/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //// //// Includes //// #include #include #include #include #include #include #include #include "book.h" #include "evaluate.h" #include "history.h" #include "misc.h" #include "move.h" #include "movegen.h" #include "movepick.h" #include "lock.h" #include "search.h" #include "timeman.h" #include "thread.h" #include "tt.h" #include "ucioption.h" using std::cout; using std::endl; //// //// Local definitions //// namespace { // Types enum NodeType { NonPV, PV }; // Set to true to force running with one thread. // Used for debugging SMP code. const bool FakeSplit = false; // Fast lookup table of sliding pieces indexed by Piece const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 }; inline bool piece_is_slider(Piece p) { return Slidings[p]; } // ThreadsManager class is used to handle all the threads related stuff in search, // init, starting, parking and, the most important, launching a slave thread at a // split point are what this class does. All the access to shared thread data is // done through this class, so that we avoid using global variables instead. class ThreadsManager { /* As long as the single ThreadsManager object is defined as a global we don't need to explicitly initialize to zero its data members because variables with static storage duration are automatically set to zero before enter main() */ public: void init_threads(); void exit_threads(); int min_split_depth() const { return minimumSplitDepth; } int active_threads() const { return activeThreads; } void set_active_threads(int cnt) { activeThreads = cnt; } void read_uci_options(); bool available_thread_exists(int master) const; bool thread_is_available(int slave, int master) const; bool cutoff_at_splitpoint(int threadID) const; void wake_sleeping_thread(int threadID); void idle_loop(int threadID, SplitPoint* sp); template void split(Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue, Depth depth, Move threatMove, bool mateThreat, int moveCount, MovePicker* mp, bool pvNode); private: Depth minimumSplitDepth; int maxThreadsPerSplitPoint; bool useSleepingThreads; int activeThreads; volatile bool allThreadsShouldExit; Thread threads[MAX_THREADS]; Lock mpLock, sleepLock[MAX_THREADS]; WaitCondition sleepCond[MAX_THREADS]; }; // RootMove struct is used for moves at the root at the tree. For each root // move, we store two scores, a node count, and a PV (really a refutation // in the case of moves which fail low). Value pv_score is normally set at // -VALUE_INFINITE for all non-pv moves, while non_pv_score is computed // according to the order in which moves are returned by MovePicker. struct RootMove { RootMove(); RootMove(const RootMove& rm) { *this = rm; } RootMove& operator=(const RootMove& rm); // RootMove::operator<() is the comparison function used when // sorting the moves. A move m1 is considered to be better // than a move m2 if it has an higher pv_score, or if it has // equal pv_score but m1 has the higher non_pv_score. In this // way we are guaranteed that PV moves are always sorted as first. bool operator<(const RootMove& m) const { return pv_score != m.pv_score ? pv_score < m.pv_score : non_pv_score < m.non_pv_score; } void extract_pv_from_tt(Position& pos); void insert_pv_in_tt(Position& pos); std::string pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvLine); int64_t nodes; Value pv_score; Value non_pv_score; Move pv[PLY_MAX_PLUS_2]; }; // RootMoveList struct is essentially a std::vector<> of RootMove objects, // with an handful of methods above the standard ones. struct RootMoveList : public std::vector { typedef std::vector Base; void init(Position& pos, Move searchMoves[]); void sort() { insertion_sort(begin(), end()); } void sort_multipv(int n) { insertion_sort(begin(), begin() + n); } int bestMoveChanges; }; // When formatting a move for std::cout we must know if we are in Chess960 // or not. To keep using the handy operator<<() on the move the trick is to // embed this flag in the stream itself. Function-like named enum set960 is // used as a custom manipulator and the stream internal general-purpose array, // accessed through ios_base::iword(), is used to pass the flag to the move's // operator<<() that will use it to properly format castling moves. enum set960 {}; std::ostream& operator<< (std::ostream& os, const set960& f) { os.iword(0) = int(f); return os; } // Overload operator << for moves to make it easier to print moves in // coordinate notation compatible with UCI protocol. std::ostream& operator<<(std::ostream& os, Move m) { bool chess960 = (os.iword(0) != 0); // See set960() return os << move_to_uci(m, chess960); } /// Adjustments // Step 6. Razoring // Maximum depth for razoring const Depth RazorDepth = 4 * ONE_PLY; // Dynamic razoring margin based on depth inline Value razor_margin(Depth d) { return Value(0x200 + 0x10 * int(d)); } // Maximum depth for use of dynamic threat detection when null move fails low const Depth ThreatDepth = 5 * ONE_PLY; // Step 9. Internal iterative deepening // Minimum depth for use of internal iterative deepening const Depth IIDDepth[2] = { 8 * ONE_PLY /* non-PV */, 5 * ONE_PLY /* PV */}; // At Non-PV nodes we do an internal iterative deepening search // when the static evaluation is bigger then beta - IIDMargin. const Value IIDMargin = Value(0x100); // Step 11. Decide the new search depth // Extensions. Configurable UCI options // Array index 0 is used at non-PV nodes, index 1 at PV nodes. Depth CheckExtension[2], PawnPushTo7thExtension[2], PassedPawnExtension[2]; Depth PawnEndgameExtension[2], MateThreatExtension[2]; // Minimum depth for use of singular extension const Depth SingularExtensionDepth[2] = { 8 * ONE_PLY /* non-PV */, 6 * ONE_PLY /* PV */}; // Step 12. Futility pruning // Futility margin for quiescence search const Value FutilityMarginQS = Value(0x80); // Futility lookup tables (initialized at startup) and their getter functions Value FutilityMarginsMatrix[16][64]; // [depth][moveNumber] int FutilityMoveCountArray[32]; // [depth] inline Value futility_margin(Depth d, int mn) { return d < 7 * ONE_PLY ? FutilityMarginsMatrix[Max(d, 1)][Min(mn, 63)] : 2 * VALUE_INFINITE; } inline int futility_move_count(Depth d) { return d < 16 * ONE_PLY ? FutilityMoveCountArray[d] : 512; } // Step 14. Reduced search // Reduction lookup tables (initialized at startup) and their getter functions int8_t ReductionMatrix[2][64][64]; // [pv][depth][moveNumber] template inline Depth reduction(Depth d, int mn) { return (Depth) ReductionMatrix[PV][Min(d / 2, 63)][Min(mn, 63)]; } // Easy move margin. An easy move candidate must be at least this much // better than the second best move. const Value EasyMoveMargin = Value(0x200); /// Namespace variables // Book object Book OpeningBook; // Root move list RootMoveList Rml; // MultiPV mode int MultiPV; // Time management variables int SearchStartTime, MaxNodes, MaxDepth, ExactMaxTime; bool UseTimeManagement, InfiniteSearch, Pondering, StopOnPonderhit; bool FirstRootMove, StopRequest, QuitRequest, AspirationFailLow; TimeManager TimeMgr; // Log file bool UseLogFile; std::ofstream LogFile; // Multi-threads manager object ThreadsManager ThreadsMgr; // Node counters, used only by thread[0] but try to keep in different cache // lines (64 bytes each) from the heavy multi-thread read accessed variables. bool SendSearchedNodes; int NodesSincePoll; int NodesBetweenPolls = 30000; // History table History H; /// Local functions Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove); template Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply); template Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply); template inline Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) { return depth < ONE_PLY ? qsearch(pos, ss, alpha, beta, DEPTH_ZERO, ply) : search(pos, ss, alpha, beta, depth, ply); } template Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool mateThreat, bool* dangerous); bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bValue); bool connected_moves(const Position& pos, Move m1, Move m2); bool value_is_mate(Value value); Value value_to_tt(Value v, int ply); Value value_from_tt(Value v, int ply); bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply); bool connected_threat(const Position& pos, Move m, Move threat); Value refine_eval(const TTEntry* tte, Value defaultEval, int ply); void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount); void update_killers(Move m, Move killers[]); void update_gains(const Position& pos, Move move, Value before, Value after); int current_search_time(); std::string value_to_uci(Value v); std::string speed_to_uci(int64_t nodes); void poll(const Position& pos); void wait_for_stop_or_ponderhit(); #if !defined(_MSC_VER) void* init_thread(void* threadID); #else DWORD WINAPI init_thread(LPVOID threadID); #endif // MovePickerExt is an extended MovePicker used to choose at compile time // the proper move source according to the type of node. template struct MovePickerExt; // In Root nodes use RootMoveList Rml as source. Score and sort the root moves // before to search them. template<> struct MovePickerExt : public MovePicker { MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b) : MovePicker(p, ttm, d, h, ss, b), firstCall(true) { Move move; Value score = VALUE_ZERO; // Score root moves using the standard way used in main search, the moves // are scored according to the order in which they are returned by MovePicker. // This is the second order score that is used to compare the moves when // the first order pv scores of both moves are equal. while ((move = MovePicker::get_next_move()) != MOVE_NONE) for (rm = Rml.begin(); rm != Rml.end(); ++rm) if (rm->pv[0] == move) { rm->non_pv_score = score--; break; } Rml.sort(); rm = Rml.begin(); } Move get_next_move() { if (!firstCall) ++rm; else firstCall = false; return rm != Rml.end() ? rm->pv[0] : MOVE_NONE; } RootMoveList::iterator rm; bool firstCall; }; // In SpNodes use split point's shared MovePicker object as move source template<> struct MovePickerExt : public MovePicker { MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b) : MovePicker(p, ttm, d, h, ss, b), mp(ss->sp->mp) {} Move get_next_move() { return mp->get_next_move(); } RootMoveList::iterator rm; // Dummy, needed to compile MovePicker* mp; }; // Default case, create and use a MovePicker object as source template<> struct MovePickerExt : public MovePicker { MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b) : MovePicker(p, ttm, d, h, ss, b) {} RootMoveList::iterator rm; // Dummy, needed to compile }; } // namespace //// //// Functions //// /// init_threads(), exit_threads() and nodes_searched() are helpers to /// give accessibility to some TM methods from outside of current file. void init_threads() { ThreadsMgr.init_threads(); } void exit_threads() { ThreadsMgr.exit_threads(); } /// init_search() is called during startup. It initializes various lookup tables void init_search() { int d; // depth (ONE_PLY == 2) int hd; // half depth (ONE_PLY == 1) int mc; // moveCount // Init reductions array for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++) { double pvRed = log(double(hd)) * log(double(mc)) / 3.0; double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25; ReductionMatrix[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); ReductionMatrix[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); } // Init futility margins array for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++) FutilityMarginsMatrix[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45); // Init futility move count array for (d = 0; d < 32; d++) FutilityMoveCountArray[d] = int(3.001 + 0.25 * pow(d, 2.0)); } /// perft() is our utility to verify move generation is bug free. All the legal /// moves up to given depth are generated and counted and the sum returned. int64_t perft(Position& pos, Depth depth) { MoveStack mlist[MOVES_MAX]; StateInfo st; Move m; int64_t sum = 0; // Generate all legal moves MoveStack* last = generate(pos, mlist); // If we are at the last ply we don't need to do and undo // the moves, just to count them. if (depth <= ONE_PLY) return int(last - mlist); // Loop through all legal moves CheckInfo ci(pos); for (MoveStack* cur = mlist; cur != last; cur++) { m = cur->move; pos.do_move(m, st, ci, pos.move_is_check(m, ci)); sum += perft(pos, depth - ONE_PLY); pos.undo_move(m); } return sum; } /// think() is the external interface to Stockfish's search, and is called when /// the program receives the UCI 'go' command. It initializes various /// search-related global variables, and calls id_loop(). It returns false /// when a quit command is received during the search. bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[], int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) { // Initialize global search variables StopOnPonderhit = StopRequest = QuitRequest = AspirationFailLow = SendSearchedNodes = false; NodesSincePoll = 0; SearchStartTime = get_system_time(); ExactMaxTime = maxTime; MaxDepth = maxDepth; MaxNodes = maxNodes; InfiniteSearch = infinite; Pondering = ponder; UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch; // Look for a book move, only during games, not tests if (UseTimeManagement && Options["OwnBook"].value()) { if (Options["Book File"].value() != OpeningBook.name()) OpeningBook.open(Options["Book File"].value()); Move bookMove = OpeningBook.get_move(pos, Options["Best Book Move"].value()); if (bookMove != MOVE_NONE) { if (Pondering) wait_for_stop_or_ponderhit(); cout << "bestmove " << bookMove << endl; return !QuitRequest; } } // Read UCI option values TT.set_size(Options["Hash"].value()); if (Options["Clear Hash"].value()) { Options["Clear Hash"].set_value("false"); TT.clear(); } CheckExtension[1] = Options["Check Extension (PV nodes)"].value(); CheckExtension[0] = Options["Check Extension (non-PV nodes)"].value(); PawnPushTo7thExtension[1] = Options["Pawn Push to 7th Extension (PV nodes)"].value(); PawnPushTo7thExtension[0] = Options["Pawn Push to 7th Extension (non-PV nodes)"].value(); PassedPawnExtension[1] = Options["Passed Pawn Extension (PV nodes)"].value(); PassedPawnExtension[0] = Options["Passed Pawn Extension (non-PV nodes)"].value(); PawnEndgameExtension[1] = Options["Pawn Endgame Extension (PV nodes)"].value(); PawnEndgameExtension[0] = Options["Pawn Endgame Extension (non-PV nodes)"].value(); MateThreatExtension[1] = Options["Mate Threat Extension (PV nodes)"].value(); MateThreatExtension[0] = Options["Mate Threat Extension (non-PV nodes)"].value(); MultiPV = Options["MultiPV"].value(); UseLogFile = Options["Use Search Log"].value(); read_evaluation_uci_options(pos.side_to_move()); // Set the number of active threads ThreadsMgr.read_uci_options(); init_eval(ThreadsMgr.active_threads()); // Wake up needed threads for (int i = 1; i < ThreadsMgr.active_threads(); i++) ThreadsMgr.wake_sleeping_thread(i); // Set thinking time int myTime = time[pos.side_to_move()]; int myIncrement = increment[pos.side_to_move()]; if (UseTimeManagement) TimeMgr.init(myTime, myIncrement, movesToGo, pos.startpos_ply_counter()); // Set best NodesBetweenPolls interval to avoid lagging under // heavy time pressure. if (MaxNodes) NodesBetweenPolls = Min(MaxNodes, 30000); else if (myTime && myTime < 1000) NodesBetweenPolls = 1000; else if (myTime && myTime < 5000) NodesBetweenPolls = 5000; else NodesBetweenPolls = 30000; // Write search information to log file if (UseLogFile) { std::string name = Options["Search Log Filename"].value(); LogFile.open(name.c_str(), std::ios::out | std::ios::app); LogFile << "\nSearching: " << pos.to_fen() << "\ninfinite: " << infinite << " ponder: " << ponder << " time: " << myTime << " increment: " << myIncrement << " moves to go: " << movesToGo << endl; } // We're ready to start thinking. Call the iterative deepening loop function Move ponderMove = MOVE_NONE; Move bestMove = id_loop(pos, searchMoves, &ponderMove); // Print final search statistics cout << "info" << speed_to_uci(pos.nodes_searched()) << endl; if (UseLogFile) { int t = current_search_time(); LogFile << "Nodes: " << pos.nodes_searched() << "\nNodes/second: " << (t > 0 ? int(pos.nodes_searched() * 1000 / t) : 0) << "\nBest move: " << move_to_san(pos, bestMove); StateInfo st; pos.do_move(bestMove, st); LogFile << "\nPonder move: " << move_to_san(pos, ponderMove) << endl; pos.undo_move(bestMove); // Return from think() with unchanged position LogFile.close(); } // This makes all the threads to go to sleep ThreadsMgr.set_active_threads(1); // If we are pondering or in infinite search, we shouldn't print the // best move before we are told to do so. if (!StopRequest && (Pondering || InfiniteSearch)) wait_for_stop_or_ponderhit(); // Could be both MOVE_NONE when searching on a stalemate position cout << "bestmove " << bestMove << " ponder " << ponderMove << endl; return !QuitRequest; } namespace { // id_loop() is the main iterative deepening loop. It calls search() repeatedly // with increasing depth until the allocated thinking time has been consumed, // user stops the search, or the maximum search depth is reached. Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove) { SearchStack ss[PLY_MAX_PLUS_2]; Value bestValues[PLY_MAX_PLUS_2]; int bestMoveChanges[PLY_MAX_PLUS_2]; int depth, researchCountFL, researchCountFH, aspirationDelta; Value value, alpha, beta; Move bestMove, easyMove; // Initialize stuff before a new search memset(ss, 0, 4 * sizeof(SearchStack)); TT.new_search(); H.clear(); *ponderMove = bestMove = easyMove = MOVE_NONE; depth = aspirationDelta = 0; alpha = -VALUE_INFINITE, beta = VALUE_INFINITE; ss->currentMove = MOVE_NULL; // Hack to skip update_gains() // Moves to search are verified and copied Rml.init(pos, searchMoves); // Handle special case of searching on a mate/stalemate position if (Rml.size() == 0) { cout << "info depth 0 score " << value_to_uci(pos.is_check() ? -VALUE_MATE : VALUE_DRAW) << endl; return MOVE_NONE; } // Iterative deepening loop while (++depth <= PLY_MAX && (!MaxDepth || depth <= MaxDepth) && !StopRequest) { Rml.bestMoveChanges = researchCountFL = researchCountFH = 0; cout << "info depth " << depth << endl; // Calculate dynamic aspiration window based on previous iterations if (MultiPV == 1 && depth >= 5 && abs(bestValues[depth - 1]) < VALUE_KNOWN_WIN) { int prevDelta1 = bestValues[depth - 1] - bestValues[depth - 2]; int prevDelta2 = bestValues[depth - 2] - bestValues[depth - 3]; aspirationDelta = Min(Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16), 24); aspirationDelta = (aspirationDelta + 7) / 8 * 8; // Round to match grainSize alpha = Max(bestValues[depth - 1] - aspirationDelta, -VALUE_INFINITE); beta = Min(bestValues[depth - 1] + aspirationDelta, VALUE_INFINITE); } // Start with a small aspiration window and, in case of fail high/low, // research with bigger window until not failing high/low anymore. do { // Search starting from ss+1 to allow calling update_gains() value = search(pos, ss+1, alpha, beta, depth * ONE_PLY, 0); // Send PV line to GUI and write to transposition table in case the // relevant entries have been overwritten during the search. for (int i = 0; i < Min(MultiPV, (int)Rml.size()); i++) { Rml[i].insert_pv_in_tt(pos); cout << set960(pos.is_chess960()) << Rml[i].pv_info_to_uci(pos, depth, alpha, beta, i) << endl; } // Value cannot be trusted. Break out immediately! if (StopRequest) break; assert(value >= alpha); // In case of failing high/low increase aspiration window and research, // otherwise exit the fail high/low loop. if (value >= beta) { beta = Min(beta + aspirationDelta * (1 << researchCountFH), VALUE_INFINITE); researchCountFH++; } else if (value <= alpha) { AspirationFailLow = true; StopOnPonderhit = false; alpha = Max(alpha - aspirationDelta * (1 << researchCountFL), -VALUE_INFINITE); researchCountFL++; } else break; } while (abs(value) < VALUE_KNOWN_WIN); // Collect info about search result bestMove = Rml[0].pv[0]; bestValues[depth] = value; bestMoveChanges[depth] = Rml.bestMoveChanges; if (UseLogFile) LogFile << pretty_pv(pos, depth, value, current_search_time(), Rml[0].pv) << endl; // Init easyMove after first iteration or drop if differs from the best move if (depth == 1 && (Rml.size() == 1 || Rml[0].pv_score > Rml[1].pv_score + EasyMoveMargin)) easyMove = bestMove; else if (bestMove != easyMove) easyMove = MOVE_NONE; if (UseTimeManagement && !StopRequest) { // Time to stop? bool noMoreTime = false; // Stop search early when the last two iterations returned a mate score if ( depth >= 5 && abs(bestValues[depth]) >= abs(VALUE_MATE) - 100 && abs(bestValues[depth - 1]) >= abs(VALUE_MATE) - 100) noMoreTime = true; // Stop search early if one move seems to be much better than the // others or if there is only a single legal move. In this latter // case we search up to Iteration 8 anyway to get a proper score. if ( depth >= 7 && easyMove == bestMove && ( Rml.size() == 1 ||( Rml[0].nodes > (pos.nodes_searched() * 85) / 100 && current_search_time() > TimeMgr.available_time() / 16) ||( Rml[0].nodes > (pos.nodes_searched() * 98) / 100 && current_search_time() > TimeMgr.available_time() / 32))) noMoreTime = true; // Add some extra time if the best move has changed during the last two iterations if (depth > 4 && depth < 50) TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth-1]); // Stop search if most of MaxSearchTime is consumed at the end of the // iteration. We probably don't have enough time to search the first // move at the next iteration anyway. if (current_search_time() > (TimeMgr.available_time() * 80) / 128) noMoreTime = true; if (noMoreTime) { if (Pondering) StopOnPonderhit = true; else break; } } } *ponderMove = Rml[0].pv[1]; return bestMove; } // search<>() is the main search function for both PV and non-PV nodes and for // normal and SplitPoint nodes. When called just after a split point the search // is simpler because we have already probed the hash table, done a null move // search, and searched the first move before splitting, we don't have to repeat // all this work again. We also don't need to store anything to the hash table // here: This is taken care of after we return from the split point. template Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta > alpha && beta <= VALUE_INFINITE); assert(PvNode || alpha == beta - 1); assert((Root || ply > 0) && ply < PLY_MAX); assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads()); Move movesSearched[MOVES_MAX]; int64_t nodes; StateInfo st; const TTEntry *tte; Key posKey; Move ttMove, move, excludedMove, threatMove; Depth ext, newDepth; ValueType vt; Value bestValue, value, oldAlpha; Value refinedValue, nullValue, futilityBase, futilityValueScaled; // Non-PV specific bool isPvMove, isCheck, singularExtensionNode, moveIsCheck, captureOrPromotion, dangerous; bool mateThreat = false; int moveCount = 0, playedMoveCount = 0; int threadID = pos.thread(); SplitPoint* sp = NULL; refinedValue = bestValue = value = -VALUE_INFINITE; oldAlpha = alpha; isCheck = pos.is_check(); if (SpNode) { sp = ss->sp; tte = NULL; ttMove = excludedMove = MOVE_NONE; threatMove = sp->threatMove; mateThreat = sp->mateThreat; goto split_point_start; } else if (Root) bestValue = alpha; // Step 1. Initialize node and poll. Polling can abort search ss->currentMove = ss->bestMove = threatMove = (ss+1)->excludedMove = MOVE_NONE; (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO; (ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE; if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls) { NodesSincePoll = 0; poll(pos); } // Step 2. Check for aborted search and immediate draw if (( StopRequest || ThreadsMgr.cutoff_at_splitpoint(threadID) || pos.is_draw() || ply >= PLY_MAX - 1) && !Root) return VALUE_DRAW; // Step 3. Mate distance pruning alpha = Max(value_mated_in(ply), alpha); beta = Min(value_mate_in(ply+1), beta); if (alpha >= beta) return alpha; // Step 4. Transposition table lookup // We don't want the score of a partial search to overwrite a previous full search // TT value, so we use a different position key in case of an excluded move. excludedMove = ss->excludedMove; posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key(); tte = TT.retrieve(posKey); ttMove = tte ? tte->move() : MOVE_NONE; // At PV nodes we check for exact scores, while at non-PV nodes we check for // and return a fail high/low. Biggest advantage at probing at PV nodes is // to have a smooth experience in analysis mode. if ( !Root && tte && (PvNode ? tte->depth() >= depth && tte->type() == VALUE_TYPE_EXACT : ok_to_use_TT(tte, depth, beta, ply))) { TT.refresh(tte); ss->bestMove = ttMove; // Can be MOVE_NONE return value_from_tt(tte->value(), ply); } // Step 5. Evaluate the position statically and // update gain statistics of parent move. if (isCheck) ss->eval = ss->evalMargin = VALUE_NONE; else if (tte) { assert(tte->static_value() != VALUE_NONE); ss->eval = tte->static_value(); ss->evalMargin = tte->static_value_margin(); refinedValue = refine_eval(tte, ss->eval, ply); } else { refinedValue = ss->eval = evaluate(pos, ss->evalMargin); TT.store(posKey, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, ss->evalMargin); } // Save gain for the parent non-capture move update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval); // Step 6. Razoring (is omitted in PV nodes) if ( !PvNode && depth < RazorDepth && !isCheck && refinedValue < beta - razor_margin(depth) && ttMove == MOVE_NONE && !value_is_mate(beta) && !pos.has_pawn_on_7th(pos.side_to_move())) { Value rbeta = beta - razor_margin(depth); Value v = qsearch(pos, ss, rbeta-1, rbeta, DEPTH_ZERO, ply); if (v < rbeta) // Logically we should return (v + razor_margin(depth)), but // surprisingly this did slightly weaker in tests. return v; } // Step 7. Static null move pruning (is omitted in PV nodes) // We're betting that the opponent doesn't have a move that will reduce // the score by more than futility_margin(depth) if we do a null move. if ( !PvNode && !ss->skipNullMove && depth < RazorDepth && !isCheck && refinedValue >= beta + futility_margin(depth, 0) && !value_is_mate(beta) && pos.non_pawn_material(pos.side_to_move())) return refinedValue - futility_margin(depth, 0); // Step 8. Null move search with verification search (is omitted in PV nodes) if ( !PvNode && !ss->skipNullMove && depth > ONE_PLY && !isCheck && refinedValue >= beta && !value_is_mate(beta) && pos.non_pawn_material(pos.side_to_move())) { ss->currentMove = MOVE_NULL; // Null move dynamic reduction based on depth int R = 3 + (depth >= 5 * ONE_PLY ? depth / 8 : 0); // Null move dynamic reduction based on value if (refinedValue - beta > PawnValueMidgame) R++; pos.do_null_move(st); (ss+1)->skipNullMove = true; nullValue = -search(pos, ss+1, -beta, -alpha, depth-R*ONE_PLY, ply+1); (ss+1)->skipNullMove = false; pos.undo_null_move(); if (nullValue >= beta) { // Do not return unproven mate scores if (nullValue >= value_mate_in(PLY_MAX)) nullValue = beta; if (depth < 6 * ONE_PLY) return nullValue; // Do verification search at high depths ss->skipNullMove = true; Value v = search(pos, ss, alpha, beta, depth-R*ONE_PLY, ply); ss->skipNullMove = false; if (v >= beta) return nullValue; } else { // The null move failed low, which means that we may be faced with // some kind of threat. If the previous move was reduced, check if // the move that refuted the null move was somehow connected to the // move which was reduced. If a connection is found, return a fail // low score (which will cause the reduced move to fail high in the // parent node, which will trigger a re-search with full depth). if (nullValue == value_mated_in(ply + 2)) mateThreat = true; threatMove = (ss+1)->bestMove; if ( depth < ThreatDepth && (ss-1)->reduction && threatMove != MOVE_NONE && connected_moves(pos, (ss-1)->currentMove, threatMove)) return beta - 1; } } // Step 9. Internal iterative deepening if ( depth >= IIDDepth[PvNode] && ttMove == MOVE_NONE && (PvNode || (!isCheck && ss->eval >= beta - IIDMargin))) { Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2); ss->skipNullMove = true; search(pos, ss, alpha, beta, d, ply); ss->skipNullMove = false; ttMove = ss->bestMove; tte = TT.retrieve(posKey); } // Expensive mate threat detection (only for PV nodes) if (PvNode) mateThreat = pos.has_mate_threat(); split_point_start: // At split points actual search starts from here // Initialize a MovePicker object for the current position MovePickerExt mp(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta)); CheckInfo ci(pos); ss->bestMove = MOVE_NONE; futilityBase = ss->eval + ss->evalMargin; singularExtensionNode = !Root && !SpNode && depth >= SingularExtensionDepth[PvNode] && tte && tte->move() && !excludedMove // Do not allow recursive singular extension search && (tte->type() & VALUE_TYPE_LOWER) && tte->depth() >= depth - 3 * ONE_PLY; if (SpNode) { lock_grab(&(sp->lock)); bestValue = sp->bestValue; } // Step 10. Loop through moves // Loop through all legal moves until no moves remain or a beta cutoff occurs while ( bestValue < beta && (move = mp.get_next_move()) != MOVE_NONE && !ThreadsMgr.cutoff_at_splitpoint(threadID)) { assert(move_is_ok(move)); if (SpNode) { moveCount = ++sp->moveCount; lock_release(&(sp->lock)); } else if (move == excludedMove) continue; else moveCount++; if (Root) { // This is used by time management FirstRootMove = (moveCount == 1); // Save the current node count before the move is searched nodes = pos.nodes_searched(); // If it's time to send nodes info, do it here where we have the // correct accumulated node counts searched by each thread. if (SendSearchedNodes) { SendSearchedNodes = false; cout << "info" << speed_to_uci(pos.nodes_searched()) << endl; } if (current_search_time() >= 1000) cout << "info currmove " << move << " currmovenumber " << moveCount << endl; } // At Root and at first iteration do a PV search on all the moves // to score root moves. Otherwise only the first one is the PV. isPvMove = (PvNode && moveCount <= (Root ? MultiPV + 1000 * (depth <= ONE_PLY) : 1)); moveIsCheck = pos.move_is_check(move, ci); captureOrPromotion = pos.move_is_capture_or_promotion(move); // Step 11. Decide the new search depth ext = extension(pos, move, captureOrPromotion, moveIsCheck, mateThreat, &dangerous); // Singular extension search. If all moves but one fail low on a search of (alpha-s, beta-s), // and just one fails high on (alpha, beta), then that move is singular and should be extended. // To verify this we do a reduced search on all the other moves but the ttMove, if result is // lower than ttValue minus a margin then we extend ttMove. if ( singularExtensionNode && move == tte->move() && ext < ONE_PLY) { Value ttValue = value_from_tt(tte->value(), ply); if (abs(ttValue) < VALUE_KNOWN_WIN) { Value b = ttValue - depth; ss->excludedMove = move; ss->skipNullMove = true; Value v = search(pos, ss, b - 1, b, depth / 2, ply); ss->skipNullMove = false; ss->excludedMove = MOVE_NONE; ss->bestMove = MOVE_NONE; if (v < b) ext = ONE_PLY; } } // Update current move (this must be done after singular extension search) ss->currentMove = move; newDepth = depth - ONE_PLY + ext; // Step 12. Futility pruning (is omitted in PV nodes) if ( !PvNode && !captureOrPromotion && !isCheck && !dangerous && move != ttMove && !move_is_castle(move)) { // Move count based pruning if ( moveCount >= futility_move_count(depth) && !(threatMove && connected_threat(pos, move, threatMove)) && bestValue > value_mated_in(PLY_MAX)) // FIXME bestValue is racy { if (SpNode) lock_grab(&(sp->lock)); continue; } // Value based pruning // We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth, // but fixing this made program slightly weaker. Depth predictedDepth = newDepth - reduction(depth, moveCount); futilityValueScaled = futilityBase + futility_margin(predictedDepth, moveCount) + H.gain(pos.piece_on(move_from(move)), move_to(move)); if (futilityValueScaled < beta) { if (SpNode) { lock_grab(&(sp->lock)); if (futilityValueScaled > sp->bestValue) sp->bestValue = bestValue = futilityValueScaled; } else if (futilityValueScaled > bestValue) bestValue = futilityValueScaled; continue; } // Prune moves with negative SEE at low depths if ( predictedDepth < 2 * ONE_PLY && bestValue > value_mated_in(PLY_MAX) && pos.see_sign(move) < 0) { if (SpNode) lock_grab(&(sp->lock)); continue; } } // Step 13. Make the move pos.do_move(move, st, ci, moveIsCheck); if (!SpNode && !captureOrPromotion) movesSearched[playedMoveCount++] = move; // Step extra. pv search (only in PV nodes) // The first move in list is the expected PV if (isPvMove) { // Aspiration window is disabled in multi-pv case if (Root && MultiPV > 1) alpha = -VALUE_INFINITE; value = -search(pos, ss+1, -beta, -alpha, newDepth, ply+1); } else { // Step 14. Reduced depth search // If the move fails high will be re-searched at full depth. bool doFullDepthSearch = true; if ( depth >= 3 * ONE_PLY && !captureOrPromotion && !dangerous && !move_is_castle(move) && ss->killers[0] != move && ss->killers[1] != move) { ss->reduction = reduction(depth, moveCount); if (ss->reduction) { alpha = SpNode ? sp->alpha : alpha; Depth d = newDepth - ss->reduction; value = -search(pos, ss+1, -(alpha+1), -alpha, d, ply+1); doFullDepthSearch = (value > alpha); } ss->reduction = DEPTH_ZERO; // Restore original reduction } // Step 15. Full depth search if (doFullDepthSearch) { alpha = SpNode ? sp->alpha : alpha; value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth, ply+1); // Step extra. pv search (only in PV nodes) // Search only for possible new PV nodes, if instead value >= beta then // parent node fails low with value <= alpha and tries another move. if (PvNode && value > alpha && (Root || value < beta)) value = -search(pos, ss+1, -beta, -alpha, newDepth, ply+1); } } // Step 16. Undo move pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // Step 17. Check for new best move if (SpNode) { lock_grab(&(sp->lock)); bestValue = sp->bestValue; alpha = sp->alpha; } if (value > bestValue && !(SpNode && ThreadsMgr.cutoff_at_splitpoint(threadID))) { bestValue = value; if (SpNode) sp->bestValue = value; if (!Root && value > alpha) { if (PvNode && value < beta) // We want always alpha < beta { alpha = value; if (SpNode) sp->alpha = value; } else if (SpNode) sp->betaCutoff = true; if (value == value_mate_in(ply + 1)) ss->mateKiller = move; ss->bestMove = move; if (SpNode) sp->ss->bestMove = move; } } if (Root) { // Finished searching the move. If StopRequest is true, the search // was aborted because the user interrupted the search or because we // ran out of time. In this case, the return value of the search cannot // be trusted, and we break out of the loop without updating the best // move and/or PV. if (StopRequest) break; // Remember searched nodes counts for this move mp.rm->nodes += pos.nodes_searched() - nodes; // PV move or new best move ? if (isPvMove || value > alpha) { // Update PV ss->bestMove = move; mp.rm->pv_score = value; mp.rm->extract_pv_from_tt(pos); // We record how often the best move has been changed in each // iteration. This information is used for time management: When // the best move changes frequently, we allocate some more time. if (!isPvMove && MultiPV == 1) Rml.bestMoveChanges++; Rml.sort_multipv(moveCount); // Update alpha. In multi-pv we don't use aspiration window, so // set alpha equal to minimum score among the PV lines. if (MultiPV > 1) alpha = Rml[Min(moveCount, MultiPV) - 1].pv_score; // FIXME why moveCount? else if (value > alpha) alpha = value; } else mp.rm->pv_score = -VALUE_INFINITE; } // Root // Step 18. Check for split if ( !Root && !SpNode && depth >= ThreadsMgr.min_split_depth() && ThreadsMgr.active_threads() > 1 && bestValue < beta && ThreadsMgr.available_thread_exists(threadID) && !StopRequest && !ThreadsMgr.cutoff_at_splitpoint(threadID)) ThreadsMgr.split(pos, ss, ply, &alpha, beta, &bestValue, depth, threatMove, mateThreat, moveCount, &mp, PvNode); } // Step 19. Check for mate and stalemate // All legal moves have been searched and if there are // no legal moves, it must be mate or stalemate. // If one move was excluded return fail low score. if (!SpNode && !moveCount) return excludedMove ? oldAlpha : isCheck ? value_mated_in(ply) : VALUE_DRAW; // Step 20. Update tables // If the search is not aborted, update the transposition table, // history counters, and killer moves. if (!SpNode && !StopRequest && !ThreadsMgr.cutoff_at_splitpoint(threadID)) { move = bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove; vt = bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT; TT.store(posKey, value_to_tt(bestValue, ply), vt, depth, move, ss->eval, ss->evalMargin); // Update killers and history only for non capture moves that fails high if ( bestValue >= beta && !pos.move_is_capture_or_promotion(move)) { update_history(pos, move, depth, movesSearched, playedMoveCount); update_killers(move, ss->killers); } } if (SpNode) { // Here we have the lock still grabbed sp->slaves[threadID] = 0; sp->nodes += pos.nodes_searched(); lock_release(&(sp->lock)); } assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // qsearch() is the quiescence search function, which is called by the main // search function when the remaining depth is zero (or, to be more precise, // less than ONE_PLY). template Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); assert(PvNode || alpha == beta - 1); assert(depth <= 0); assert(ply > 0 && ply < PLY_MAX); assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads()); StateInfo st; Move ttMove, move; Value bestValue, value, evalMargin, futilityValue, futilityBase; bool isCheck, enoughMaterial, moveIsCheck, evasionPrunable; const TTEntry* tte; Depth ttDepth; Value oldAlpha = alpha; ss->bestMove = ss->currentMove = MOVE_NONE; // Check for an instant draw or maximum ply reached if (pos.is_draw() || ply >= PLY_MAX - 1) return VALUE_DRAW; // Decide whether or not to include checks, this fixes also the type of // TT entry depth that we are going to use. Note that in qsearch we use // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. isCheck = pos.is_check(); ttDepth = (isCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS); // Transposition table lookup. At PV nodes, we don't use the TT for // pruning, but only for move ordering. tte = TT.retrieve(pos.get_key()); ttMove = (tte ? tte->move() : MOVE_NONE); if (!PvNode && tte && ok_to_use_TT(tte, ttDepth, beta, ply)) { ss->bestMove = ttMove; // Can be MOVE_NONE return value_from_tt(tte->value(), ply); } // Evaluate the position statically if (isCheck) { bestValue = futilityBase = -VALUE_INFINITE; ss->eval = evalMargin = VALUE_NONE; enoughMaterial = false; } else { if (tte) { assert(tte->static_value() != VALUE_NONE); evalMargin = tte->static_value_margin(); ss->eval = bestValue = tte->static_value(); } else ss->eval = bestValue = evaluate(pos, evalMargin); update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval); // Stand pat. Return immediately if static value is at least beta if (bestValue >= beta) { if (!tte) TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, evalMargin); return bestValue; } if (PvNode && bestValue > alpha) alpha = bestValue; // Futility pruning parameters, not needed when in check futilityBase = ss->eval + evalMargin + FutilityMarginQS; enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame; } // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will // be generated. MovePicker mp(pos, ttMove, depth, H); CheckInfo ci(pos); // Loop through the moves until no moves remain or a beta cutoff occurs while ( alpha < beta && (move = mp.get_next_move()) != MOVE_NONE) { assert(move_is_ok(move)); moveIsCheck = pos.move_is_check(move, ci); // Futility pruning if ( !PvNode && !isCheck && !moveIsCheck && move != ttMove && enoughMaterial && !move_is_promotion(move) && !pos.move_is_passed_pawn_push(move)) { futilityValue = futilityBase + pos.endgame_value_of_piece_on(move_to(move)) + (move_is_ep(move) ? PawnValueEndgame : VALUE_ZERO); if (futilityValue < alpha) { if (futilityValue > bestValue) bestValue = futilityValue; continue; } // Prune moves with negative or equal SEE if ( futilityBase < beta && depth < DEPTH_ZERO && pos.see(move) <= 0) continue; } // Detect non-capture evasions that are candidate to be pruned evasionPrunable = isCheck && bestValue > value_mated_in(PLY_MAX) && !pos.move_is_capture(move) && !pos.can_castle(pos.side_to_move()); // Don't search moves with negative SEE values if ( !PvNode && (!isCheck || evasionPrunable) && move != ttMove && !move_is_promotion(move) && pos.see_sign(move) < 0) continue; // Don't search useless checks if ( !PvNode && !isCheck && moveIsCheck && move != ttMove && !pos.move_is_capture_or_promotion(move) && ss->eval + PawnValueMidgame / 4 < beta && !check_is_dangerous(pos, move, futilityBase, beta, &bestValue)) { if (ss->eval + PawnValueMidgame / 4 > bestValue) bestValue = ss->eval + PawnValueMidgame / 4; continue; } // Update current move ss->currentMove = move; // Make and search the move pos.do_move(move, st, ci, moveIsCheck); value = -qsearch(pos, ss+1, -beta, -alpha, depth-ONE_PLY, ply+1); pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if (value > bestValue) { bestValue = value; if (value > alpha) { alpha = value; ss->bestMove = move; } } } // All legal moves have been searched. A special case: If we're in check // and no legal moves were found, it is checkmate. if (isCheck && bestValue == -VALUE_INFINITE) return value_mated_in(ply); // Update transposition table ValueType vt = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT); TT.store(pos.get_key(), value_to_tt(bestValue, ply), vt, ttDepth, ss->bestMove, ss->eval, evalMargin); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // check_is_dangerous() tests if a checking move can be pruned in qsearch(). // bestValue is updated only when returning false because in that case move // will be pruned. bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bestValue) { Bitboard b, occ, oldAtt, newAtt, kingAtt; Square from, to, ksq, victimSq; Piece pc; Color them; Value futilityValue, bv = *bestValue; from = move_from(move); to = move_to(move); them = opposite_color(pos.side_to_move()); ksq = pos.king_square(them); kingAtt = pos.attacks_from(ksq); pc = pos.piece_on(from); occ = pos.occupied_squares() & ~(1ULL << from) & ~(1ULL << ksq); oldAtt = pos.attacks_from(pc, from, occ); newAtt = pos.attacks_from(pc, to, occ); // Rule 1. Checks which give opponent's king at most one escape square are dangerous b = kingAtt & ~pos.pieces_of_color(them) & ~newAtt & ~(1ULL << to); if (!(b && (b & (b - 1)))) return true; // Rule 2. Queen contact check is very dangerous if ( type_of_piece(pc) == QUEEN && bit_is_set(kingAtt, to)) return true; // Rule 3. Creating new double threats with checks b = pos.pieces_of_color(them) & newAtt & ~oldAtt & ~(1ULL << ksq); while (b) { victimSq = pop_1st_bit(&b); futilityValue = futilityBase + pos.endgame_value_of_piece_on(victimSq); // Note that here we generate illegal "double move"! if ( futilityValue >= beta && pos.see_sign(make_move(from, victimSq)) >= 0) return true; if (futilityValue > bv) bv = futilityValue; } // Update bestValue only if check is not dangerous (because we will prune the move) *bestValue = bv; return false; } // connected_moves() tests whether two moves are 'connected' in the sense // that the first move somehow made the second move possible (for instance // if the moving piece is the same in both moves). The first move is assumed // to be the move that was made to reach the current position, while the // second move is assumed to be a move from the current position. bool connected_moves(const Position& pos, Move m1, Move m2) { Square f1, t1, f2, t2; Piece p; assert(m1 && move_is_ok(m1)); assert(m2 && move_is_ok(m2)); // Case 1: The moving piece is the same in both moves f2 = move_from(m2); t1 = move_to(m1); if (f2 == t1) return true; // Case 2: The destination square for m2 was vacated by m1 t2 = move_to(m2); f1 = move_from(m1); if (t2 == f1) return true; // Case 3: Moving through the vacated square if ( piece_is_slider(pos.piece_on(f2)) && bit_is_set(squares_between(f2, t2), f1)) return true; // Case 4: The destination square for m2 is defended by the moving piece in m1 p = pos.piece_on(t1); if (bit_is_set(pos.attacks_from(p, t1), t2)) return true; // Case 5: Discovered check, checking piece is the piece moved in m1 if ( piece_is_slider(p) && bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2) && !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2)) { // discovered_check_candidates() works also if the Position's side to // move is the opposite of the checking piece. Color them = opposite_color(pos.side_to_move()); Bitboard dcCandidates = pos.discovered_check_candidates(them); if (bit_is_set(dcCandidates, f2)) return true; } return false; } // value_is_mate() checks if the given value is a mate one eventually // compensated for the ply. bool value_is_mate(Value value) { assert(abs(value) <= VALUE_INFINITE); return value <= value_mated_in(PLY_MAX) || value >= value_mate_in(PLY_MAX); } // value_to_tt() adjusts a mate score from "plies to mate from the root" to // "plies to mate from the current ply". Non-mate scores are unchanged. // The function is called before storing a value to the transposition table. Value value_to_tt(Value v, int ply) { if (v >= value_mate_in(PLY_MAX)) return v + ply; if (v <= value_mated_in(PLY_MAX)) return v - ply; return v; } // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score from // the transposition table to a mate score corrected for the current ply. Value value_from_tt(Value v, int ply) { if (v >= value_mate_in(PLY_MAX)) return v - ply; if (v <= value_mated_in(PLY_MAX)) return v + ply; return v; } // extension() decides whether a move should be searched with normal depth, // or with extended depth. Certain classes of moves (checking moves, in // particular) are searched with bigger depth than ordinary moves and in // any case are marked as 'dangerous'. Note that also if a move is not // extended, as example because the corresponding UCI option is set to zero, // the move is marked as 'dangerous' so, at least, we avoid to prune it. template Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool mateThreat, bool* dangerous) { assert(m != MOVE_NONE); Depth result = DEPTH_ZERO; *dangerous = moveIsCheck | mateThreat; if (*dangerous) { if (moveIsCheck && pos.see_sign(m) >= 0) result += CheckExtension[PvNode]; if (mateThreat) result += MateThreatExtension[PvNode]; } if (pos.type_of_piece_on(move_from(m)) == PAWN) { Color c = pos.side_to_move(); if (relative_rank(c, move_to(m)) == RANK_7) { result += PawnPushTo7thExtension[PvNode]; *dangerous = true; } if (pos.pawn_is_passed(c, move_to(m))) { result += PassedPawnExtension[PvNode]; *dangerous = true; } } if ( captureOrPromotion && pos.type_of_piece_on(move_to(m)) != PAWN && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) - pos.midgame_value_of_piece_on(move_to(m)) == VALUE_ZERO) && !move_is_promotion(m) && !move_is_ep(m)) { result += PawnEndgameExtension[PvNode]; *dangerous = true; } if ( PvNode && captureOrPromotion && pos.type_of_piece_on(move_to(m)) != PAWN && pos.see_sign(m) >= 0) { result += ONE_PLY / 2; *dangerous = true; } return Min(result, ONE_PLY); } // connected_threat() tests whether it is safe to forward prune a move or if // is somehow connected to the threat move returned by null search. bool connected_threat(const Position& pos, Move m, Move threat) { assert(move_is_ok(m)); assert(threat && move_is_ok(threat)); assert(!pos.move_is_check(m)); assert(!pos.move_is_capture_or_promotion(m)); assert(!pos.move_is_passed_pawn_push(m)); Square mfrom, mto, tfrom, tto; mfrom = move_from(m); mto = move_to(m); tfrom = move_from(threat); tto = move_to(threat); // Case 1: Don't prune moves which move the threatened piece if (mfrom == tto) return true; // Case 2: If the threatened piece has value less than or equal to the // value of the threatening piece, don't prune moves which defend it. if ( pos.move_is_capture(threat) && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto) || pos.type_of_piece_on(tfrom) == KING) && pos.move_attacks_square(m, tto)) return true; // Case 3: If the moving piece in the threatened move is a slider, don't // prune safe moves which block its ray. if ( piece_is_slider(pos.piece_on(tfrom)) && bit_is_set(squares_between(tfrom, tto), mto) && pos.see_sign(m) >= 0) return true; return false; } // ok_to_use_TT() returns true if a transposition table score // can be used at a given point in search. bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) { Value v = value_from_tt(tte->value(), ply); return ( tte->depth() >= depth || v >= Max(value_mate_in(PLY_MAX), beta) || v < Min(value_mated_in(PLY_MAX), beta)) && ( ((tte->type() & VALUE_TYPE_LOWER) && v >= beta) || ((tte->type() & VALUE_TYPE_UPPER) && v < beta)); } // refine_eval() returns the transposition table score if // possible otherwise falls back on static position evaluation. Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) { assert(tte); Value v = value_from_tt(tte->value(), ply); if ( ((tte->type() & VALUE_TYPE_LOWER) && v >= defaultEval) || ((tte->type() & VALUE_TYPE_UPPER) && v < defaultEval)) return v; return defaultEval; } // update_history() registers a good move that produced a beta-cutoff // in history and marks as failures all the other moves of that ply. void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount) { Move m; Value bonus = Value(int(depth) * int(depth)); H.update(pos.piece_on(move_from(move)), move_to(move), bonus); for (int i = 0; i < moveCount - 1; i++) { m = movesSearched[i]; assert(m != move); H.update(pos.piece_on(move_from(m)), move_to(m), -bonus); } } // update_killers() add a good move that produced a beta-cutoff // among the killer moves of that ply. void update_killers(Move m, Move killers[]) { if (m != killers[0]) { killers[1] = killers[0]; killers[0] = m; } } // update_gains() updates the gains table of a non-capture move given // the static position evaluation before and after the move. void update_gains(const Position& pos, Move m, Value before, Value after) { if ( m != MOVE_NULL && before != VALUE_NONE && after != VALUE_NONE && pos.captured_piece_type() == PIECE_TYPE_NONE && !move_is_special(m)) H.update_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after)); } // current_search_time() returns the number of milliseconds which have passed // since the beginning of the current search. int current_search_time() { return get_system_time() - SearchStartTime; } // value_to_uci() converts a value to a string suitable for use with the UCI // protocol specifications: // // cp The score from the engine's point of view in centipawns. // mate Mate in y moves, not plies. If the engine is getting mated // use negative values for y. std::string value_to_uci(Value v) { std::stringstream s; if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY) s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns else s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2); return s.str(); } // speed_to_uci() returns a string with time stats of current search suitable // to be sent to UCI gui. std::string speed_to_uci(int64_t nodes) { std::stringstream s; int t = current_search_time(); s << " nodes " << nodes << " nps " << (t > 0 ? int(nodes * 1000 / t) : 0) << " time " << t; return s.str(); } // poll() performs two different functions: It polls for user input, and it // looks at the time consumed so far and decides if it's time to abort the // search. void poll(const Position& pos) { static int lastInfoTime; int t = current_search_time(); // Poll for input if (input_available()) { // We are line oriented, don't read single chars std::string command; if (!std::getline(std::cin, command)) command = "quit"; if (command == "quit") { // Quit the program as soon as possible Pondering = false; QuitRequest = StopRequest = true; return; } else if (command == "stop") { // Stop calculating as soon as possible, but still send the "bestmove" // and possibly the "ponder" token when finishing the search. Pondering = false; StopRequest = true; } else if (command == "ponderhit") { // The opponent has played the expected move. GUI sends "ponderhit" if // we were told to ponder on the same move the opponent has played. We // should continue searching but switching from pondering to normal search. Pondering = false; if (StopOnPonderhit) StopRequest = true; } } // Print search information if (t < 1000) lastInfoTime = 0; else if (lastInfoTime > t) // HACK: Must be a new search where we searched less than // NodesBetweenPolls nodes during the first second of search. lastInfoTime = 0; else if (t - lastInfoTime >= 1000) { lastInfoTime = t; if (dbg_show_mean) dbg_print_mean(); if (dbg_show_hit_rate) dbg_print_hit_rate(); // Send info on searched nodes as soon as we return to root SendSearchedNodes = true; } // Should we stop the search? if (Pondering) return; bool stillAtFirstMove = FirstRootMove && !AspirationFailLow && t > TimeMgr.available_time(); bool noMoreTime = t > TimeMgr.maximum_time() || stillAtFirstMove; if ( (UseTimeManagement && noMoreTime) || (ExactMaxTime && t >= ExactMaxTime) || (MaxNodes && pos.nodes_searched() >= MaxNodes)) // FIXME StopRequest = true; } // wait_for_stop_or_ponderhit() is called when the maximum depth is reached // while the program is pondering. The point is to work around a wrinkle in // the UCI protocol: When pondering, the engine is not allowed to give a // "bestmove" before the GUI sends it a "stop" or "ponderhit" command. // We simply wait here until one of these commands is sent, and return, // after which the bestmove and pondermove will be printed. void wait_for_stop_or_ponderhit() { std::string command; while (true) { // Wait for a command from stdin if (!std::getline(std::cin, command)) command = "quit"; if (command == "quit") { QuitRequest = true; break; } else if (command == "ponderhit" || command == "stop") break; } } // init_thread() is the function which is called when a new thread is // launched. It simply calls the idle_loop() function with the supplied // threadID. There are two versions of this function; one for POSIX // threads and one for Windows threads. #if !defined(_MSC_VER) void* init_thread(void* threadID) { ThreadsMgr.idle_loop(*(int*)threadID, NULL); return NULL; } #else DWORD WINAPI init_thread(LPVOID threadID) { ThreadsMgr.idle_loop(*(int*)threadID, NULL); return 0; } #endif /// The ThreadsManager class // read_uci_options() updates number of active threads and other internal // parameters according to the UCI options values. It is called before // to start a new search. void ThreadsManager::read_uci_options() { maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value(); minimumSplitDepth = Options["Minimum Split Depth"].value() * ONE_PLY; useSleepingThreads = Options["Use Sleeping Threads"].value(); activeThreads = Options["Threads"].value(); } // idle_loop() is where the threads are parked when they have no work to do. // The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint // object for which the current thread is the master. void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) { assert(threadID >= 0 && threadID < MAX_THREADS); int i; bool allFinished = false; while (true) { // Slave threads can exit as soon as AllThreadsShouldExit raises, // master should exit as last one. if (allThreadsShouldExit) { assert(!sp); threads[threadID].state = THREAD_TERMINATED; return; } // If we are not thinking, wait for a condition to be signaled // instead of wasting CPU time polling for work. while ( threadID >= activeThreads || threads[threadID].state == THREAD_INITIALIZING || (useSleepingThreads && threads[threadID].state == THREAD_AVAILABLE)) { assert(!sp || useSleepingThreads); assert(threadID != 0 || useSleepingThreads); if (threads[threadID].state == THREAD_INITIALIZING) threads[threadID].state = THREAD_AVAILABLE; // Grab the lock to avoid races with wake_sleeping_thread() lock_grab(&sleepLock[threadID]); // If we are master and all slaves have finished do not go to sleep for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} allFinished = (i == activeThreads); if (allFinished || allThreadsShouldExit) { lock_release(&sleepLock[threadID]); break; } // Do sleep here after retesting sleep conditions if (threadID >= activeThreads || threads[threadID].state == THREAD_AVAILABLE) cond_wait(&sleepCond[threadID], &sleepLock[threadID]); lock_release(&sleepLock[threadID]); } // If this thread has been assigned work, launch a search if (threads[threadID].state == THREAD_WORKISWAITING) { assert(!allThreadsShouldExit); threads[threadID].state = THREAD_SEARCHING; // Copy SplitPoint position and search stack and call search() // with SplitPoint template parameter set to true. SearchStack ss[PLY_MAX_PLUS_2]; SplitPoint* tsp = threads[threadID].splitPoint; Position pos(*tsp->pos, threadID); memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack)); (ss+1)->sp = tsp; if (tsp->pvNode) search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply); else search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply); assert(threads[threadID].state == THREAD_SEARCHING); threads[threadID].state = THREAD_AVAILABLE; // Wake up master thread so to allow it to return from the idle loop in // case we are the last slave of the split point. if (useSleepingThreads && threadID != tsp->master && threads[tsp->master].state == THREAD_AVAILABLE) wake_sleeping_thread(tsp->master); } // If this thread is the master of a split point and all slaves have // finished their work at this split point, return from the idle loop. for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} allFinished = (i == activeThreads); if (allFinished) { // Because sp->slaves[] is reset under lock protection, // be sure sp->lock has been released before to return. lock_grab(&(sp->lock)); lock_release(&(sp->lock)); // In helpful master concept a master can help only a sub-tree, and // because here is all finished is not possible master is booked. assert(threads[threadID].state == THREAD_AVAILABLE); threads[threadID].state = THREAD_SEARCHING; return; } } } // init_threads() is called during startup. It launches all helper threads, // and initializes the split point stack and the global locks and condition // objects. void ThreadsManager::init_threads() { int i, arg[MAX_THREADS]; bool ok; // Initialize global locks lock_init(&mpLock); for (i = 0; i < MAX_THREADS; i++) { lock_init(&sleepLock[i]); cond_init(&sleepCond[i]); } // Initialize splitPoints[] locks for (i = 0; i < MAX_THREADS; i++) for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) lock_init(&(threads[i].splitPoints[j].lock)); // Will be set just before program exits to properly end the threads allThreadsShouldExit = false; // Threads will be put all threads to sleep as soon as created activeThreads = 1; // All threads except the main thread should be initialized to THREAD_INITIALIZING threads[0].state = THREAD_SEARCHING; for (i = 1; i < MAX_THREADS; i++) threads[i].state = THREAD_INITIALIZING; // Launch the helper threads for (i = 1; i < MAX_THREADS; i++) { arg[i] = i; #if !defined(_MSC_VER) pthread_t pthread[1]; ok = (pthread_create(pthread, NULL, init_thread, (void*)(&arg[i])) == 0); pthread_detach(pthread[0]); #else ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&arg[i]), 0, NULL) != NULL); #endif if (!ok) { cout << "Failed to create thread number " << i << endl; exit(EXIT_FAILURE); } // Wait until the thread has finished launching and is gone to sleep while (threads[i].state == THREAD_INITIALIZING) {} } } // exit_threads() is called when the program exits. It makes all the // helper threads exit cleanly. void ThreadsManager::exit_threads() { allThreadsShouldExit = true; // Let the woken up threads to exit idle_loop() // Wake up all the threads and waits for termination for (int i = 1; i < MAX_THREADS; i++) { wake_sleeping_thread(i); while (threads[i].state != THREAD_TERMINATED) {} } // Now we can safely destroy the locks for (int i = 0; i < MAX_THREADS; i++) for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) lock_destroy(&(threads[i].splitPoints[j].lock)); lock_destroy(&mpLock); // Now we can safely destroy the wait conditions for (int i = 0; i < MAX_THREADS; i++) { lock_destroy(&sleepLock[i]); cond_destroy(&sleepCond[i]); } } // cutoff_at_splitpoint() checks whether a beta cutoff has occurred in // the thread's currently active split point, or in some ancestor of // the current split point. bool ThreadsManager::cutoff_at_splitpoint(int threadID) const { assert(threadID >= 0 && threadID < activeThreads); SplitPoint* sp = threads[threadID].splitPoint; for ( ; sp && !sp->betaCutoff; sp = sp->parent) {} return sp != NULL; } // thread_is_available() checks whether the thread with threadID "slave" is // available to help the thread with threadID "master" at a split point. An // obvious requirement is that "slave" must be idle. With more than two // threads, this is not by itself sufficient: If "slave" is the master of // some active split point, it is only available as a slave to the other // threads which are busy searching the split point at the top of "slave"'s // split point stack (the "helpful master concept" in YBWC terminology). bool ThreadsManager::thread_is_available(int slave, int master) const { assert(slave >= 0 && slave < activeThreads); assert(master >= 0 && master < activeThreads); assert(activeThreads > 1); if (threads[slave].state != THREAD_AVAILABLE || slave == master) return false; // Make a local copy to be sure doesn't change under our feet int localActiveSplitPoints = threads[slave].activeSplitPoints; // No active split points means that the thread is available as // a slave for any other thread. if (localActiveSplitPoints == 0 || activeThreads == 2) return true; // Apply the "helpful master" concept if possible. Use localActiveSplitPoints // that is known to be > 0, instead of threads[slave].activeSplitPoints that // could have been set to 0 by another thread leading to an out of bound access. if (threads[slave].splitPoints[localActiveSplitPoints - 1].slaves[master]) return true; return false; } // available_thread_exists() tries to find an idle thread which is available as // a slave for the thread with threadID "master". bool ThreadsManager::available_thread_exists(int master) const { assert(master >= 0 && master < activeThreads); assert(activeThreads > 1); for (int i = 0; i < activeThreads; i++) if (thread_is_available(i, master)) return true; return false; } // split() does the actual work of distributing the work at a node between // several available threads. If it does not succeed in splitting the // node (because no idle threads are available, or because we have no unused // split point objects), the function immediately returns. If splitting is // possible, a SplitPoint object is initialized with all the data that must be // copied to the helper threads and we tell our helper threads that they have // been assigned work. This will cause them to instantly leave their idle loops and // call search().When all threads have returned from search() then split() returns. template void ThreadsManager::split(Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue, Depth depth, Move threatMove, bool mateThreat, int moveCount, MovePicker* mp, bool pvNode) { assert(pos.is_ok()); assert(ply > 0 && ply < PLY_MAX); assert(*bestValue >= -VALUE_INFINITE); assert(*bestValue <= *alpha); assert(*alpha < beta); assert(beta <= VALUE_INFINITE); assert(depth > DEPTH_ZERO); assert(pos.thread() >= 0 && pos.thread() < activeThreads); assert(activeThreads > 1); int i, master = pos.thread(); Thread& masterThread = threads[master]; lock_grab(&mpLock); // If no other thread is available to help us, or if we have too many // active split points, don't split. if ( !available_thread_exists(master) || masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS) { lock_release(&mpLock); return; } // Pick the next available split point object from the split point stack SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++]; // Initialize the split point object splitPoint.parent = masterThread.splitPoint; splitPoint.master = master; splitPoint.betaCutoff = false; splitPoint.ply = ply; splitPoint.depth = depth; splitPoint.threatMove = threatMove; splitPoint.mateThreat = mateThreat; splitPoint.alpha = *alpha; splitPoint.beta = beta; splitPoint.pvNode = pvNode; splitPoint.bestValue = *bestValue; splitPoint.mp = mp; splitPoint.moveCount = moveCount; splitPoint.pos = &pos; splitPoint.nodes = 0; splitPoint.ss = ss; for (i = 0; i < activeThreads; i++) splitPoint.slaves[i] = 0; masterThread.splitPoint = &splitPoint; // If we are here it means we are not available assert(masterThread.state != THREAD_AVAILABLE); int workersCnt = 1; // At least the master is included // Allocate available threads setting state to THREAD_BOOKED for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++) if (thread_is_available(i, master)) { threads[i].state = THREAD_BOOKED; threads[i].splitPoint = &splitPoint; splitPoint.slaves[i] = 1; workersCnt++; } assert(Fake || workersCnt > 1); // We can release the lock because slave threads are already booked and master is not available lock_release(&mpLock); // Tell the threads that they have work to do. This will make them leave // their idle loop. for (i = 0; i < activeThreads; i++) if (i == master || splitPoint.slaves[i]) { assert(i == master || threads[i].state == THREAD_BOOKED); threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop() if (useSleepingThreads && i != master) wake_sleeping_thread(i); } // Everything is set up. The master thread enters the idle loop, from // which it will instantly launch a search, because its state is // THREAD_WORKISWAITING. We send the split point as a second parameter to the // idle loop, which means that the main thread will return from the idle // loop when all threads have finished their work at this split point. idle_loop(master, &splitPoint); // We have returned from the idle loop, which means that all threads are // finished. Update alpha and bestValue, and return. lock_grab(&mpLock); *alpha = splitPoint.alpha; *bestValue = splitPoint.bestValue; masterThread.activeSplitPoints--; masterThread.splitPoint = splitPoint.parent; pos.set_nodes_searched(pos.nodes_searched() + splitPoint.nodes); lock_release(&mpLock); } // wake_sleeping_thread() wakes up the thread with the given threadID // when it is time to start a new search. void ThreadsManager::wake_sleeping_thread(int threadID) { lock_grab(&sleepLock[threadID]); cond_signal(&sleepCond[threadID]); lock_release(&sleepLock[threadID]); } /// RootMove and RootMoveList method's definitions RootMove::RootMove() { nodes = 0; pv_score = non_pv_score = -VALUE_INFINITE; pv[0] = MOVE_NONE; } RootMove& RootMove::operator=(const RootMove& rm) { const Move* src = rm.pv; Move* dst = pv; // Avoid a costly full rm.pv[] copy do *dst++ = *src; while (*src++ != MOVE_NONE); nodes = rm.nodes; pv_score = rm.pv_score; non_pv_score = rm.non_pv_score; return *this; } // extract_pv_from_tt() builds a PV by adding moves from the transposition table. // We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This // allow to always have a ponder move even when we fail high at root and also a // long PV to print that is important for position analysis. void RootMove::extract_pv_from_tt(Position& pos) { StateInfo state[PLY_MAX_PLUS_2], *st = state; TTEntry* tte; int ply = 1; assert(pv[0] != MOVE_NONE && move_is_legal(pos, pv[0])); pos.do_move(pv[0], *st++); while ( (tte = TT.retrieve(pos.get_key())) != NULL && tte->move() != MOVE_NONE && move_is_legal(pos, tte->move()) && ply < PLY_MAX && (!pos.is_draw() || ply < 2)) { pv[ply] = tte->move(); pos.do_move(pv[ply++], *st++); } pv[ply] = MOVE_NONE; do pos.undo_move(pv[--ply]); while (ply); } // insert_pv_in_tt() is called at the end of a search iteration, and inserts // the PV back into the TT. This makes sure the old PV moves are searched // first, even if the old TT entries have been overwritten. void RootMove::insert_pv_in_tt(Position& pos) { StateInfo state[PLY_MAX_PLUS_2], *st = state; TTEntry* tte; Key k; Value v, m = VALUE_NONE; int ply = 0; assert(pv[0] != MOVE_NONE && move_is_legal(pos, pv[0])); do { k = pos.get_key(); tte = TT.retrieve(k); // Don't overwrite existing correct entries if (!tte || tte->move() != pv[ply]) { v = (pos.is_check() ? VALUE_NONE : evaluate(pos, m)); TT.store(k, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, pv[ply], v, m); } pos.do_move(pv[ply], *st++); } while (pv[++ply] != MOVE_NONE); do pos.undo_move(pv[--ply]); while (ply); } // pv_info_to_uci() returns a string with information on the current PV line // formatted according to UCI specification. It is called at each iteration // or after a new pv is found. std::string RootMove::pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvLine) { std::stringstream s, l; Move* m = pv; while (*m != MOVE_NONE) l << *m++ << " "; s << "info depth " << depth << " seldepth " << int(m - pv) << " multipv " << pvLine + 1 << " score " << value_to_uci(pv_score) << (pv_score >= beta ? " lowerbound" : pv_score <= alpha ? " upperbound" : "") << speed_to_uci(pos.nodes_searched()) << " pv " << l.str(); return s.str(); } void RootMoveList::init(Position& pos, Move searchMoves[]) { MoveStack mlist[MOVES_MAX]; Move* sm; clear(); bestMoveChanges = 0; // Generate all legal moves and add them to RootMoveList MoveStack* last = generate(pos, mlist); for (MoveStack* cur = mlist; cur != last; cur++) { // If we have a searchMoves[] list then verify cur->move // is in the list before to add it. for (sm = searchMoves; *sm && *sm != cur->move; sm++) {} if (searchMoves[0] && *sm != cur->move) continue; RootMove rm; rm.pv[0] = cur->move; rm.pv[1] = MOVE_NONE; rm.pv_score = -VALUE_INFINITE; push_back(rm); } } } // namespace