pawnSq == relative_square(strongerSide, SQ_A7) && square_distance(weakerKingSq, relative_square(strongerSide, SQ_A8)) <= 1) return SCALE_FACTOR_DRAW; if ( pawnSq == relative_square(strongerSide, SQ_H7) && square_distance(weakerKingSq, relative_square(strongerSide, SQ_H8)) <= 1) return SCALE_FACTOR_DRAW; return SCALE_FACTOR_NONE; } /// K, knight and a pawn vs K and bishop. If knight can block bishop from taking /// pawn, it's a win. Otherwise, drawn. template<> ScaleFactor Endgame::operator()(const Position& pos) const { Square pawnSq = pos.list(strongerSide)[0]; Square bishopSq = pos.list(weakerSide)[0]; Square weakerKingSq = pos.king_square(weakerSide); // King needs to get close to promoting pawn to prevent knight from blocking. // Rules for this are very tricky, so just approximate. if (forward_bb(strongerSide, pawnSq) & pos.attacks_from(bishopSq)) return ScaleFactor(square_distance(weakerKingSq, pawnSq)); return SCALE_FACTOR_NONE; } /// K and a pawn vs K and a pawn. This is done by removing the weakest side's /// pawn and probing the KP vs K bitbase: If the weakest side has a draw without /// the pawn, she probably has at least a draw with the pawn as well. The exception /// is when the stronger side's pawn is far advanced and not on a rook file; in /// this case it is often possible to win (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1). template<> ScaleFactor Endgame::operator()(const Position& pos) const { assert(verify_material(pos, strongerSide, VALUE_ZERO, 1)); assert(verify_material(pos, weakerSide, VALUE_ZERO, 1)); Square wksq = pos.king_square(strongerSide); Square bksq = pos.king_square(weakerSide); Square psq = pos.list(strongerSide)[0]; Color us = pos.side_to_move(); if (strongerSide == BLACK) { wksq = ~wksq; bksq = ~bksq; psq = ~psq; us = ~us; } if (file_of(psq) >= FILE_E) { wksq = mirror(wksq); bksq = mirror(bksq); psq = mirror(psq); } // If the pawn has advanced to the fifth rank or further, and is not a // rook pawn, it's too dangerous to assume that it's at least a draw. if (rank_of(psq) >= RANK_5 && file_of(psq) != FILE_A) return SCALE_FACTOR_NONE; // Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw, // it's probably at least a draw even with the pawn. return Bitbases::probe_kpk(wksq, psq, bksq, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW; }