/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2009 Marco Costalba Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //// //// Includes //// #include #include #include #include #include #include "book.h" #include "evaluate.h" #include "history.h" #include "misc.h" #include "movegen.h" #include "movepick.h" #include "lock.h" #include "san.h" #include "search.h" #include "thread.h" #include "tt.h" #include "ucioption.h" //// //// Local definitions //// namespace { /// Types // IterationInfoType stores search results for each iteration // // Because we use relatively small (dynamic) aspiration window, // there happens many fail highs and fail lows in root. And // because we don't do researches in those cases, "value" stored // here is not necessarily exact. Instead in case of fail high/low // we guess what the right value might be and store our guess // as a "speculated value" and then move on. Speculated values are // used just to calculate aspiration window width, so also if are // not exact is not big a problem. struct IterationInfoType { IterationInfoType(Value v = Value(0), Value sv = Value(0)) : value(v), speculatedValue(sv) {} Value value, speculatedValue; }; // The BetaCounterType class is used to order moves at ply one. // Apart for the first one that has its score, following moves // normally have score -VALUE_INFINITE, so are ordered according // to the number of beta cutoffs occurred under their subtree during // the last iteration. The counters are per thread variables to avoid // concurrent accessing under SMP case. struct BetaCounterType { BetaCounterType(); void clear(); void add(Color us, Depth d, int threadID); void read(Color us, int64_t& our, int64_t& their); }; // The RootMove class is used for moves at the root at the tree. For each // root move, we store a score, a node count, and a PV (really a refutation // in the case of moves which fail low). struct RootMove { RootMove(); bool operator<(const RootMove&); // used to sort Move move; Value score; int64_t nodes, cumulativeNodes; Move pv[PLY_MAX_PLUS_2]; int64_t ourBeta, theirBeta; }; // The RootMoveList class is essentially an array of RootMove objects, with // a handful of methods for accessing the data in the individual moves. class RootMoveList { public: RootMoveList(Position& pos, Move searchMoves[]); inline Move get_move(int moveNum) const; inline Value get_move_score(int moveNum) const; inline void set_move_score(int moveNum, Value score); inline void set_move_nodes(int moveNum, int64_t nodes); inline void set_beta_counters(int moveNum, int64_t our, int64_t their); void set_move_pv(int moveNum, const Move pv[]); inline Move get_move_pv(int moveNum, int i) const; inline int64_t get_move_cumulative_nodes(int moveNum) const; inline int move_count() const; Move scan_for_easy_move() const; inline void sort(); void sort_multipv(int n); private: static const int MaxRootMoves = 500; RootMove moves[MaxRootMoves]; int count; }; /// Constants // Search depth at iteration 1 const Depth InitialDepth = OnePly /*+ OnePly/2*/; // Depth limit for selective search const Depth SelectiveDepth = 7 * OnePly; // Use internal iterative deepening? const bool UseIIDAtPVNodes = true; const bool UseIIDAtNonPVNodes = false; // Internal iterative deepening margin. At Non-PV moves, when // UseIIDAtNonPVNodes is true, we do an internal iterative deepening // search when the static evaluation is at most IIDMargin below beta. const Value IIDMargin = Value(0x100); // Easy move margin. An easy move candidate must be at least this much // better than the second best move. const Value EasyMoveMargin = Value(0x200); // Problem margin. If the score of the first move at iteration N+1 has // dropped by more than this since iteration N, the boolean variable // "Problem" is set to true, which will make the program spend some extra // time looking for a better move. const Value ProblemMargin = Value(0x28); // No problem margin. If the boolean "Problem" is true, and a new move // is found at the root which is less than NoProblemMargin worse than the // best move from the previous iteration, Problem is set back to false. const Value NoProblemMargin = Value(0x14); // Null move margin. A null move search will not be done if the approximate // evaluation of the position is more than NullMoveMargin below beta. const Value NullMoveMargin = Value(0x300); // Pruning criterions. See the code and comments in ok_to_prune() to // understand their precise meaning. const bool PruneEscapeMoves = false; const bool PruneDefendingMoves = false; const bool PruneBlockingMoves = false; // Margins for futility pruning in the quiescence search, and at frontier // and near frontier nodes. const Value FutilityMarginQS = Value(0x80); // Remaining depth: 1 ply 1.5 ply 2 ply 2.5 ply 3 ply 3.5 ply const Value FutilityMargins[12] = { Value(0x100), Value(0x120), Value(0x200), Value(0x220), Value(0x250), Value(0x270), // 4 ply 4.5 ply 5 ply 5.5 ply 6 ply 6.5 ply Value(0x2A0), Value(0x2C0), Value(0x340), Value(0x360), Value(0x3A0), Value(0x3C0) }; // Razoring const Depth RazorDepth = 4*OnePly; // Remaining depth: 1 ply 1.5 ply 2 ply 2.5 ply 3 ply 3.5 ply const Value RazorMargins[6] = { Value(0x180), Value(0x300), Value(0x300), Value(0x3C0), Value(0x3C0), Value(0x3C0) }; // Remaining depth: 1 ply 1.5 ply 2 ply 2.5 ply 3 ply 3.5 ply const Value RazorApprMargins[6] = { Value(0x520), Value(0x300), Value(0x300), Value(0x300), Value(0x300), Value(0x300) }; /// Variables initialized by UCI options // Minimum number of full depth (i.e. non-reduced) moves at PV and non-PV nodes int LMRPVMoves, LMRNonPVMoves; // heavy SMP read access for the latter // Depth limit for use of dynamic threat detection Depth ThreatDepth; // heavy SMP read access // Last seconds noise filtering (LSN) const bool UseLSNFiltering = true; const int LSNTime = 4000; // In milliseconds const Value LSNValue = value_from_centipawns(200); bool loseOnTime = false; // Extensions. Array index 0 is used at non-PV nodes, index 1 at PV nodes. // There is heavy SMP read access on these arrays Depth CheckExtension[2], SingleReplyExtension[2], PawnPushTo7thExtension[2]; Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2]; // Iteration counters int Iteration; BetaCounterType BetaCounter; // has per-thread internal data // Scores and number of times the best move changed for each iteration IterationInfoType IterationInfo[PLY_MAX_PLUS_2]; int BestMoveChangesByIteration[PLY_MAX_PLUS_2]; // MultiPV mode int MultiPV; // Time managment variables int SearchStartTime; int MaxNodes, MaxDepth; int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime; int RootMoveNumber; bool InfiniteSearch; bool PonderSearch; bool StopOnPonderhit; bool AbortSearch; // heavy SMP read access bool Quit; bool FailHigh; bool FailLow; bool Problem; // Show current line? bool ShowCurrentLine; // Log file bool UseLogFile; std::ofstream LogFile; // MP related variables int ActiveThreads = 1; Depth MinimumSplitDepth; int MaxThreadsPerSplitPoint; Thread Threads[THREAD_MAX]; Lock MPLock; Lock IOLock; bool AllThreadsShouldExit = false; const int MaxActiveSplitPoints = 8; SplitPoint SplitPointStack[THREAD_MAX][MaxActiveSplitPoints]; bool Idle = true; #if !defined(_MSC_VER) pthread_cond_t WaitCond; pthread_mutex_t WaitLock; #else HANDLE SitIdleEvent[THREAD_MAX]; #endif // Node counters, used only by thread[0] but try to keep in different // cache lines (64 bytes each) from the heavy SMP read accessed variables. int NodesSincePoll; int NodesBetweenPolls = 30000; // History table History H; /// Functions Value id_loop(const Position& pos, Move searchMoves[]); Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value alpha, Value beta); Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID); Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); void sp_search(SplitPoint* sp, int threadID); void sp_search_pv(SplitPoint* sp, int threadID); void init_node(SearchStack ss[], int ply, int threadID); void update_pv(SearchStack ss[], int ply); void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply); bool connected_moves(const Position& pos, Move m1, Move m2); bool value_is_mate(Value value); bool move_is_killer(Move m, const SearchStack& ss); Depth extension(const Position& pos, Move m, Depth depth, bool pvNode, bool capture, bool check, bool singleReply, bool mateThreat, bool* dangerous); bool ok_to_do_nullmove(const Position& pos); bool ok_to_prune(const Position& pos, Move m, Move threat, Depth d); bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply); void update_history(const Position& pos, Move m, Depth depth, Move movesSearched[], int moveCount); void update_killers(Move m, SearchStack& ss); bool fail_high_ply_1(); int current_search_time(); int nps(); void poll(); void ponderhit(); void print_current_line(SearchStack ss[], int ply, int threadID); void wait_for_stop_or_ponderhit(); void init_ss_array(SearchStack ss[]); void idle_loop(int threadID, SplitPoint* waitSp); void init_split_point_stack(); void destroy_split_point_stack(); bool thread_should_stop(int threadID); bool thread_is_available(int slave, int master); bool idle_thread_exists(int master); bool split(const Position& pos, SearchStack* ss, int ply, Value *alpha, Value *beta, Value *bestValue, const Value futilityValue, const Value approximateValue, Depth depth, int *moves, MovePicker *mp, Bitboard dcCandidates, int master, bool pvNode); void wake_sleeping_threads(); #if !defined(_MSC_VER) void *init_thread(void *threadID); #else DWORD WINAPI init_thread(LPVOID threadID); #endif } //// //// Functions //// /// perft() is our utility to verify move generation is bug free. All the /// legal moves up to given depth are generated and counted and the sum returned. int perft(Position& pos, Depth depth) { Move move; MovePicker mp = MovePicker(pos, MOVE_NONE, depth, H); Bitboard dcCandidates = pos.discovered_check_candidates(pos.side_to_move()); int sum = 0; // If we are at the last ply we don't need to do and undo // the moves, just to count them. if (depth <= OnePly) // Replace with '<' to test also qsearch { while ((move = mp.get_next_move()) != MOVE_NONE) sum++; return sum; } // Loop through all legal moves while ((move = mp.get_next_move()) != MOVE_NONE) { StateInfo st; pos.do_move(move, st, dcCandidates); sum += perft(pos, depth - OnePly); pos.undo_move(move); } return sum; } /// think() is the external interface to Stockfish's search, and is called when /// the program receives the UCI 'go' command. It initializes various /// search-related global variables, and calls root_search(). It returns false /// when a quit command is received during the search. bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, int time[], int increment[], int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) { // Look for a book move if (!infinite && !ponder && get_option_value_bool("OwnBook")) { Move bookMove; if (get_option_value_string("Book File") != OpeningBook.file_name()) OpeningBook.open("book.bin"); bookMove = OpeningBook.get_move(pos); if (bookMove != MOVE_NONE) { std::cout << "bestmove " << bookMove << std::endl; return true; } } // Initialize global search variables Idle = false; SearchStartTime = get_system_time(); for (int i = 0; i < THREAD_MAX; i++) { Threads[i].nodes = 0ULL; Threads[i].failHighPly1 = false; } NodesSincePoll = 0; InfiniteSearch = infinite; PonderSearch = ponder; StopOnPonderhit = false; AbortSearch = false; Quit = false; FailHigh = false; FailLow = false; Problem = false; ExactMaxTime = maxTime; // Read UCI option values TT.set_size(get_option_value_int("Hash")); if (button_was_pressed("Clear Hash")) { TT.clear(); loseOnTime = false; // reset at the beginning of a new game } bool PonderingEnabled = get_option_value_bool("Ponder"); MultiPV = get_option_value_int("MultiPV"); CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)")); CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)")); SingleReplyExtension[1] = Depth(get_option_value_int("Single Reply Extension (PV nodes)")); SingleReplyExtension[0] = Depth(get_option_value_int("Single Reply Extension (non-PV nodes)")); PawnPushTo7thExtension[1] = Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)")); PawnPushTo7thExtension[0] = Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)")); PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)")); PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)")); PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)")); PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)")); MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)")); MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)")); LMRPVMoves = get_option_value_int("Full Depth Moves (PV nodes)") + 1; LMRNonPVMoves = get_option_value_int("Full Depth Moves (non-PV nodes)") + 1; ThreatDepth = get_option_value_int("Threat Depth") * OnePly; Chess960 = get_option_value_bool("UCI_Chess960"); ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine"); UseLogFile = get_option_value_bool("Use Search Log"); if (UseLogFile) LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app); MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly; MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point"); read_weights(pos.side_to_move()); // Set the number of active threads int newActiveThreads = get_option_value_int("Threads"); if (newActiveThreads != ActiveThreads) { ActiveThreads = newActiveThreads; init_eval(ActiveThreads); } // Wake up sleeping threads wake_sleeping_threads(); for (int i = 1; i < ActiveThreads; i++) assert(thread_is_available(i, 0)); // Set thinking time int myTime = time[side_to_move]; int myIncrement = increment[side_to_move]; if (!movesToGo) // Sudden death time control { if (myIncrement) { MaxSearchTime = myTime / 30 + myIncrement; AbsoluteMaxSearchTime = Max(myTime / 4, myIncrement - 100); } else { // Blitz game without increment MaxSearchTime = myTime / 30; AbsoluteMaxSearchTime = myTime / 8; } } else // (x moves) / (y minutes) { if (movesToGo == 1) { MaxSearchTime = myTime / 2; AbsoluteMaxSearchTime = (myTime > 3000)? (myTime - 500) : ((myTime * 3) / 4); } else { MaxSearchTime = myTime / Min(movesToGo, 20); AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3); } } if (PonderingEnabled) { MaxSearchTime += MaxSearchTime / 4; MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime); } // Fixed depth or fixed number of nodes? MaxDepth = maxDepth; if (MaxDepth) InfiniteSearch = true; // HACK MaxNodes = maxNodes; if (MaxNodes) { NodesBetweenPolls = Min(MaxNodes, 30000); InfiniteSearch = true; // HACK } else if (myTime && myTime < 1000) NodesBetweenPolls = 1000; else if (myTime && myTime < 5000) NodesBetweenPolls = 5000; else NodesBetweenPolls = 30000; // Write information to search log file if (UseLogFile) LogFile << "Searching: " << pos.to_fen() << std::endl << "infinite: " << infinite << " ponder: " << ponder << " time: " << myTime << " increment: " << myIncrement << " moves to go: " << movesToGo << std::endl; // We're ready to start thinking. Call the iterative deepening loop function // // FIXME we really need to cleanup all this LSN ugliness if (!loseOnTime) { Value v = id_loop(pos, searchMoves); loseOnTime = ( UseLSNFiltering && myTime < LSNTime && myIncrement == 0 && v < -LSNValue); } else { loseOnTime = false; // reset for next match while (SearchStartTime + myTime + 1000 > get_system_time()) ; // wait here id_loop(pos, searchMoves); // to fail gracefully } if (UseLogFile) LogFile.close(); Idle = true; return !Quit; } /// init_threads() is called during startup. It launches all helper threads, /// and initializes the split point stack and the global locks and condition /// objects. void init_threads() { volatile int i; #if !defined(_MSC_VER) pthread_t pthread[1]; #endif for (i = 0; i < THREAD_MAX; i++) Threads[i].activeSplitPoints = 0; // Initialize global locks lock_init(&MPLock, NULL); lock_init(&IOLock, NULL); init_split_point_stack(); #if !defined(_MSC_VER) pthread_mutex_init(&WaitLock, NULL); pthread_cond_init(&WaitCond, NULL); #else for (i = 0; i < THREAD_MAX; i++) SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0); #endif // All threads except the main thread should be initialized to idle state for (i = 1; i < THREAD_MAX; i++) { Threads[i].stop = false; Threads[i].workIsWaiting = false; Threads[i].idle = true; Threads[i].running = false; } // Launch the helper threads for(i = 1; i < THREAD_MAX; i++) { #if !defined(_MSC_VER) pthread_create(pthread, NULL, init_thread, (void*)(&i)); #else DWORD iID[1]; CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID); #endif // Wait until the thread has finished launching while (!Threads[i].running); } } /// stop_threads() is called when the program exits. It makes all the /// helper threads exit cleanly. void stop_threads() { ActiveThreads = THREAD_MAX; // HACK Idle = false; // HACK wake_sleeping_threads(); AllThreadsShouldExit = true; for (int i = 1; i < THREAD_MAX; i++) { Threads[i].stop = true; while(Threads[i].running); } destroy_split_point_stack(); } /// nodes_searched() returns the total number of nodes searched so far in /// the current search. int64_t nodes_searched() { int64_t result = 0ULL; for (int i = 0; i < ActiveThreads; i++) result += Threads[i].nodes; return result; } // SearchStack::init() initializes a search stack. Used at the beginning of a // new search from the root. void SearchStack::init(int ply) { pv[ply] = pv[ply + 1] = MOVE_NONE; currentMove = threatMove = MOVE_NONE; reduction = Depth(0); } void SearchStack::initKillers() { mateKiller = MOVE_NONE; for (int i = 0; i < KILLER_MAX; i++) killers[i] = MOVE_NONE; } namespace { // id_loop() is the main iterative deepening loop. It calls root_search // repeatedly with increasing depth until the allocated thinking time has // been consumed, the user stops the search, or the maximum search depth is // reached. Value id_loop(const Position& pos, Move searchMoves[]) { Position p(pos); SearchStack ss[PLY_MAX_PLUS_2]; // searchMoves are verified, copied, scored and sorted RootMoveList rml(p, searchMoves); // Print RootMoveList c'tor startup scoring to the standard output, // so that we print information also for iteration 1. std::cout << "info depth " << 1 << "\ninfo depth " << 1 << " score " << value_to_string(rml.get_move_score(0)) << " time " << current_search_time() << " nodes " << nodes_searched() << " nps " << nps() << " pv " << rml.get_move(0) << "\n"; // Initialize TT.new_search(); H.clear(); init_ss_array(ss); IterationInfo[1] = IterationInfoType(rml.get_move_score(0), rml.get_move_score(0)); Iteration = 1; Move EasyMove = rml.scan_for_easy_move(); // Iterative deepening loop while (Iteration < PLY_MAX) { // Initialize iteration rml.sort(); Iteration++; BestMoveChangesByIteration[Iteration] = 0; if (Iteration <= 5) ExtraSearchTime = 0; std::cout << "info depth " << Iteration << std::endl; // Calculate dynamic search window based on previous iterations Value alpha, beta; if (MultiPV == 1 && Iteration >= 6 && abs(IterationInfo[Iteration - 1].value) < VALUE_KNOWN_WIN) { int prevDelta1 = IterationInfo[Iteration - 1].speculatedValue - IterationInfo[Iteration - 2].speculatedValue; int prevDelta2 = IterationInfo[Iteration - 2].speculatedValue - IterationInfo[Iteration - 3].speculatedValue; int delta = Max(2 * abs(prevDelta1) + abs(prevDelta2), ProblemMargin); alpha = Max(IterationInfo[Iteration - 1].value - delta, -VALUE_INFINITE); beta = Min(IterationInfo[Iteration - 1].value + delta, VALUE_INFINITE); } else { alpha = - VALUE_INFINITE; beta = VALUE_INFINITE; } // Search to the current depth Value value = root_search(p, ss, rml, alpha, beta); // Write PV to transposition table, in case the relevant entries have // been overwritten during the search. TT.insert_pv(p, ss[0].pv); if (AbortSearch) break; // Value cannot be trusted. Break out immediately! //Save info about search result Value speculatedValue; bool fHigh = false; bool fLow = false; Value delta = value - IterationInfo[Iteration - 1].value; if (value >= beta) { assert(delta > 0); fHigh = true; speculatedValue = value + delta; BestMoveChangesByIteration[Iteration] += 2; // Allocate more time } else if (value <= alpha) { assert(value == alpha); assert(delta < 0); fLow = true; speculatedValue = value + delta; BestMoveChangesByIteration[Iteration] += 3; // Allocate more time } else speculatedValue = value; speculatedValue = Min(Max(speculatedValue, -VALUE_INFINITE), VALUE_INFINITE); IterationInfo[Iteration] = IterationInfoType(value, speculatedValue); // Erase the easy move if it differs from the new best move if (ss[0].pv[0] != EasyMove) EasyMove = MOVE_NONE; Problem = false; if (!InfiniteSearch) { // Time to stop? bool stopSearch = false; // Stop search early if there is only a single legal move if (Iteration >= 6 && rml.move_count() == 1) stopSearch = true; // Stop search early when the last two iterations returned a mate score if ( Iteration >= 6 && abs(IterationInfo[Iteration].value) >= abs(VALUE_MATE) - 100 && abs(IterationInfo[Iteration-1].value) >= abs(VALUE_MATE) - 100) stopSearch = true; // Stop search early if one move seems to be much better than the rest int64_t nodes = nodes_searched(); if ( Iteration >= 8 && !fLow && !fHigh && EasyMove == ss[0].pv[0] && ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100 && current_search_time() > MaxSearchTime / 16) ||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100 && current_search_time() > MaxSearchTime / 32))) stopSearch = true; // Add some extra time if the best move has changed during the last two iterations if (Iteration > 5 && Iteration <= 50) ExtraSearchTime = BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2) + BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3); // Stop search if most of MaxSearchTime is consumed at the end of the // iteration. We probably don't have enough time to search the first // move at the next iteration anyway. if (current_search_time() > ((MaxSearchTime + ExtraSearchTime)*80) / 128) stopSearch = true; if (stopSearch) { //FIXME: Implement fail-low emergency measures if (!PonderSearch) break; else StopOnPonderhit = true; } } if (MaxDepth && Iteration >= MaxDepth) break; } rml.sort(); // If we are pondering, we shouldn't print the best move before we // are told to do so if (PonderSearch) wait_for_stop_or_ponderhit(); else // Print final search statistics std::cout << "info nodes " << nodes_searched() << " nps " << nps() << " time " << current_search_time() << " hashfull " << TT.full() << std::endl; // Print the best move and the ponder move to the standard output if (ss[0].pv[0] == MOVE_NONE) { ss[0].pv[0] = rml.get_move(0); ss[0].pv[1] = MOVE_NONE; } std::cout << "bestmove " << ss[0].pv[0]; if (ss[0].pv[1] != MOVE_NONE) std::cout << " ponder " << ss[0].pv[1]; std::cout << std::endl; if (UseLogFile) { if (dbg_show_mean) dbg_print_mean(LogFile); if (dbg_show_hit_rate) dbg_print_hit_rate(LogFile); StateInfo st; LogFile << "Nodes: " << nodes_searched() << std::endl << "Nodes/second: " << nps() << std::endl << "Best move: " << move_to_san(p, ss[0].pv[0]) << std::endl; p.do_move(ss[0].pv[0], st); LogFile << "Ponder move: " << move_to_san(p, ss[0].pv[1]) << std::endl << std::endl; } return rml.get_move_score(0); } // root_search() is the function which searches the root node. It is // similar to search_pv except that it uses a different move ordering // scheme (perhaps we should try to use this at internal PV nodes, too?) // and prints some information to the standard output. Value root_search(Position& pos, SearchStack ss[], RootMoveList &rml, Value alpha, Value beta) { Value oldAlpha = alpha; Value value; Bitboard dcCandidates = pos.discovered_check_candidates(pos.side_to_move()); // Loop through all the moves in the root move list for (int i = 0; i < rml.move_count() && !AbortSearch; i++) { if (alpha >= beta) { // We failed high, invalidate and skip next moves, leave node-counters // and beta-counters as they are and quickly return, we will try to do // a research at the next iteration with a bigger aspiration window. rml.set_move_score(i, -VALUE_INFINITE); continue; } int64_t nodes; Move move; StateInfo st; Depth ext, newDepth; RootMoveNumber = i + 1; FailHigh = false; // Remember the node count before the move is searched. The node counts // are used to sort the root moves at the next iteration. nodes = nodes_searched(); // Reset beta cut-off counters BetaCounter.clear(); // Pick the next root move, and print the move and the move number to // the standard output. move = ss[0].currentMove = rml.get_move(i); if (current_search_time() >= 1000) std::cout << "info currmove " << move << " currmovenumber " << i + 1 << std::endl; // Decide search depth for this move bool captureOrPromotion = pos.move_is_capture_or_promotion(move); bool dangerous; ext = extension(pos, move, Depth(100), true, captureOrPromotion, pos.move_is_check(move), false, false, &dangerous); newDepth = (Iteration - 2) * OnePly + ext + InitialDepth; // Make the move, and search it pos.do_move(move, st, dcCandidates); if (i < MultiPV) { // Aspiration window is disabled in multi-pv case if (MultiPV > 1) alpha = -VALUE_INFINITE; value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); // If the value has dropped a lot compared to the last iteration, // set the boolean variable Problem to true. This variable is used // for time managment: When Problem is true, we try to complete the // current iteration before playing a move. Problem = (Iteration >= 2 && value <= IterationInfo[Iteration-1].value - ProblemMargin); if (Problem && StopOnPonderhit) StopOnPonderhit = false; } else { if ( newDepth >= 3*OnePly && i >= MultiPV + LMRPVMoves && !dangerous && !captureOrPromotion && !move_is_castle(move)) { ss[0].reduction = OnePly; value = -search(pos, ss, -alpha, newDepth-OnePly, 1, true, 0); } else value = alpha + 1; // Just to trigger next condition if (value > alpha) { value = -search(pos, ss, -alpha, newDepth, 1, true, 0); if (value > alpha) { // Fail high! Set the boolean variable FailHigh to true, and // re-search the move with a big window. The variable FailHigh is // used for time managment: We try to avoid aborting the search // prematurely during a fail high research. FailHigh = true; value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); } } } pos.undo_move(move); // Finished searching the move. If AbortSearch is true, the search // was aborted because the user interrupted the search or because we // ran out of time. In this case, the return value of the search cannot // be trusted, and we break out of the loop without updating the best // move and/or PV. if (AbortSearch) break; // Remember the node count for this move. The node counts are used to // sort the root moves at the next iteration. rml.set_move_nodes(i, nodes_searched() - nodes); // Remember the beta-cutoff statistics int64_t our, their; BetaCounter.read(pos.side_to_move(), our, their); rml.set_beta_counters(i, our, their); assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE); if (value <= alpha && i >= MultiPV) rml.set_move_score(i, -VALUE_INFINITE); else { // PV move or new best move! // Update PV rml.set_move_score(i, value); update_pv(ss, 0); TT.extract_pv(pos, ss[0].pv, PLY_MAX); rml.set_move_pv(i, ss[0].pv); if (MultiPV == 1) { // We record how often the best move has been changed in each // iteration. This information is used for time managment: When // the best move changes frequently, we allocate some more time. if (i > 0) BestMoveChangesByIteration[Iteration]++; // Print search information to the standard output std::cout << "info depth " << Iteration << " score " << value_to_string(value) << ((value >= beta)? " lowerbound" : ((value <= alpha)? " upperbound" : "")) << " time " << current_search_time() << " nodes " << nodes_searched() << " nps " << nps() << " pv "; for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++) std::cout << ss[0].pv[j] << " "; std::cout << std::endl; if (UseLogFile) LogFile << pretty_pv(pos, current_search_time(), Iteration, nodes_searched(), value, ((value >= beta)? VALUE_TYPE_LOWER : ((value <= alpha)? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT)), ss[0].pv) << std::endl; if (value > alpha) alpha = value; // Reset the global variable Problem to false if the value isn't too // far below the final value from the last iteration. if (value > IterationInfo[Iteration - 1].value - NoProblemMargin) Problem = false; } else // MultiPV > 1 { rml.sort_multipv(i); for (int j = 0; j < Min(MultiPV, rml.move_count()); j++) { int k; std::cout << "info multipv " << j + 1 << " score " << value_to_string(rml.get_move_score(j)) << " depth " << ((j <= i)? Iteration : Iteration - 1) << " time " << current_search_time() << " nodes " << nodes_searched() << " nps " << nps() << " pv "; for (k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++) std::cout << rml.get_move_pv(j, k) << " "; std::cout << std::endl; } alpha = rml.get_move_score(Min(i, MultiPV-1)); } } // New best move case assert(alpha >= oldAlpha); FailLow = (alpha == oldAlpha); } return alpha; } // search_pv() is the main search function for PV nodes. Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta > alpha && beta <= VALUE_INFINITE); assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); Move movesSearched[256]; EvalInfo ei; StateInfo st; Bitboard dcCandidates; const TTEntry* tte; Move ttMove, move; Depth ext, newDepth; Value oldAlpha, value; bool isCheck, mateThreat, singleReply, moveIsCheck, captureOrPromotion, dangerous; int moveCount = 0; Value bestValue = -VALUE_INFINITE; if (depth < OnePly) return qsearch(pos, ss, alpha, beta, Depth(0), ply, threadID); // Initialize, and make an early exit in case of an aborted search, // an instant draw, maximum ply reached, etc. init_node(ss, ply, threadID); // After init_node() that calls poll() if (AbortSearch || thread_should_stop(threadID)) return Value(0); if (pos.is_draw()) return VALUE_DRAW; if (ply >= PLY_MAX - 1) return pos.is_check() ? quick_evaluate(pos) : evaluate(pos, ei, threadID); // Mate distance pruning oldAlpha = alpha; alpha = Max(value_mated_in(ply), alpha); beta = Min(value_mate_in(ply+1), beta); if (alpha >= beta) return alpha; // Transposition table lookup. At PV nodes, we don't use the TT for // pruning, but only for move ordering. tte = TT.retrieve(pos.get_key()); ttMove = (tte ? tte->move() : MOVE_NONE); // Go with internal iterative deepening if we don't have a TT move or // if search depth is more then 4*OnePly higher then TT move depth. if ( UseIIDAtPVNodes && depth >= 5*OnePly &&(!ttMove || depth > tte->depth() + 4*OnePly)) { search_pv(pos, ss, alpha, beta, depth-2*OnePly, ply, threadID); ttMove = ss[ply].pv[ply]; } // Initialize a MovePicker object for the current position, and prepare // to search all moves isCheck = pos.is_check(); mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move())); dcCandidates = pos.discovered_check_candidates(pos.side_to_move()); MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]); // Loop through all legal moves until no moves remain or a beta cutoff // occurs. while ( alpha < beta && (move = mp.get_next_move()) != MOVE_NONE && !thread_should_stop(threadID)) { assert(move_is_ok(move)); singleReply = (isCheck && mp.number_of_evasions() == 1); moveIsCheck = pos.move_is_check(move, dcCandidates); captureOrPromotion = pos.move_is_capture_or_promotion(move); movesSearched[moveCount++] = ss[ply].currentMove = move; // Decide the new search depth ext = extension(pos, move, depth, true, captureOrPromotion, moveIsCheck, singleReply, mateThreat, &dangerous); newDepth = depth - OnePly + ext; // Make and search the move pos.do_move(move, st, dcCandidates); if (moveCount == 1) // The first move in list is the PV value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID); else { // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. if ( depth >= 3*OnePly && moveCount >= LMRPVMoves && !dangerous && !captureOrPromotion && !move_is_castle(move) && !move_is_killer(move, ss[ply])) { ss[ply].reduction = OnePly; value = -search(pos, ss, -alpha, newDepth-OnePly, ply+1, true, threadID); } else value = alpha + 1; // Just to trigger next condition if (value > alpha) // Go with full depth non-pv search { ss[ply].reduction = Depth(0); value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID); if (value > alpha && value < beta) { // When the search fails high at ply 1 while searching the first // move at the root, set the flag failHighPly1. This is used for // time managment: We don't want to stop the search early in // such cases, because resolving the fail high at ply 1 could // result in a big drop in score at the root. if (ply == 1 && RootMoveNumber == 1) Threads[threadID].failHighPly1 = true; // A fail high occurred. Re-search at full window (pv search) value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID); Threads[threadID].failHighPly1 = false; } } } pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if (value > bestValue) { bestValue = value; if (value > alpha) { alpha = value; update_pv(ss, ply); if (value == value_mate_in(ply + 1)) ss[ply].mateKiller = move; } // If we are at ply 1, and we are searching the first root move at // ply 0, set the 'Problem' variable if the score has dropped a lot // (from the computer's point of view) since the previous iteration. if ( ply == 1 && Iteration >= 2 && -value <= IterationInfo[Iteration-1].value - ProblemMargin) Problem = true; } // Split? if ( ActiveThreads > 1 && bestValue < beta && depth >= MinimumSplitDepth && Iteration <= 99 && idle_thread_exists(threadID) && !AbortSearch && !thread_should_stop(threadID) && split(pos, ss, ply, &alpha, &beta, &bestValue, VALUE_NONE, VALUE_NONE, depth, &moveCount, &mp, dcCandidates, threadID, true)) break; } // All legal moves have been searched. A special case: If there were // no legal moves, it must be mate or stalemate. if (moveCount == 0) return (isCheck ? value_mated_in(ply) : VALUE_DRAW); // If the search is not aborted, update the transposition table, // history counters, and killer moves. if (AbortSearch || thread_should_stop(threadID)) return bestValue; if (bestValue <= oldAlpha) TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE); else if (bestValue >= beta) { BetaCounter.add(pos.side_to_move(), depth, threadID); move = ss[ply].pv[ply]; if (!pos.move_is_capture_or_promotion(move)) { update_history(pos, move, depth, movesSearched, moveCount); update_killers(move, ss[ply]); } TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move); } else TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss[ply].pv[ply]); return bestValue; } // search() is the search function for zero-width nodes. Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID) { assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); Move movesSearched[256]; EvalInfo ei; StateInfo st; Bitboard dcCandidates; const TTEntry* tte; Move ttMove, move; Depth ext, newDepth; Value approximateEval, nullValue, value, futilityValue; bool isCheck, useFutilityPruning, singleReply, moveIsCheck, captureOrPromotion, dangerous; bool mateThreat = false; int moveCount = 0; Value bestValue = -VALUE_INFINITE; if (depth < OnePly) return qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID); // Initialize, and make an early exit in case of an aborted search, // an instant draw, maximum ply reached, etc. init_node(ss, ply, threadID); // After init_node() that calls poll() if (AbortSearch || thread_should_stop(threadID)) return Value(0); if (pos.is_draw()) return VALUE_DRAW; if (ply >= PLY_MAX - 1) return pos.is_check() ? quick_evaluate(pos) : evaluate(pos, ei, threadID); // Mate distance pruning if (value_mated_in(ply) >= beta) return beta; if (value_mate_in(ply + 1) < beta) return beta - 1; // Transposition table lookup tte = TT.retrieve(pos.get_key()); ttMove = (tte ? tte->move() : MOVE_NONE); if (tte && ok_to_use_TT(tte, depth, beta, ply)) { ss[ply].currentMove = ttMove; // can be MOVE_NONE return value_from_tt(tte->value(), ply); } approximateEval = quick_evaluate(pos); isCheck = pos.is_check(); // Null move search if ( allowNullmove && depth > OnePly && !isCheck && !value_is_mate(beta) && ok_to_do_nullmove(pos) && approximateEval >= beta - NullMoveMargin) { ss[ply].currentMove = MOVE_NULL; pos.do_null_move(st); int R = (depth >= 5 * OnePly ? 4 : 3); // Null move dynamic reduction nullValue = -search(pos, ss, -(beta-1), depth-R*OnePly, ply+1, false, threadID); pos.undo_null_move(); if (nullValue >= beta) { if (depth < 6 * OnePly) return beta; // Do zugzwang verification search Value v = search(pos, ss, beta, depth-5*OnePly, ply, false, threadID); if (v >= beta) return beta; } else { // The null move failed low, which means that we may be faced with // some kind of threat. If the previous move was reduced, check if // the move that refuted the null move was somehow connected to the // move which was reduced. If a connection is found, return a fail // low score (which will cause the reduced move to fail high in the // parent node, which will trigger a re-search with full depth). if (nullValue == value_mated_in(ply + 2)) mateThreat = true; ss[ply].threatMove = ss[ply + 1].currentMove; if ( depth < ThreatDepth && ss[ply - 1].reduction && connected_moves(pos, ss[ply - 1].currentMove, ss[ply].threatMove)) return beta - 1; } } // Null move search not allowed, try razoring else if ( !value_is_mate(beta) && depth < RazorDepth && approximateEval < beta - RazorApprMargins[int(depth) - 2] && ss[ply - 1].currentMove != MOVE_NULL && ttMove == MOVE_NONE && !pos.has_pawn_on_7th(pos.side_to_move())) { Value v = qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID); if (v < beta - RazorMargins[int(depth) - 2]) return v; } // Go with internal iterative deepening if we don't have a TT move if (UseIIDAtNonPVNodes && ttMove == MOVE_NONE && depth >= 8*OnePly && evaluate(pos, ei, threadID) >= beta - IIDMargin) { search(pos, ss, beta, Min(depth/2, depth-2*OnePly), ply, false, threadID); ttMove = ss[ply].pv[ply]; } // Initialize a MovePicker object for the current position, and prepare // to search all moves. MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]); dcCandidates = pos.discovered_check_candidates(pos.side_to_move()); futilityValue = VALUE_NONE; useFutilityPruning = depth < SelectiveDepth && !isCheck; // Avoid calling evaluate() if we already have the score in TT if (tte && (tte->type() & VALUE_TYPE_EVAL)) futilityValue = value_from_tt(tte->value(), ply) + FutilityMargins[int(depth) - 2]; // Loop through all legal moves until no moves remain or a beta cutoff // occurs. while ( bestValue < beta && (move = mp.get_next_move()) != MOVE_NONE && !thread_should_stop(threadID)) { assert(move_is_ok(move)); singleReply = (isCheck && mp.number_of_evasions() == 1); moveIsCheck = pos.move_is_check(move, dcCandidates); captureOrPromotion = pos.move_is_capture_or_promotion(move); movesSearched[moveCount++] = ss[ply].currentMove = move; // Decide the new search depth ext = extension(pos, move, depth, false, captureOrPromotion, moveIsCheck, singleReply, mateThreat, &dangerous); newDepth = depth - OnePly + ext; // Futility pruning if ( useFutilityPruning && !dangerous && !captureOrPromotion) { // History pruning. See ok_to_prune() definition if ( moveCount >= 2 + int(depth) && ok_to_prune(pos, move, ss[ply].threatMove, depth) && bestValue > value_mated_in(PLY_MAX)) continue; // Value based pruning if (approximateEval < beta) { if (futilityValue == VALUE_NONE) futilityValue = evaluate(pos, ei, threadID) + FutilityMargins[int(depth) - 2]; if (futilityValue < beta) { if (futilityValue > bestValue) bestValue = futilityValue; continue; } } } // Make and search the move pos.do_move(move, st, dcCandidates); // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. if ( depth >= 3*OnePly && moveCount >= LMRNonPVMoves && !dangerous && !captureOrPromotion && !move_is_castle(move) && !move_is_killer(move, ss[ply])) { ss[ply].reduction = OnePly; value = -search(pos, ss, -(beta-1), newDepth-OnePly, ply+1, true, threadID); } else value = beta; // Just to trigger next condition if (value >= beta) // Go with full depth non-pv search { ss[ply].reduction = Depth(0); value = -search(pos, ss, -(beta-1), newDepth, ply+1, true, threadID); } pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if (value > bestValue) { bestValue = value; if (value >= beta) update_pv(ss, ply); if (value == value_mate_in(ply + 1)) ss[ply].mateKiller = move; } // Split? if ( ActiveThreads > 1 && bestValue < beta && depth >= MinimumSplitDepth && Iteration <= 99 && idle_thread_exists(threadID) && !AbortSearch && !thread_should_stop(threadID) && split(pos, ss, ply, &beta, &beta, &bestValue, futilityValue, approximateEval, depth, &moveCount, &mp, dcCandidates, threadID, false)) break; } // All legal moves have been searched. A special case: If there were // no legal moves, it must be mate or stalemate. if (moveCount == 0) return (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW); // If the search is not aborted, update the transposition table, // history counters, and killer moves. if (AbortSearch || thread_should_stop(threadID)) return bestValue; if (bestValue < beta) TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE); else { BetaCounter.add(pos.side_to_move(), depth, threadID); move = ss[ply].pv[ply]; if (!pos.move_is_capture_or_promotion(move)) { update_history(pos, move, depth, movesSearched, moveCount); update_killers(move, ss[ply]); } TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move); } assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // qsearch() is the quiescence search function, which is called by the main // search function when the remaining depth is zero (or, to be more precise, // less than OnePly). Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); assert(depth <= 0); assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); EvalInfo ei; StateInfo st; Bitboard dcCandidates; Move ttMove, move; Value staticValue, bestValue, value, futilityValue; bool isCheck, enoughMaterial; const TTEntry* tte = NULL; int moveCount = 0; bool pvNode = (beta - alpha != 1); // Initialize, and make an early exit in case of an aborted search, // an instant draw, maximum ply reached, etc. init_node(ss, ply, threadID); // After init_node() that calls poll() if (AbortSearch || thread_should_stop(threadID)) return Value(0); if (pos.is_draw()) return VALUE_DRAW; // Transposition table lookup, only when not in PV if (!pvNode) { tte = TT.retrieve(pos.get_key()); if (tte && ok_to_use_TT(tte, depth, beta, ply)) { assert(tte->type() != VALUE_TYPE_EVAL); return value_from_tt(tte->value(), ply); } } ttMove = (tte ? tte->move() : MOVE_NONE); // Evaluate the position statically isCheck = pos.is_check(); ei.futilityMargin = Value(0); // Manually initialize futilityMargin if (isCheck) staticValue = -VALUE_INFINITE; else if (tte && (tte->type() & VALUE_TYPE_EVAL)) { // Use the cached evaluation score if possible assert(ei.futilityMargin == Value(0)); staticValue = tte->value(); } else staticValue = evaluate(pos, ei, threadID); if (ply >= PLY_MAX - 1) return pos.is_check() ? quick_evaluate(pos) : evaluate(pos, ei, threadID); // Initialize "stand pat score", and return it immediately if it is // at least beta. bestValue = staticValue; if (bestValue >= beta) { // Store the score to avoid a future costly evaluation() call if (!isCheck && !tte && ei.futilityMargin == 0) TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EV_LO, Depth(-127*OnePly), MOVE_NONE); return bestValue; } if (bestValue > alpha) alpha = bestValue; // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions and checks (only if depth == 0) will be generated. MovePicker mp = MovePicker(pos, ttMove, depth, H); dcCandidates = pos.discovered_check_candidates(pos.side_to_move()); enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame; // Loop through the moves until no moves remain or a beta cutoff // occurs. while ( alpha < beta && (move = mp.get_next_move()) != MOVE_NONE) { assert(move_is_ok(move)); moveCount++; ss[ply].currentMove = move; // Futility pruning if ( enoughMaterial && !isCheck && !pvNode && !move_is_promotion(move) && !pos.move_is_check(move, dcCandidates) && !pos.move_is_passed_pawn_push(move)) { futilityValue = staticValue + Max(pos.midgame_value_of_piece_on(move_to(move)), pos.endgame_value_of_piece_on(move_to(move))) + (move_is_ep(move) ? PawnValueEndgame : Value(0)) + FutilityMarginQS + ei.futilityMargin; if (futilityValue < alpha) { if (futilityValue > bestValue) bestValue = futilityValue; continue; } } // Don't search captures and checks with negative SEE values if ( !isCheck && move != ttMove && !move_is_promotion(move) && pos.see_sign(move) < 0) continue; // Make and search the move pos.do_move(move, st, dcCandidates); value = -qsearch(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID); pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if (value > bestValue) { bestValue = value; if (value > alpha) { alpha = value; update_pv(ss, ply); } } } // All legal moves have been searched. A special case: If we're in check // and no legal moves were found, it is checkmate. if (!moveCount && pos.is_check()) // Mate! return value_mated_in(ply); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); // Update transposition table move = ss[ply].pv[ply]; if (!pvNode) { // If bestValue isn't changed it means it is still the static evaluation of // the node, so keep this info to avoid a future costly evaluation() call. ValueType type = (bestValue == staticValue && !ei.futilityMargin ? VALUE_TYPE_EV_UP : VALUE_TYPE_UPPER); Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1)); if (bestValue < beta) TT.store(pos.get_key(), value_to_tt(bestValue, ply), type, d, MOVE_NONE); else TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move); } // Update killers only for good check moves if (alpha >= beta && !pos.move_is_capture_or_promotion(move)) update_killers(move, ss[ply]); return bestValue; } // sp_search() is used to search from a split point. This function is called // by each thread working at the split point. It is similar to the normal // search() function, but simpler. Because we have already probed the hash // table, done a null move search, and searched the first move before // splitting, we don't have to repeat all this work in sp_search(). We // also don't need to store anything to the hash table here: This is taken // care of after we return from the split point. void sp_search(SplitPoint* sp, int threadID) { assert(threadID >= 0 && threadID < ActiveThreads); assert(ActiveThreads > 1); Position pos = Position(sp->pos); SearchStack* ss = sp->sstack[threadID]; Value value; Move move; bool isCheck = pos.is_check(); bool useFutilityPruning = sp->depth < SelectiveDepth && !isCheck; while ( sp->bestValue < sp->beta && !thread_should_stop(threadID) && (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE) { assert(move_is_ok(move)); bool moveIsCheck = pos.move_is_check(move, sp->dcCandidates); bool captureOrPromotion = pos.move_is_capture_or_promotion(move); lock_grab(&(sp->lock)); int moveCount = ++sp->moves; lock_release(&(sp->lock)); ss[sp->ply].currentMove = move; // Decide the new search depth. bool dangerous; Depth ext = extension(pos, move, sp->depth, false, captureOrPromotion, moveIsCheck, false, false, &dangerous); Depth newDepth = sp->depth - OnePly + ext; // Prune? if ( useFutilityPruning && !dangerous && !captureOrPromotion) { // History pruning. See ok_to_prune() definition if ( moveCount >= 2 + int(sp->depth) && ok_to_prune(pos, move, ss[sp->ply].threatMove, sp->depth) && sp->bestValue > value_mated_in(PLY_MAX)) continue; // Value based pruning if (sp->approximateEval < sp->beta) { if (sp->futilityValue == VALUE_NONE) { EvalInfo ei; sp->futilityValue = evaluate(pos, ei, threadID) + FutilityMargins[int(sp->depth) - 2]; } if (sp->futilityValue < sp->beta) { if (sp->futilityValue > sp->bestValue) // Less then 1% of cases { lock_grab(&(sp->lock)); if (sp->futilityValue > sp->bestValue) sp->bestValue = sp->futilityValue; lock_release(&(sp->lock)); } continue; } } } // Make and search the move. StateInfo st; pos.do_move(move, st, sp->dcCandidates); // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. if ( !dangerous && moveCount >= LMRNonPVMoves && !captureOrPromotion && !move_is_castle(move) && !move_is_killer(move, ss[sp->ply])) { ss[sp->ply].reduction = OnePly; value = -search(pos, ss, -(sp->beta-1), newDepth - OnePly, sp->ply+1, true, threadID); } else value = sp->beta; // Just to trigger next condition if (value >= sp->beta) // Go with full depth non-pv search { ss[sp->ply].reduction = Depth(0); value = -search(pos, ss, -(sp->beta - 1), newDepth, sp->ply+1, true, threadID); } pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); if (thread_should_stop(threadID)) break; // New best move? if (value > sp->bestValue) // Less then 2% of cases { lock_grab(&(sp->lock)); if (value > sp->bestValue && !thread_should_stop(threadID)) { sp->bestValue = value; if (sp->bestValue >= sp->beta) { sp_update_pv(sp->parentSstack, ss, sp->ply); for (int i = 0; i < ActiveThreads; i++) if (i != threadID && (i == sp->master || sp->slaves[i])) Threads[i].stop = true; sp->finished = true; } } lock_release(&(sp->lock)); } } lock_grab(&(sp->lock)); // If this is the master thread and we have been asked to stop because of // a beta cutoff higher up in the tree, stop all slave threads. if (sp->master == threadID && thread_should_stop(threadID)) for (int i = 0; i < ActiveThreads; i++) if (sp->slaves[i]) Threads[i].stop = true; sp->cpus--; sp->slaves[threadID] = 0; lock_release(&(sp->lock)); } // sp_search_pv() is used to search from a PV split point. This function // is called by each thread working at the split point. It is similar to // the normal search_pv() function, but simpler. Because we have already // probed the hash table and searched the first move before splitting, we // don't have to repeat all this work in sp_search_pv(). We also don't // need to store anything to the hash table here: This is taken care of // after we return from the split point. void sp_search_pv(SplitPoint* sp, int threadID) { assert(threadID >= 0 && threadID < ActiveThreads); assert(ActiveThreads > 1); Position pos = Position(sp->pos); SearchStack* ss = sp->sstack[threadID]; Value value; Move move; while ( sp->alpha < sp->beta && !thread_should_stop(threadID) && (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE) { bool moveIsCheck = pos.move_is_check(move, sp->dcCandidates); bool captureOrPromotion = pos.move_is_capture_or_promotion(move); assert(move_is_ok(move)); lock_grab(&(sp->lock)); int moveCount = ++sp->moves; lock_release(&(sp->lock)); ss[sp->ply].currentMove = move; // Decide the new search depth. bool dangerous; Depth ext = extension(pos, move, sp->depth, true, captureOrPromotion, moveIsCheck, false, false, &dangerous); Depth newDepth = sp->depth - OnePly + ext; // Make and search the move. StateInfo st; pos.do_move(move, st, sp->dcCandidates); // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. if ( !dangerous && moveCount >= LMRPVMoves && !captureOrPromotion && !move_is_castle(move) && !move_is_killer(move, ss[sp->ply])) { ss[sp->ply].reduction = OnePly; value = -search(pos, ss, -sp->alpha, newDepth - OnePly, sp->ply+1, true, threadID); } else value = sp->alpha + 1; // Just to trigger next condition if (value > sp->alpha) // Go with full depth non-pv search { ss[sp->ply].reduction = Depth(0); value = -search(pos, ss, -sp->alpha, newDepth, sp->ply+1, true, threadID); if (value > sp->alpha && value < sp->beta) { // When the search fails high at ply 1 while searching the first // move at the root, set the flag failHighPly1. This is used for // time managment: We don't want to stop the search early in // such cases, because resolving the fail high at ply 1 could // result in a big drop in score at the root. if (sp->ply == 1 && RootMoveNumber == 1) Threads[threadID].failHighPly1 = true; value = -search_pv(pos, ss, -sp->beta, -sp->alpha, newDepth, sp->ply+1, threadID); Threads[threadID].failHighPly1 = false; } } pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); if (thread_should_stop(threadID)) break; // New best move? lock_grab(&(sp->lock)); if (value > sp->bestValue && !thread_should_stop(threadID)) { sp->bestValue = value; if (value > sp->alpha) { sp->alpha = value; sp_update_pv(sp->parentSstack, ss, sp->ply); if (value == value_mate_in(sp->ply + 1)) ss[sp->ply].mateKiller = move; if (value >= sp->beta) { for (int i = 0; i < ActiveThreads; i++) if (i != threadID && (i == sp->master || sp->slaves[i])) Threads[i].stop = true; sp->finished = true; } } // If we are at ply 1, and we are searching the first root move at // ply 0, set the 'Problem' variable if the score has dropped a lot // (from the computer's point of view) since the previous iteration. if ( sp->ply == 1 && Iteration >= 2 && -value <= IterationInfo[Iteration-1].value - ProblemMargin) Problem = true; } lock_release(&(sp->lock)); } lock_grab(&(sp->lock)); // If this is the master thread and we have been asked to stop because of // a beta cutoff higher up in the tree, stop all slave threads. if (sp->master == threadID && thread_should_stop(threadID)) for (int i = 0; i < ActiveThreads; i++) if (sp->slaves[i]) Threads[i].stop = true; sp->cpus--; sp->slaves[threadID] = 0; lock_release(&(sp->lock)); } /// The BetaCounterType class BetaCounterType::BetaCounterType() { clear(); } void BetaCounterType::clear() { for (int i = 0; i < THREAD_MAX; i++) Threads[i].betaCutOffs[WHITE] = Threads[i].betaCutOffs[BLACK] = 0ULL; } void BetaCounterType::add(Color us, Depth d, int threadID) { // Weighted count based on depth Threads[threadID].betaCutOffs[us] += unsigned(d); } void BetaCounterType::read(Color us, int64_t& our, int64_t& their) { our = their = 0UL; for (int i = 0; i < THREAD_MAX; i++) { our += Threads[i].betaCutOffs[us]; their += Threads[i].betaCutOffs[opposite_color(us)]; } } /// The RootMove class // Constructor RootMove::RootMove() { nodes = cumulativeNodes = ourBeta = theirBeta = 0ULL; } // RootMove::operator<() is the comparison function used when // sorting the moves. A move m1 is considered to be better // than a move m2 if it has a higher score, or if the moves // have equal score but m1 has the higher node count. bool RootMove::operator<(const RootMove& m) { if (score != m.score) return (score < m.score); return theirBeta <= m.theirBeta; } /// The RootMoveList class // Constructor RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) { MoveStack mlist[MaxRootMoves]; bool includeAllMoves = (searchMoves[0] == MOVE_NONE); // Generate all legal moves MoveStack* last = generate_moves(pos, mlist); // Add each move to the moves[] array for (MoveStack* cur = mlist; cur != last; cur++) { bool includeMove = includeAllMoves; for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++) includeMove = (searchMoves[k] == cur->move); if (!includeMove) continue; // Find a quick score for the move StateInfo st; SearchStack ss[PLY_MAX_PLUS_2]; init_ss_array(ss); moves[count].move = cur->move; pos.do_move(moves[count].move, st); moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0); pos.undo_move(moves[count].move); moves[count].pv[0] = moves[count].move; moves[count].pv[1] = MOVE_NONE; // FIXME count++; } sort(); } // Simple accessor methods for the RootMoveList class inline Move RootMoveList::get_move(int moveNum) const { return moves[moveNum].move; } inline Value RootMoveList::get_move_score(int moveNum) const { return moves[moveNum].score; } inline void RootMoveList::set_move_score(int moveNum, Value score) { moves[moveNum].score = score; } inline void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) { moves[moveNum].nodes = nodes; moves[moveNum].cumulativeNodes += nodes; } inline void RootMoveList::set_beta_counters(int moveNum, int64_t our, int64_t their) { moves[moveNum].ourBeta = our; moves[moveNum].theirBeta = their; } void RootMoveList::set_move_pv(int moveNum, const Move pv[]) { int j; for(j = 0; pv[j] != MOVE_NONE; j++) moves[moveNum].pv[j] = pv[j]; moves[moveNum].pv[j] = MOVE_NONE; } inline Move RootMoveList::get_move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; } inline int64_t RootMoveList::get_move_cumulative_nodes(int moveNum) const { return moves[moveNum].cumulativeNodes; } inline int RootMoveList::move_count() const { return count; } // RootMoveList::scan_for_easy_move() is called at the end of the first // iteration, and is used to detect an "easy move", i.e. a move which appears // to be much bester than all the rest. If an easy move is found, the move // is returned, otherwise the function returns MOVE_NONE. It is very // important that this function is called at the right moment: The code // assumes that the first iteration has been completed and the moves have // been sorted. This is done in RootMoveList c'tor. Move RootMoveList::scan_for_easy_move() const { assert(count); if (count == 1) return get_move(0); // moves are sorted so just consider the best and the second one if (get_move_score(0) > get_move_score(1) + EasyMoveMargin) return get_move(0); return MOVE_NONE; } // RootMoveList::sort() sorts the root move list at the beginning of a new // iteration. inline void RootMoveList::sort() { sort_multipv(count - 1); // all items } // RootMoveList::sort_multipv() sorts the first few moves in the root move // list by their scores and depths. It is used to order the different PVs // correctly in MultiPV mode. void RootMoveList::sort_multipv(int n) { for (int i = 1; i <= n; i++) { RootMove rm = moves[i]; int j; for (j = i; j > 0 && moves[j-1] < rm; j--) moves[j] = moves[j-1]; moves[j] = rm; } } // init_node() is called at the beginning of all the search functions // (search(), search_pv(), qsearch(), and so on) and initializes the search // stack object corresponding to the current node. Once every // NodesBetweenPolls nodes, init_node() also calls poll(), which polls // for user input and checks whether it is time to stop the search. void init_node(SearchStack ss[], int ply, int threadID) { assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); Threads[threadID].nodes++; if (threadID == 0) { NodesSincePoll++; if (NodesSincePoll >= NodesBetweenPolls) { poll(); NodesSincePoll = 0; } } ss[ply].init(ply); ss[ply+2].initKillers(); if (Threads[threadID].printCurrentLine) print_current_line(ss, ply, threadID); } // update_pv() is called whenever a search returns a value > alpha. It // updates the PV in the SearchStack object corresponding to the current // node. void update_pv(SearchStack ss[], int ply) { assert(ply >= 0 && ply < PLY_MAX); ss[ply].pv[ply] = ss[ply].currentMove; int p; for(p = ply + 1; ss[ply+1].pv[p] != MOVE_NONE; p++) ss[ply].pv[p] = ss[ply+1].pv[p]; ss[ply].pv[p] = MOVE_NONE; } // sp_update_pv() is a variant of update_pv for use at split points. The // difference between the two functions is that sp_update_pv also updates // the PV at the parent node. void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) { assert(ply >= 0 && ply < PLY_MAX); ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove; int p; for(p = ply + 1; ss[ply+1].pv[p] != MOVE_NONE; p++) ss[ply].pv[p] = pss[ply].pv[p] = ss[ply+1].pv[p]; ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE; } // connected_moves() tests whether two moves are 'connected' in the sense // that the first move somehow made the second move possible (for instance // if the moving piece is the same in both moves). The first move is // assumed to be the move that was made to reach the current position, while // the second move is assumed to be a move from the current position. bool connected_moves(const Position& pos, Move m1, Move m2) { Square f1, t1, f2, t2; Piece p; assert(move_is_ok(m1)); assert(move_is_ok(m2)); if (m2 == MOVE_NONE) return false; // Case 1: The moving piece is the same in both moves f2 = move_from(m2); t1 = move_to(m1); if (f2 == t1) return true; // Case 2: The destination square for m2 was vacated by m1 t2 = move_to(m2); f1 = move_from(m1); if (t2 == f1) return true; // Case 3: Moving through the vacated square if ( piece_is_slider(pos.piece_on(f2)) && bit_is_set(squares_between(f2, t2), f1)) return true; // Case 4: The destination square for m2 is attacked by the moving piece in m1 p = pos.piece_on(t1); if (bit_is_set(pos.attacks_from(p, t1), t2)) return true; // Case 5: Discovered check, checking piece is the piece moved in m1 if ( piece_is_slider(p) && bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2) && !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2)) { Bitboard occ = pos.occupied_squares(); Color us = pos.side_to_move(); Square ksq = pos.king_square(us); clear_bit(&occ, f2); if (type_of_piece(p) == BISHOP) { if (bit_is_set(bishop_attacks_bb(ksq, occ), t1)) return true; } else if (type_of_piece(p) == ROOK) { if (bit_is_set(rook_attacks_bb(ksq, occ), t1)) return true; } else { assert(type_of_piece(p) == QUEEN); if (bit_is_set(queen_attacks_bb(ksq, occ), t1)) return true; } } return false; } // value_is_mate() checks if the given value is a mate one // eventually compensated for the ply. bool value_is_mate(Value value) { assert(abs(value) <= VALUE_INFINITE); return value <= value_mated_in(PLY_MAX) || value >= value_mate_in(PLY_MAX); } // move_is_killer() checks if the given move is among the // killer moves of that ply. bool move_is_killer(Move m, const SearchStack& ss) { const Move* k = ss.killers; for (int i = 0; i < KILLER_MAX; i++, k++) if (*k == m) return true; return false; } // extension() decides whether a move should be searched with normal depth, // or with extended depth. Certain classes of moves (checking moves, in // particular) are searched with bigger depth than ordinary moves and in // any case are marked as 'dangerous'. Note that also if a move is not // extended, as example because the corresponding UCI option is set to zero, // the move is marked as 'dangerous' so, at least, we avoid to prune it. Depth extension(const Position& pos, Move m, Depth depth, bool pvNode, bool captureOrPromotion, bool check, bool singleReply, bool mateThreat, bool* dangerous) { assert(m != MOVE_NONE); Depth result = Depth(0); *dangerous = check | singleReply | mateThreat; if (*dangerous) { if (check) result += CheckExtension[pvNode]; if (singleReply) result += SingleReplyExtension[pvNode]; if (mateThreat) result += MateThreatExtension[pvNode]; } if ( pvNode && captureOrPromotion && pos.type_of_piece_on(move_to(m)) != PAWN && pos.see_sign(m) >= 0) { result += OnePly/2; *dangerous = true; } // Do not extend at low depths if (!pvNode && depth < 4*OnePly) return Min(result, OnePly); // Further test with Min(result, OnePly / 2) if (pos.type_of_piece_on(move_from(m)) == PAWN) { Color c = pos.side_to_move(); if (relative_rank(c, move_to(m)) == RANK_7) { result += PawnPushTo7thExtension[pvNode]; *dangerous = true; } if (pos.pawn_is_passed(c, move_to(m))) { result += PassedPawnExtension[pvNode]; *dangerous = true; } } if ( captureOrPromotion && pos.type_of_piece_on(move_to(m)) != PAWN && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) - pos.midgame_value_of_piece_on(move_to(m)) == Value(0)) && !move_is_promotion(m) && !move_is_ep(m)) { result += PawnEndgameExtension[pvNode]; *dangerous = true; } return Min(result, OnePly); } // ok_to_do_nullmove() looks at the current position and decides whether // doing a 'null move' should be allowed. In order to avoid zugzwang // problems, null moves are not allowed when the side to move has very // little material left. Currently, the test is a bit too simple: Null // moves are avoided only when the side to move has only pawns left. It's // probably a good idea to avoid null moves in at least some more // complicated endgames, e.g. KQ vs KR. FIXME bool ok_to_do_nullmove(const Position& pos) { return pos.non_pawn_material(pos.side_to_move()) != Value(0); } // ok_to_prune() tests whether it is safe to forward prune a move. Only // non-tactical moves late in the move list close to the leaves are // candidates for pruning. bool ok_to_prune(const Position& pos, Move m, Move threat, Depth d) { assert(move_is_ok(m)); assert(threat == MOVE_NONE || move_is_ok(threat)); assert(!pos.move_is_check(m)); assert(!pos.move_is_capture_or_promotion(m)); assert(!pos.move_is_passed_pawn_push(m)); assert(d >= OnePly); Square mfrom, mto, tfrom, tto; mfrom = move_from(m); mto = move_to(m); tfrom = move_from(threat); tto = move_to(threat); // Case 1: Castling moves are never pruned if (move_is_castle(m)) return false; // Case 2: Don't prune moves which move the threatened piece if (!PruneEscapeMoves && threat != MOVE_NONE && mfrom == tto) return false; // Case 3: If the threatened piece has value less than or equal to the // value of the threatening piece, don't prune move which defend it. if ( !PruneDefendingMoves && threat != MOVE_NONE && pos.move_is_capture(threat) && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto) || pos.type_of_piece_on(tfrom) == KING) && pos.move_attacks_square(m, tto)) return false; // Case 4: Don't prune moves with good history if (!H.ok_to_prune(pos.piece_on(mfrom), mto, d)) return false; // Case 5: If the moving piece in the threatened move is a slider, don't // prune safe moves which block its ray. if ( !PruneBlockingMoves && threat != MOVE_NONE && piece_is_slider(pos.piece_on(tfrom)) && bit_is_set(squares_between(tfrom, tto), mto) && pos.see_sign(m) >= 0) return false; return true; } // ok_to_use_TT() returns true if a transposition table score // can be used at a given point in search. bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) { Value v = value_from_tt(tte->value(), ply); return ( tte->depth() >= depth || v >= Max(value_mate_in(100), beta) || v < Min(value_mated_in(100), beta)) && ( (is_lower_bound(tte->type()) && v >= beta) || (is_upper_bound(tte->type()) && v < beta)); } // update_history() registers a good move that produced a beta-cutoff // in history and marks as failures all the other moves of that ply. void update_history(const Position& pos, Move m, Depth depth, Move movesSearched[], int moveCount) { H.success(pos.piece_on(move_from(m)), move_to(m), depth); for (int i = 0; i < moveCount - 1; i++) { assert(m != movesSearched[i]); if (!pos.move_is_capture_or_promotion(movesSearched[i])) H.failure(pos.piece_on(move_from(movesSearched[i])), move_to(movesSearched[i])); } } // update_killers() add a good move that produced a beta-cutoff // among the killer moves of that ply. void update_killers(Move m, SearchStack& ss) { if (m == ss.killers[0]) return; for (int i = KILLER_MAX - 1; i > 0; i--) ss.killers[i] = ss.killers[i - 1]; ss.killers[0] = m; } // fail_high_ply_1() checks if some thread is currently resolving a fail // high at ply 1 at the node below the first root node. This information // is used for time managment. bool fail_high_ply_1() { for(int i = 0; i < ActiveThreads; i++) if (Threads[i].failHighPly1) return true; return false; } // current_search_time() returns the number of milliseconds which have passed // since the beginning of the current search. int current_search_time() { return get_system_time() - SearchStartTime; } // nps() computes the current nodes/second count. int nps() { int t = current_search_time(); return (t > 0)? int((nodes_searched() * 1000) / t) : 0; } // poll() performs two different functions: It polls for user input, and it // looks at the time consumed so far and decides if it's time to abort the // search. void poll() { static int lastInfoTime; int t = current_search_time(); // Poll for input if (Bioskey()) { // We are line oriented, don't read single chars std::string command; if (!std::getline(std::cin, command)) command = "quit"; if (command == "quit") { AbortSearch = true; PonderSearch = false; Quit = true; return; } else if (command == "stop") { AbortSearch = true; PonderSearch = false; } else if (command == "ponderhit") ponderhit(); } // Print search information if (t < 1000) lastInfoTime = 0; else if (lastInfoTime > t) // HACK: Must be a new search where we searched less than // NodesBetweenPolls nodes during the first second of search. lastInfoTime = 0; else if (t - lastInfoTime >= 1000) { lastInfoTime = t; lock_grab(&IOLock); if (dbg_show_mean) dbg_print_mean(); if (dbg_show_hit_rate) dbg_print_hit_rate(); std::cout << "info nodes " << nodes_searched() << " nps " << nps() << " time " << t << " hashfull " << TT.full() << std::endl; lock_release(&IOLock); if (ShowCurrentLine) Threads[0].printCurrentLine = true; } // Should we stop the search? if (PonderSearch) return; bool overTime = t > AbsoluteMaxSearchTime || (RootMoveNumber == 1 && t > MaxSearchTime + ExtraSearchTime && !FailLow) //FIXME: We are not checking any problem flags, BUG? || ( !FailHigh && !FailLow && !fail_high_ply_1() && !Problem && t > 6*(MaxSearchTime + ExtraSearchTime)); if ( (Iteration >= 3 && (!InfiniteSearch && overTime)) || (ExactMaxTime && t >= ExactMaxTime) || (Iteration >= 3 && MaxNodes && nodes_searched() >= MaxNodes)) AbortSearch = true; } // ponderhit() is called when the program is pondering (i.e. thinking while // it's the opponent's turn to move) in order to let the engine know that // it correctly predicted the opponent's move. void ponderhit() { int t = current_search_time(); PonderSearch = false; if (Iteration >= 3 && (!InfiniteSearch && (StopOnPonderhit || t > AbsoluteMaxSearchTime || (RootMoveNumber == 1 && t > MaxSearchTime + ExtraSearchTime && !FailLow) || (!FailHigh && !FailLow && !fail_high_ply_1() && !Problem && t > 6*(MaxSearchTime + ExtraSearchTime))))) AbortSearch = true; } // print_current_line() prints the current line of search for a given // thread. Called when the UCI option UCI_ShowCurrLine is 'true'. void print_current_line(SearchStack ss[], int ply, int threadID) { assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); if (!Threads[threadID].idle) { lock_grab(&IOLock); std::cout << "info currline " << (threadID + 1); for (int p = 0; p < ply; p++) std::cout << " " << ss[p].currentMove; std::cout << std::endl; lock_release(&IOLock); } Threads[threadID].printCurrentLine = false; if (threadID + 1 < ActiveThreads) Threads[threadID + 1].printCurrentLine = true; } // init_ss_array() does a fast reset of the first entries of a SearchStack array void init_ss_array(SearchStack ss[]) { for (int i = 0; i < 3; i++) { ss[i].init(i); ss[i].initKillers(); } } // wait_for_stop_or_ponderhit() is called when the maximum depth is reached // while the program is pondering. The point is to work around a wrinkle in // the UCI protocol: When pondering, the engine is not allowed to give a // "bestmove" before the GUI sends it a "stop" or "ponderhit" command. // We simply wait here until one of these commands is sent, and return, // after which the bestmove and pondermove will be printed (in id_loop()). void wait_for_stop_or_ponderhit() { std::string command; while (true) { if (!std::getline(std::cin, command)) command = "quit"; if (command == "quit") { Quit = true; break; } else if (command == "ponderhit" || command == "stop") break; } } // idle_loop() is where the threads are parked when they have no work to do. // The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint // object for which the current thread is the master. void idle_loop(int threadID, SplitPoint* waitSp) { assert(threadID >= 0 && threadID < THREAD_MAX); Threads[threadID].running = true; while(true) { if(AllThreadsShouldExit && threadID != 0) break; // If we are not thinking, wait for a condition to be signaled instead // of wasting CPU time polling for work: while(threadID != 0 && (Idle || threadID >= ActiveThreads)) { #if !defined(_MSC_VER) pthread_mutex_lock(&WaitLock); if(Idle || threadID >= ActiveThreads) pthread_cond_wait(&WaitCond, &WaitLock); pthread_mutex_unlock(&WaitLock); #else WaitForSingleObject(SitIdleEvent[threadID], INFINITE); #endif } // If this thread has been assigned work, launch a search if(Threads[threadID].workIsWaiting) { Threads[threadID].workIsWaiting = false; if(Threads[threadID].splitPoint->pvNode) sp_search_pv(Threads[threadID].splitPoint, threadID); else sp_search(Threads[threadID].splitPoint, threadID); Threads[threadID].idle = true; } // If this thread is the master of a split point and all threads have // finished their work at this split point, return from the idle loop. if(waitSp != NULL && waitSp->cpus == 0) return; } Threads[threadID].running = false; } // init_split_point_stack() is called during program initialization, and // initializes all split point objects. void init_split_point_stack() { for(int i = 0; i < THREAD_MAX; i++) for(int j = 0; j < MaxActiveSplitPoints; j++) { SplitPointStack[i][j].parent = NULL; lock_init(&(SplitPointStack[i][j].lock), NULL); } } // destroy_split_point_stack() is called when the program exits, and // destroys all locks in the precomputed split point objects. void destroy_split_point_stack() { for(int i = 0; i < THREAD_MAX; i++) for(int j = 0; j < MaxActiveSplitPoints; j++) lock_destroy(&(SplitPointStack[i][j].lock)); } // thread_should_stop() checks whether the thread with a given threadID has // been asked to stop, directly or indirectly. This can happen if a beta // cutoff has occured in thre thread's currently active split point, or in // some ancestor of the current split point. bool thread_should_stop(int threadID) { assert(threadID >= 0 && threadID < ActiveThreads); SplitPoint* sp; if(Threads[threadID].stop) return true; if(ActiveThreads <= 2) return false; for(sp = Threads[threadID].splitPoint; sp != NULL; sp = sp->parent) if(sp->finished) { Threads[threadID].stop = true; return true; } return false; } // thread_is_available() checks whether the thread with threadID "slave" is // available to help the thread with threadID "master" at a split point. An // obvious requirement is that "slave" must be idle. With more than two // threads, this is not by itself sufficient: If "slave" is the master of // some active split point, it is only available as a slave to the other // threads which are busy searching the split point at the top of "slave"'s // split point stack (the "helpful master concept" in YBWC terminology). bool thread_is_available(int slave, int master) { assert(slave >= 0 && slave < ActiveThreads); assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); if(!Threads[slave].idle || slave == master) return false; if(Threads[slave].activeSplitPoints == 0) // No active split points means that the thread is available as a slave // for any other thread. return true; if(ActiveThreads == 2) return true; // Apply the "helpful master" concept if possible. if(SplitPointStack[slave][Threads[slave].activeSplitPoints-1].slaves[master]) return true; return false; } // idle_thread_exists() tries to find an idle thread which is available as // a slave for the thread with threadID "master". bool idle_thread_exists(int master) { assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); for(int i = 0; i < ActiveThreads; i++) if(thread_is_available(i, master)) return true; return false; } // split() does the actual work of distributing the work at a node between // several threads at PV nodes. If it does not succeed in splitting the // node (because no idle threads are available, or because we have no unused // split point objects), the function immediately returns false. If // splitting is possible, a SplitPoint object is initialized with all the // data that must be copied to the helper threads (the current position and // search stack, alpha, beta, the search depth, etc.), and we tell our // helper threads that they have been assigned work. This will cause them // to instantly leave their idle loops and call sp_search_pv(). When all // threads have returned from sp_search_pv (or, equivalently, when // splitPoint->cpus becomes 0), split() returns true. bool split(const Position& p, SearchStack* sstck, int ply, Value* alpha, Value* beta, Value* bestValue, const Value futilityValue, const Value approximateEval, Depth depth, int* moves, MovePicker* mp, Bitboard dcCandidates, int master, bool pvNode) { assert(p.is_ok()); assert(sstck != NULL); assert(ply >= 0 && ply < PLY_MAX); assert(*bestValue >= -VALUE_INFINITE && *bestValue <= *alpha); assert(!pvNode || *alpha < *beta); assert(*beta <= VALUE_INFINITE); assert(depth > Depth(0)); assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); SplitPoint* splitPoint; int i; lock_grab(&MPLock); // If no other thread is available to help us, or if we have too many // active split points, don't split. if(!idle_thread_exists(master) || Threads[master].activeSplitPoints >= MaxActiveSplitPoints) { lock_release(&MPLock); return false; } // Pick the next available split point object from the split point stack splitPoint = SplitPointStack[master] + Threads[master].activeSplitPoints; Threads[master].activeSplitPoints++; // Initialize the split point object splitPoint->parent = Threads[master].splitPoint; splitPoint->finished = false; splitPoint->ply = ply; splitPoint->depth = depth; splitPoint->alpha = pvNode? *alpha : (*beta - 1); splitPoint->beta = *beta; splitPoint->pvNode = pvNode; splitPoint->dcCandidates = dcCandidates; splitPoint->bestValue = *bestValue; splitPoint->futilityValue = futilityValue; splitPoint->approximateEval = approximateEval; splitPoint->master = master; splitPoint->mp = mp; splitPoint->moves = *moves; splitPoint->cpus = 1; splitPoint->pos.copy(p); splitPoint->parentSstack = sstck; for(i = 0; i < ActiveThreads; i++) splitPoint->slaves[i] = 0; // Copy the current position and the search stack to the master thread memcpy(splitPoint->sstack[master], sstck, (ply+1)*sizeof(SearchStack)); Threads[master].splitPoint = splitPoint; // Make copies of the current position and search stack for each thread for(i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++) if(thread_is_available(i, master)) { memcpy(splitPoint->sstack[i], sstck, (ply+1)*sizeof(SearchStack)); Threads[i].splitPoint = splitPoint; splitPoint->slaves[i] = 1; splitPoint->cpus++; } // Tell the threads that they have work to do. This will make them leave // their idle loop. for(i = 0; i < ActiveThreads; i++) if(i == master || splitPoint->slaves[i]) { Threads[i].workIsWaiting = true; Threads[i].idle = false; Threads[i].stop = false; } lock_release(&MPLock); // Everything is set up. The master thread enters the idle loop, from // which it will instantly launch a search, because its workIsWaiting // slot is 'true'. We send the split point as a second parameter to the // idle loop, which means that the main thread will return from the idle // loop when all threads have finished their work at this split point // (i.e. when // splitPoint->cpus == 0). idle_loop(master, splitPoint); // We have returned from the idle loop, which means that all threads are // finished. Update alpha, beta and bestvalue, and return. lock_grab(&MPLock); if(pvNode) *alpha = splitPoint->alpha; *beta = splitPoint->beta; *bestValue = splitPoint->bestValue; Threads[master].stop = false; Threads[master].idle = false; Threads[master].activeSplitPoints--; Threads[master].splitPoint = splitPoint->parent; lock_release(&MPLock); return true; } // wake_sleeping_threads() wakes up all sleeping threads when it is time // to start a new search from the root. void wake_sleeping_threads() { if(ActiveThreads > 1) { for(int i = 1; i < ActiveThreads; i++) { Threads[i].idle = true; Threads[i].workIsWaiting = false; } #if !defined(_MSC_VER) pthread_mutex_lock(&WaitLock); pthread_cond_broadcast(&WaitCond); pthread_mutex_unlock(&WaitLock); #else for(int i = 1; i < THREAD_MAX; i++) SetEvent(SitIdleEvent[i]); #endif } } // init_thread() is the function which is called when a new thread is // launched. It simply calls the idle_loop() function with the supplied // threadID. There are two versions of this function; one for POSIX threads // and one for Windows threads. #if !defined(_MSC_VER) void *init_thread(void *threadID) { idle_loop(*(int *)threadID, NULL); return NULL; } #else DWORD WINAPI init_thread(LPVOID threadID) { idle_loop(*(int *)threadID, NULL); return NULL; } #endif }