/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Definition of layer AffineTransform of NNUE evaluation function #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED #define NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED #include #include #include #include "../nnue_common.h" #include "../../simd.h" /* This file contains the definition for a fully connected layer (aka affine transform). Two approaches are employed, depending on the sizes of the transform. Approach 1: - used when the PaddedInputDimensions >= 128 - uses AVX512 if possible - processes inputs in batches of 2*InputSimdWidth - so in batches of 128 for AVX512 - the weight blocks of size InputSimdWidth are transposed such that access is sequential - N columns of the weight matrix are processed a time, where N depends on the architecture (the amount of registers) - accumulate + hadd is used Approach 2: - used when the PaddedInputDimensions < 128 - does not use AVX512 - expected use-case is for when PaddedInputDimensions == 32 and InputDimensions <= 32. - that's why AVX512 is hard to implement - expected use-case is small layers - not optimized as well as the approach 1 - inputs are processed in chunks of 4, weights are respectively transposed - accumulation happens directly to int32s */ namespace Stockfish::Eval::NNUE::Layers { // Fallback implementation for older/other architectures. // Identical for both approaches. Requires the input to be padded to at least 16 values. #if !defined(USE_SSSE3) template static void affine_transform_non_ssse3(std::int32_t* output, const std::int8_t* weights, const std::int32_t* biases, const std::uint8_t* input) { # if defined(USE_SSE2) // At least a multiple of 16, with SSE2. static_assert(PaddedInputDimensions % 16 == 0); constexpr IndexType NumChunks = PaddedInputDimensions / 16; const __m128i Zeros = _mm_setzero_si128(); const auto inputVector = reinterpret_cast(input); # elif defined(USE_MMX) static_assert(InputDimensions % 8 == 0); constexpr IndexType NumChunks = InputDimensions / 8; const __m64 Zeros = _mm_setzero_si64(); const auto inputVector = reinterpret_cast(input); # elif defined(USE_NEON) static_assert(PaddedInputDimensions % 16 == 0); constexpr IndexType NumChunks = PaddedInputDimensions / 16; const auto inputVector = reinterpret_cast(input); # endif for (IndexType i = 0; i < OutputDimensions; ++i) { const IndexType offset = i * PaddedInputDimensions; # if defined(USE_SSE2) __m128i sumLo = _mm_cvtsi32_si128(biases[i]); __m128i sumHi = Zeros; const auto row = reinterpret_cast(&weights[offset]); for (IndexType j = 0; j < NumChunks; ++j) { __m128i row_j = _mm_load_si128(&row[j]); __m128i input_j = _mm_load_si128(&inputVector[j]); __m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8); __m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8); __m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros); __m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros); __m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo); __m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi); sumLo = _mm_add_epi32(sumLo, productLo); sumHi = _mm_add_epi32(sumHi, productHi); } __m128i sum = _mm_add_epi32(sumLo, sumHi); __m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2)); sum = _mm_add_epi32(sum, sumHigh_64); __m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2)); sum = _mm_add_epi32(sum, sum_second_32); output[i] = _mm_cvtsi128_si32(sum); # elif defined(USE_MMX) __m64 sumLo = _mm_cvtsi32_si64(biases[i]); __m64 sumHi = Zeros; const auto row = reinterpret_cast(&weights[offset]); for (IndexType j = 0; j < NumChunks; ++j) { __m64 row_j = row[j]; __m64 input_j = inputVector[j]; __m64 extendedRowLo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8); __m64 extendedRowHi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8); __m64 extendedInputLo = _mm_unpacklo_pi8(input_j, Zeros); __m64 extendedInputHi = _mm_unpackhi_pi8(input_j, Zeros); __m64 productLo = _mm_madd_pi16(extendedRowLo, extendedInputLo); __m64 productHi = _mm_madd_pi16(extendedRowHi, extendedInputHi); sumLo = _mm_add_pi32(sumLo, productLo); sumHi = _mm_add_pi32(sumHi, productHi); } __m64 sum = _mm_add_pi32(sumLo, sumHi); sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum)); output[i] = _mm_cvtsi64_si32(sum); # elif defined(USE_NEON) int32x4_t sum = {biases[i]}; const auto row = reinterpret_cast(&weights[offset]); for (IndexType j = 0; j < NumChunks; ++j) { int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]); product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]); sum = vpadalq_s16(sum, product); } output[i] = sum[0] + sum[1] + sum[2] + sum[3]; # else std::int32_t sum = biases[i]; for (IndexType j = 0; j < InputDimensions; ++j) { sum += weights[offset + j] * input[j]; } output[i] = sum; # endif } # if defined(USE_MMX) _mm_empty(); # endif } #endif template class AffineTransform; // A specialization for large inputs. template class AffineTransform= 2*64-1)>> { public: // Input/output type using InputType = typename PreviousLayer::OutputType; using OutputType = std::int32_t; static_assert(std::is_same::value, ""); // Number of input/output dimensions static constexpr IndexType InputDimensions = PreviousLayer::OutputDimensions; static constexpr IndexType OutputDimensions = OutDims; static constexpr IndexType PaddedInputDimensions = ceil_to_multiple(InputDimensions, MaxSimdWidth); static_assert(PaddedInputDimensions >= 128, "Something went wrong. This specialization should not have been chosen."); #if defined (USE_AVX512) static constexpr const IndexType InputSimdWidth = 64; static constexpr const IndexType MaxNumOutputRegs = 16; #elif defined (USE_AVX2) static constexpr const IndexType InputSimdWidth = 32; static constexpr const IndexType MaxNumOutputRegs = 8; #elif defined (USE_SSSE3) static constexpr const IndexType InputSimdWidth = 16; static constexpr const IndexType MaxNumOutputRegs = 8; #else // The fallback implementation will not have permuted weights. // We define these to avoid a lot of ifdefs later. static constexpr const IndexType InputSimdWidth = 1; static constexpr const IndexType MaxNumOutputRegs = 1; #endif // A big block is a region in the weight matrix of the size [PaddedInputDimensions, NumOutputRegs]. // A small block is a region of size [InputSimdWidth, 1] static constexpr const IndexType NumOutputRegs = std::min(MaxNumOutputRegs, OutputDimensions); static constexpr const IndexType SmallBlockSize = InputSimdWidth; static constexpr const IndexType BigBlockSize = NumOutputRegs * PaddedInputDimensions; static constexpr const IndexType NumSmallBlocksInBigBlock = BigBlockSize / SmallBlockSize; static constexpr const IndexType NumSmallBlocksPerOutput = PaddedInputDimensions / SmallBlockSize; static constexpr const IndexType NumBigBlocks = OutputDimensions / NumOutputRegs; static_assert(OutputDimensions % NumOutputRegs == 0); // Size of forward propagation buffer used in this layer static constexpr std::size_t SelfBufferSize = ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize); // Size of the forward propagation buffer used from the input layer to this layer static constexpr std::size_t BufferSize = PreviousLayer::BufferSize + SelfBufferSize; // Hash value embedded in the evaluation file static constexpr std::uint32_t get_hash_value() { std::uint32_t hashValue = 0xCC03DAE4u; hashValue += OutputDimensions; hashValue ^= PreviousLayer::get_hash_value() >> 1; hashValue ^= PreviousLayer::get_hash_value() << 31; return hashValue; } /* Transposes the small blocks within a block. Effectively means that weights can be traversed sequentially during inference. */ static IndexType get_weight_index(IndexType i) { const IndexType smallBlock = (i / SmallBlockSize) % NumSmallBlocksInBigBlock; const IndexType smallBlockCol = smallBlock / NumSmallBlocksPerOutput; const IndexType smallBlockRow = smallBlock % NumSmallBlocksPerOutput; const IndexType bigBlock = i / BigBlockSize; const IndexType rest = i % SmallBlockSize; const IndexType idx = bigBlock * BigBlockSize + smallBlockRow * SmallBlockSize * NumOutputRegs + smallBlockCol * SmallBlockSize + rest; return idx; } // Read network parameters bool read_parameters(std::istream& stream) { if (!previousLayer.read_parameters(stream)) return false; for (std::size_t i = 0; i < OutputDimensions; ++i) biases[i] = read_little_endian(stream); for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) weights[get_weight_index(i)] = read_little_endian(stream); return !stream.fail(); } // Write network parameters bool write_parameters(std::ostream& stream) const { if (!previousLayer.write_parameters(stream)) return false; for (std::size_t i = 0; i < OutputDimensions; ++i) write_little_endian(stream, biases[i]); for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) write_little_endian(stream, weights[get_weight_index(i)]); return !stream.fail(); } // Forward propagation const OutputType* propagate( const TransformedFeatureType* transformedFeatures, char* buffer) const { const auto input = previousLayer.propagate( transformedFeatures, buffer + SelfBufferSize); OutputType* output = reinterpret_cast(buffer); #if defined (USE_AVX512) using vec_t = __m512i; #define vec_setzero _mm512_setzero_si512 #define vec_set_32 _mm512_set1_epi32 #define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32 #define vec_add_dpbusd_32x2 Simd::m512_add_dpbusd_epi32x2 #define vec_hadd Simd::m512_hadd #define vec_haddx4 Simd::m512_haddx4 #elif defined (USE_AVX2) using vec_t = __m256i; #define vec_setzero _mm256_setzero_si256 #define vec_set_32 _mm256_set1_epi32 #define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32 #define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2 #define vec_hadd Simd::m256_hadd #define vec_haddx4 Simd::m256_haddx4 #elif defined (USE_SSSE3) using vec_t = __m128i; #define vec_setzero _mm_setzero_si128 #define vec_set_32 _mm_set1_epi32 #define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32 #define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2 #define vec_hadd Simd::m128_hadd #define vec_haddx4 Simd::m128_haddx4 #endif #if defined (USE_SSSE3) const vec_t* invec = reinterpret_cast(input); // Perform accumulation to registers for each big block for (IndexType bigBlock = 0; bigBlock < NumBigBlocks; ++bigBlock) { vec_t acc[NumOutputRegs] = { vec_setzero() }; // Each big block has NumOutputRegs small blocks in each "row", one per register. // We process two small blocks at a time to save on one addition without VNNI. for (IndexType smallBlock = 0; smallBlock < NumSmallBlocksPerOutput; smallBlock += 2) { const vec_t* weightvec = reinterpret_cast( weights + bigBlock * BigBlockSize + smallBlock * SmallBlockSize * NumOutputRegs); const vec_t in0 = invec[smallBlock + 0]; const vec_t in1 = invec[smallBlock + 1]; for (IndexType k = 0; k < NumOutputRegs; ++k) vec_add_dpbusd_32x2(acc[k], in0, weightvec[k], in1, weightvec[k + NumOutputRegs]); } // Horizontally add all accumulators. if constexpr (NumOutputRegs % 4 == 0) { __m128i* outputvec = reinterpret_cast<__m128i*>(output); const __m128i* biasvec = reinterpret_cast(biases); for (IndexType k = 0; k < NumOutputRegs; k += 4) { const IndexType idx = (bigBlock * NumOutputRegs + k) / 4; outputvec[idx] = vec_haddx4(acc[k+0], acc[k+1], acc[k+2], acc[k+3], biasvec[idx]); } } else { for (IndexType k = 0; k < NumOutputRegs; ++k) { const IndexType idx = (bigBlock * NumOutputRegs + k); output[idx] = vec_hadd(acc[k], biases[idx]); } } } # undef vec_setzero # undef vec_set_32 # undef vec_add_dpbusd_32 # undef vec_add_dpbusd_32x2 # undef vec_hadd # undef vec_haddx4 #else // Use old implementation for the other architectures. affine_transform_non_ssse3< InputDimensions, PaddedInputDimensions, OutputDimensions>(output, weights, biases, input); #endif return output; } private: using BiasType = OutputType; using WeightType = std::int8_t; PreviousLayer previousLayer; alignas(CacheLineSize) BiasType biases[OutputDimensions]; alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions]; }; template class AffineTransform> { public: // Input/output type using InputType = typename PreviousLayer::OutputType; using OutputType = std::int32_t; static_assert(std::is_same::value, ""); // Number of input/output dimensions static constexpr IndexType InputDimensions = PreviousLayer::OutputDimensions; static constexpr IndexType OutputDimensions = OutDims; static constexpr IndexType PaddedInputDimensions = ceil_to_multiple(InputDimensions, MaxSimdWidth); static_assert(PaddedInputDimensions < 128, "Something went wrong. This specialization should not have been chosen."); #if defined (USE_SSSE3) static constexpr const IndexType OutputSimdWidth = SimdWidth / 4; static constexpr const IndexType InputSimdWidth = SimdWidth; #endif // Size of forward propagation buffer used in this layer static constexpr std::size_t SelfBufferSize = ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize); // Size of the forward propagation buffer used from the input layer to this layer static constexpr std::size_t BufferSize = PreviousLayer::BufferSize + SelfBufferSize; // Hash value embedded in the evaluation file static constexpr std::uint32_t get_hash_value() { std::uint32_t hashValue = 0xCC03DAE4u; hashValue += OutputDimensions; hashValue ^= PreviousLayer::get_hash_value() >> 1; hashValue ^= PreviousLayer::get_hash_value() << 31; return hashValue; } static IndexType get_weight_index_scrambled(IndexType i) { return (i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 + i / PaddedInputDimensions * 4 + i % 4; } static IndexType get_weight_index(IndexType i) { #if defined (USE_SSSE3) return get_weight_index_scrambled(i); #else return i; #endif } // Read network parameters bool read_parameters(std::istream& stream) { if (!previousLayer.read_parameters(stream)) return false; for (std::size_t i = 0; i < OutputDimensions; ++i) biases[i] = read_little_endian(stream); for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) weights[get_weight_index(i)] = read_little_endian(stream); return !stream.fail(); } // Write network parameters bool write_parameters(std::ostream& stream) const { if (!previousLayer.write_parameters(stream)) return false; for (std::size_t i = 0; i < OutputDimensions; ++i) write_little_endian(stream, biases[i]); for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) write_little_endian(stream, weights[get_weight_index(i)]); return !stream.fail(); } // Forward propagation const OutputType* propagate( const TransformedFeatureType* transformedFeatures, char* buffer) const { const auto input = previousLayer.propagate( transformedFeatures, buffer + SelfBufferSize); const auto output = reinterpret_cast(buffer); #if defined (USE_AVX2) using vec_t = __m256i; #define vec_setzero _mm256_setzero_si256 #define vec_set_32 _mm256_set1_epi32 #define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32 #define vec_add_dpbusd_32x2 Simd::m256_add_dpbusd_epi32x2 #define vec_add_dpbusd_32x4 Simd::m256_add_dpbusd_epi32x4 #define vec_hadd Simd::m256_hadd #define vec_haddx4 Simd::m256_haddx4 #elif defined (USE_SSSE3) using vec_t = __m128i; #define vec_setzero _mm_setzero_si128 #define vec_set_32 _mm_set1_epi32 #define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32 #define vec_add_dpbusd_32x2 Simd::m128_add_dpbusd_epi32x2 #define vec_add_dpbusd_32x4 Simd::m128_add_dpbusd_epi32x4 #define vec_hadd Simd::m128_hadd #define vec_haddx4 Simd::m128_haddx4 #endif #if defined (USE_SSSE3) const auto inputVector = reinterpret_cast(input); static_assert(InputDimensions % 8 == 0); static_assert(OutputDimensions % OutputSimdWidth == 0 || OutputDimensions == 1); if constexpr (OutputDimensions % OutputSimdWidth == 0) { constexpr IndexType NumChunks = InputDimensions / 4; constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth; const auto input32 = reinterpret_cast(input); const vec_t* biasvec = reinterpret_cast(biases); vec_t acc[NumRegs]; for (IndexType k = 0; k < NumRegs; ++k) acc[k] = biasvec[k]; for (IndexType i = 0; i < NumChunks; i += 2) { const vec_t in0 = vec_set_32(input32[i + 0]); const vec_t in1 = vec_set_32(input32[i + 1]); const auto col0 = reinterpret_cast(&weights[(i + 0) * OutputDimensions * 4]); const auto col1 = reinterpret_cast(&weights[(i + 1) * OutputDimensions * 4]); for (IndexType k = 0; k < NumRegs; ++k) vec_add_dpbusd_32x2(acc[k], in0, col0[k], in1, col1[k]); } vec_t* outptr = reinterpret_cast(output); for (IndexType k = 0; k < NumRegs; ++k) outptr[k] = acc[k]; } else if constexpr (OutputDimensions == 1) { constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth; vec_t sum0 = vec_setzero(); const auto row0 = reinterpret_cast(&weights[0]); for (int j = 0; j < (int)NumChunks; ++j) { const vec_t in = inputVector[j]; vec_add_dpbusd_32(sum0, in, row0[j]); } output[0] = vec_hadd(sum0, biases[0]); } # undef vec_setzero # undef vec_set_32 # undef vec_add_dpbusd_32 # undef vec_add_dpbusd_32x2 # undef vec_add_dpbusd_32x4 # undef vec_hadd # undef vec_haddx4 #else // Use old implementation for the other architectures. affine_transform_non_ssse3< InputDimensions, PaddedInputDimensions, OutputDimensions>(output, weights, biases, input); #endif return output; } private: using BiasType = OutputType; using WeightType = std::int8_t; PreviousLayer previousLayer; alignas(CacheLineSize) BiasType biases[OutputDimensions]; alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions]; }; } // namespace Stockfish::Eval::NNUE::Layers #endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED