/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include // For std::memset #include #include #include "evaluate.h" #include "misc.h" #include "movegen.h" #include "movepick.h" #include "position.h" #include "search.h" #include "thread.h" #include "timeman.h" #include "tt.h" #include "uci.h" #include "syzygy/tbprobe.h" namespace Search { LimitsType Limits; } namespace Tablebases { int Cardinality; bool RootInTB; bool UseRule50; Depth ProbeDepth; } namespace TB = Tablebases; using std::string; using Eval::evaluate; using namespace Search; namespace { // Different node types, used as a template parameter enum NodeType { NonPV, PV }; constexpr uint64_t ttHitAverageWindow = 4096; constexpr uint64_t ttHitAverageResolution = 1024; // Razor and futility margins constexpr int RazorMargin = 661; Value futility_margin(Depth d, bool improving) { return Value(198 * (d - improving)); } // Reductions lookup table, initialized at startup int Reductions[MAX_MOVES]; // [depth or moveNumber] Depth reduction(bool i, Depth d, int mn) { int r = Reductions[d] * Reductions[mn]; return (r + 520) / 1024 + (!i && r > 999); } constexpr int futility_move_count(bool improving, Depth depth) { return (5 + depth * depth) * (1 + improving) / 2 - 1; } // History and stats update bonus, based on depth int stat_bonus(Depth d) { return d > 17 ? -8 : 22 * d * d + 151 * d - 140; } // Add a small random component to draw evaluations to avoid 3fold-blindness Value value_draw(Thread* thisThread) { return VALUE_DRAW + Value(2 * (thisThread->nodes & 1) - 1); } // Skill structure is used to implement strength limit struct Skill { explicit Skill(int l) : level(l) {} bool enabled() const { return level < 20; } bool time_to_pick(Depth depth) const { return depth == 1 + level; } Move pick_best(size_t multiPV); int level; Move best = MOVE_NONE; }; // Breadcrumbs are used to mark nodes as being searched by a given thread struct Breadcrumb { std::atomic thread; std::atomic key; }; std::array breadcrumbs; // ThreadHolding structure keeps track of which thread left breadcrumbs at the given // node for potential reductions. A free node will be marked upon entering the moves // loop by the constructor, and unmarked upon leaving that loop by the destructor. struct ThreadHolding { explicit ThreadHolding(Thread* thisThread, Key posKey, int ply) { location = ply < 8 ? &breadcrumbs[posKey & (breadcrumbs.size() - 1)] : nullptr; otherThread = false; owning = false; if (location) { // See if another already marked this location, if not, mark it ourselves Thread* tmp = (*location).thread.load(std::memory_order_relaxed); if (tmp == nullptr) { (*location).thread.store(thisThread, std::memory_order_relaxed); (*location).key.store(posKey, std::memory_order_relaxed); owning = true; } else if ( tmp != thisThread && (*location).key.load(std::memory_order_relaxed) == posKey) otherThread = true; } } ~ThreadHolding() { if (owning) // Free the marked location (*location).thread.store(nullptr, std::memory_order_relaxed); } bool marked() { return otherThread; } private: Breadcrumb* location; bool otherThread, owning; }; template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode); template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = 0); Value value_to_tt(Value v, int ply); Value value_from_tt(Value v, int ply, int r50c); void update_pv(Move* pv, Move move, Move* childPv); void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus); void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus); void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq, Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth); // perft() is our utility to verify move generation. All the leaf nodes up // to the given depth are generated and counted, and the sum is returned. template uint64_t perft(Position& pos, Depth depth) { StateInfo st; uint64_t cnt, nodes = 0; const bool leaf = (depth == 2); for (const auto& m : MoveList(pos)) { if (Root && depth <= 1) cnt = 1, nodes++; else { pos.do_move(m, st); cnt = leaf ? MoveList(pos).size() : perft(pos, depth - 1); nodes += cnt; pos.undo_move(m); } if (Root) sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl; } return nodes; } } // namespace /// Search::init() is called at startup to initialize various lookup tables void Search::init() { for (int i = 1; i < MAX_MOVES; ++i) Reductions[i] = int((23.4 + std::log(Threads.size()) / 2) * std::log(i)); } /// Search::clear() resets search state to its initial value void Search::clear() { Threads.main()->wait_for_search_finished(); Time.availableNodes = 0; TT.clear(); Threads.clear(); Tablebases::init(Options["SyzygyPath"]); // Free mapped files } /// MainThread::search() is started when the program receives the UCI 'go' /// command. It searches from the root position and outputs the "bestmove". void MainThread::search() { if (Limits.perft) { nodes = perft(rootPos, Limits.perft); sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl; return; } Color us = rootPos.side_to_move(); Time.init(Limits, us, rootPos.game_ply()); TT.new_search(); if (rootMoves.empty()) { rootMoves.emplace_back(MOVE_NONE); sync_cout << "info depth 0 score " << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) << sync_endl; } else { for (Thread* th : Threads) { th->bestMoveChanges = 0; if (th != this) th->start_searching(); } Thread::search(); // Let's start searching! } // When we reach the maximum depth, we can arrive here without a raise of // Threads.stop. However, if we are pondering or in an infinite search, // the UCI protocol states that we shouldn't print the best move before the // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here // until the GUI sends one of those commands. while (!Threads.stop && (ponder || Limits.infinite)) {} // Busy wait for a stop or a ponder reset // Stop the threads if not already stopped (also raise the stop if // "ponderhit" just reset Threads.ponder). Threads.stop = true; // Wait until all threads have finished for (Thread* th : Threads) if (th != this) th->wait_for_search_finished(); // When playing in 'nodes as time' mode, subtract the searched nodes from // the available ones before exiting. if (Limits.npmsec) Time.availableNodes += Limits.inc[us] - Threads.nodes_searched(); Thread* bestThread = this; // Check if there are threads with a better score than main thread if ( Options["MultiPV"] == 1 && !Limits.depth && !(Skill(Options["Skill Level"]).enabled() || Options["UCI_LimitStrength"]) && rootMoves[0].pv[0] != MOVE_NONE) { std::map votes; Value minScore = this->rootMoves[0].score; // Find out minimum score for (Thread* th: Threads) minScore = std::min(minScore, th->rootMoves[0].score); // Vote according to score and depth, and select the best thread for (Thread* th : Threads) { votes[th->rootMoves[0].pv[0]] += (th->rootMoves[0].score - minScore + 14) * int(th->completedDepth); if (bestThread->rootMoves[0].score >= VALUE_MATE_IN_MAX_PLY) { // Make sure we pick the shortest mate if (th->rootMoves[0].score > bestThread->rootMoves[0].score) bestThread = th; } else if ( th->rootMoves[0].score >= VALUE_MATE_IN_MAX_PLY || votes[th->rootMoves[0].pv[0]] > votes[bestThread->rootMoves[0].pv[0]]) bestThread = th; } } previousScore = bestThread->rootMoves[0].score; // Send again PV info if we have a new best thread if (bestThread != this) sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl; sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960()); if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos)) std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960()); std::cout << sync_endl; } /// Thread::search() is the main iterative deepening loop. It calls search() /// repeatedly with increasing depth until the allocated thinking time has been /// consumed, the user stops the search, or the maximum search depth is reached. void Thread::search() { // To allow access to (ss-7) up to (ss+2), the stack must be oversized. // The former is needed to allow update_continuation_histories(ss-1, ...), // which accesses its argument at ss-6, also near the root. // The latter is needed for statScores and killer initialization. Stack stack[MAX_PLY+10], *ss = stack+7; Move pv[MAX_PLY+1]; Value bestValue, alpha, beta, delta; Move lastBestMove = MOVE_NONE; Depth lastBestMoveDepth = 0; MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr); double timeReduction = 1, totBestMoveChanges = 0; Color us = rootPos.side_to_move(); int iterIdx = 0; std::memset(ss-7, 0, 10 * sizeof(Stack)); for (int i = 7; i > 0; i--) (ss-i)->continuationHistory = &this->continuationHistory[0][0][NO_PIECE][0]; // Use as a sentinel ss->pv = pv; bestValue = delta = alpha = -VALUE_INFINITE; beta = VALUE_INFINITE; if (mainThread) { if (mainThread->previousScore == VALUE_INFINITE) for (int i=0; i<4; ++i) mainThread->iterValue[i] = VALUE_ZERO; else for (int i=0; i<4; ++i) mainThread->iterValue[i] = mainThread->previousScore; } size_t multiPV = Options["MultiPV"]; // Pick integer skill levels, but non-deterministically round up or down // such that the average integer skill corresponds to the input floating point one. // UCI_Elo is converted to a suitable fractional skill level, using anchoring // to CCRL Elo (goldfish 1.13 = 2000) and a fit through Ordo derived Elo // for match (TC 60+0.6) results spanning a wide range of k values. PRNG rng(now()); double floatLevel = Options["UCI_LimitStrength"] ? clamp(std::pow((Options["UCI_Elo"] - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0) : double(Options["Skill Level"]); int intLevel = int(floatLevel) + ((floatLevel - int(floatLevel)) * 1024 > rng.rand() % 1024 ? 1 : 0); Skill skill(intLevel); // When playing with strength handicap enable MultiPV search that we will // use behind the scenes to retrieve a set of possible moves. if (skill.enabled()) multiPV = std::max(multiPV, (size_t)4); multiPV = std::min(multiPV, rootMoves.size()); ttHitAverage = ttHitAverageWindow * ttHitAverageResolution / 2; int ct = int(Options["Contempt"]) * PawnValueEg / 100; // From centipawns // In analysis mode, adjust contempt in accordance with user preference if (Limits.infinite || Options["UCI_AnalyseMode"]) ct = Options["Analysis Contempt"] == "Off" ? 0 : Options["Analysis Contempt"] == "Both" ? ct : Options["Analysis Contempt"] == "White" && us == BLACK ? -ct : Options["Analysis Contempt"] == "Black" && us == WHITE ? -ct : ct; // Evaluation score is from the white point of view contempt = (us == WHITE ? make_score(ct, ct / 2) : -make_score(ct, ct / 2)); // Iterative deepening loop until requested to stop or the target depth is reached while ( ++rootDepth < MAX_PLY && !Threads.stop && !(Limits.depth && mainThread && rootDepth > Limits.depth)) { // Age out PV variability metric if (mainThread) totBestMoveChanges /= 2; // Save the last iteration's scores before first PV line is searched and // all the move scores except the (new) PV are set to -VALUE_INFINITE. for (RootMove& rm : rootMoves) rm.previousScore = rm.score; size_t pvFirst = 0; pvLast = 0; // MultiPV loop. We perform a full root search for each PV line for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx) { if (pvIdx == pvLast) { pvFirst = pvLast; for (pvLast++; pvLast < rootMoves.size(); pvLast++) if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank) break; } // Reset UCI info selDepth for each depth and each PV line selDepth = 0; // Reset aspiration window starting size if (rootDepth >= 4) { Value previousScore = rootMoves[pvIdx].previousScore; delta = Value(21 + abs(previousScore) / 128); alpha = std::max(previousScore - delta,-VALUE_INFINITE); beta = std::min(previousScore + delta, VALUE_INFINITE); // Adjust contempt based on root move's previousScore (dynamic contempt) int dct = ct + (111 - ct / 2) * previousScore / (abs(previousScore) + 176); contempt = (us == WHITE ? make_score(dct, dct / 2) : -make_score(dct, dct / 2)); } // Start with a small aspiration window and, in the case of a fail // high/low, re-search with a bigger window until we don't fail // high/low anymore. int failedHighCnt = 0; while (true) { Depth adjustedDepth = std::max(1, rootDepth - failedHighCnt); bestValue = ::search(rootPos, ss, alpha, beta, adjustedDepth, false); // Bring the best move to the front. It is critical that sorting // is done with a stable algorithm because all the values but the // first and eventually the new best one are set to -VALUE_INFINITE // and we want to keep the same order for all the moves except the // new PV that goes to the front. Note that in case of MultiPV // search the already searched PV lines are preserved. std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast); // If search has been stopped, we break immediately. Sorting is // safe because RootMoves is still valid, although it refers to // the previous iteration. if (Threads.stop) break; // When failing high/low give some update (without cluttering // the UI) before a re-search. if ( mainThread && multiPV == 1 && (bestValue <= alpha || bestValue >= beta) && Time.elapsed() > 3000) sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; // In case of failing low/high increase aspiration window and // re-search, otherwise exit the loop. if (bestValue <= alpha) { beta = (alpha + beta) / 2; alpha = std::max(bestValue - delta, -VALUE_INFINITE); failedHighCnt = 0; if (mainThread) mainThread->stopOnPonderhit = false; } else if (bestValue >= beta) { beta = std::min(bestValue + delta, VALUE_INFINITE); ++failedHighCnt; } else { ++rootMoves[pvIdx].bestMoveCount; break; } delta += delta / 4 + 5; assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); } // Sort the PV lines searched so far and update the GUI std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1); if ( mainThread && (Threads.stop || pvIdx + 1 == multiPV || Time.elapsed() > 3000)) sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; } if (!Threads.stop) completedDepth = rootDepth; if (rootMoves[0].pv[0] != lastBestMove) { lastBestMove = rootMoves[0].pv[0]; lastBestMoveDepth = rootDepth; } // Have we found a "mate in x"? if ( Limits.mate && bestValue >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - bestValue <= 2 * Limits.mate) Threads.stop = true; if (!mainThread) continue; // If skill level is enabled and time is up, pick a sub-optimal best move if (skill.enabled() && skill.time_to_pick(rootDepth)) skill.pick_best(multiPV); // Do we have time for the next iteration? Can we stop searching now? if ( Limits.use_time_management() && !Threads.stop && !mainThread->stopOnPonderhit) { double fallingEval = (354 + 6 * (mainThread->previousScore - bestValue) + 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 692.0; fallingEval = clamp(fallingEval, 0.5, 1.5); // If the bestMove is stable over several iterations, reduce time accordingly timeReduction = lastBestMoveDepth + 9 < completedDepth ? 1.97 : 0.98; double reduction = (1.36 + mainThread->previousTimeReduction) / (2.29 * timeReduction); // Use part of the gained time from a previous stable move for the current move for (Thread* th : Threads) { totBestMoveChanges += th->bestMoveChanges; th->bestMoveChanges = 0; } double bestMoveInstability = 1 + totBestMoveChanges / Threads.size(); // Stop the search if we have only one legal move, or if available time elapsed if ( rootMoves.size() == 1 || Time.elapsed() > Time.optimum() * fallingEval * reduction * bestMoveInstability) { // If we are allowed to ponder do not stop the search now but // keep pondering until the GUI sends "ponderhit" or "stop". if (mainThread->ponder) mainThread->stopOnPonderhit = true; else Threads.stop = true; } } mainThread->iterValue[iterIdx] = bestValue; iterIdx = (iterIdx + 1) & 3; } if (!mainThread) return; mainThread->previousTimeReduction = timeReduction; // If skill level is enabled, swap best PV line with the sub-optimal one if (skill.enabled()) std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(), skill.best ? skill.best : skill.pick_best(multiPV))); } namespace { // search<>() is the main search function for both PV and non-PV nodes template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { constexpr bool PvNode = NT == PV; const bool rootNode = PvNode && ss->ply == 0; // Check if we have an upcoming move which draws by repetition, or // if the opponent had an alternative move earlier to this position. if ( pos.rule50_count() >= 3 && alpha < VALUE_DRAW && !rootNode && pos.has_game_cycle(ss->ply)) { alpha = value_draw(pos.this_thread()); if (alpha >= beta) return alpha; } // Dive into quiescence search when the depth reaches zero if (depth <= 0) return qsearch(pos, ss, alpha, beta); assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); assert(0 < depth && depth < MAX_PLY); assert(!(PvNode && cutNode)); Move pv[MAX_PLY+1], capturesSearched[32], quietsSearched[64]; StateInfo st; TTEntry* tte; Key posKey; Move ttMove, move, excludedMove, bestMove; Depth extension, newDepth; Value bestValue, value, ttValue, eval, maxValue; bool ttHit, ttPv, inCheck, givesCheck, improving, didLMR, priorCapture; bool captureOrPromotion, doFullDepthSearch, moveCountPruning, ttCapture, singularLMR; Piece movedPiece; int moveCount, captureCount, quietCount; // Step 1. Initialize node Thread* thisThread = pos.this_thread(); inCheck = pos.checkers(); priorCapture = pos.captured_piece(); Color us = pos.side_to_move(); moveCount = captureCount = quietCount = ss->moveCount = 0; bestValue = -VALUE_INFINITE; maxValue = VALUE_INFINITE; // Check for the available remaining time if (thisThread == Threads.main()) static_cast(thisThread)->check_time(); // Used to send selDepth info to GUI (selDepth counts from 1, ply from 0) if (PvNode && thisThread->selDepth < ss->ply + 1) thisThread->selDepth = ss->ply + 1; if (!rootNode) { // Step 2. Check for aborted search and immediate draw if ( Threads.stop.load(std::memory_order_relaxed) || pos.is_draw(ss->ply) || ss->ply >= MAX_PLY) return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos) : value_draw(pos.this_thread()); // Step 3. Mate distance pruning. Even if we mate at the next move our score // would be at best mate_in(ss->ply+1), but if alpha is already bigger because // a shorter mate was found upward in the tree then there is no need to search // because we will never beat the current alpha. Same logic but with reversed // signs applies also in the opposite condition of being mated instead of giving // mate. In this case return a fail-high score. alpha = std::max(mated_in(ss->ply), alpha); beta = std::min(mate_in(ss->ply+1), beta); if (alpha >= beta) return alpha; } assert(0 <= ss->ply && ss->ply < MAX_PLY); (ss+1)->ply = ss->ply + 1; (ss+1)->excludedMove = bestMove = MOVE_NONE; (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; Square prevSq = to_sq((ss-1)->currentMove); // Initialize statScore to zero for the grandchildren of the current position. // So statScore is shared between all grandchildren and only the first grandchild // starts with statScore = 0. Later grandchildren start with the last calculated // statScore of the previous grandchild. This influences the reduction rules in // LMR which are based on the statScore of parent position. if (rootNode) (ss+4)->statScore = 0; else (ss+2)->statScore = 0; // Step 4. Transposition table lookup. We don't want the score of a partial // search to overwrite a previous full search TT value, so we use a different // position key in case of an excluded move. excludedMove = ss->excludedMove; posKey = pos.key() ^ Key(excludedMove << 16); // Isn't a very good hash tte = TT.probe(posKey, ttHit); ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE; ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0] : ttHit ? tte->move() : MOVE_NONE; ttPv = PvNode || (ttHit && tte->is_pv()); // thisThread->ttHitAverage can be used to approximate the running average of ttHit thisThread->ttHitAverage = (ttHitAverageWindow - 1) * thisThread->ttHitAverage / ttHitAverageWindow + ttHitAverageResolution * ttHit; // At non-PV nodes we check for an early TT cutoff if ( !PvNode && ttHit && tte->depth() >= depth && ttValue != VALUE_NONE // Possible in case of TT access race && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) : (tte->bound() & BOUND_UPPER))) { // If ttMove is quiet, update move sorting heuristics on TT hit if (ttMove) { if (ttValue >= beta) { if (!pos.capture_or_promotion(ttMove)) update_quiet_stats(pos, ss, ttMove, stat_bonus(depth)); // Extra penalty for early quiet moves of the previous ply if ((ss-1)->moveCount <= 2 && !priorCapture) update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + 1)); } // Penalty for a quiet ttMove that fails low else if (!pos.capture_or_promotion(ttMove)) { int penalty = -stat_bonus(depth); thisThread->mainHistory[us][from_to(ttMove)] << penalty; update_continuation_histories(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty); } } return ttValue; } // Step 5. Tablebases probe if (!rootNode && TB::Cardinality) { int piecesCount = pos.count(); if ( piecesCount <= TB::Cardinality && (piecesCount < TB::Cardinality || depth >= TB::ProbeDepth) && pos.rule50_count() == 0 && !pos.can_castle(ANY_CASTLING)) { TB::ProbeState err; TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err); // Force check of time on the next occasion if (thisThread == Threads.main()) static_cast(thisThread)->callsCnt = 0; if (err != TB::ProbeState::FAIL) { thisThread->tbHits.fetch_add(1, std::memory_order_relaxed); int drawScore = TB::UseRule50 ? 1 : 0; value = wdl < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply + 1 : wdl > drawScore ? VALUE_MATE - MAX_PLY - ss->ply - 1 : VALUE_DRAW + 2 * wdl * drawScore; Bound b = wdl < -drawScore ? BOUND_UPPER : wdl > drawScore ? BOUND_LOWER : BOUND_EXACT; if ( b == BOUND_EXACT || (b == BOUND_LOWER ? value >= beta : value <= alpha)) { tte->save(posKey, value_to_tt(value, ss->ply), ttPv, b, std::min(MAX_PLY - 1, depth + 6), MOVE_NONE, VALUE_NONE); return value; } if (PvNode) { if (b == BOUND_LOWER) bestValue = value, alpha = std::max(alpha, bestValue); else maxValue = value; } } } } // Step 6. Static evaluation of the position if (inCheck) { ss->staticEval = eval = VALUE_NONE; improving = false; goto moves_loop; // Skip early pruning when in check } else if (ttHit) { // Never assume anything about values stored in TT ss->staticEval = eval = tte->eval(); if (eval == VALUE_NONE) ss->staticEval = eval = evaluate(pos); if (eval == VALUE_DRAW) eval = value_draw(thisThread); // Can ttValue be used as a better position evaluation? if ( ttValue != VALUE_NONE && (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))) eval = ttValue; } else { if ((ss-1)->currentMove != MOVE_NULL) { int bonus = -(ss-1)->statScore / 512; ss->staticEval = eval = evaluate(pos) + bonus; } else ss->staticEval = eval = -(ss-1)->staticEval + 2 * Eval::Tempo; tte->save(posKey, VALUE_NONE, ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval); } // Step 7. Razoring (~2 Elo) if ( !rootNode // The required rootNode PV handling is not available in qsearch && depth < 2 && eval <= alpha - RazorMargin) return qsearch(pos, ss, alpha, beta); improving = ss->staticEval >= (ss-2)->staticEval || (ss-2)->staticEval == VALUE_NONE; // Step 8. Futility pruning: child node (~30 Elo) if ( !PvNode && depth < 7 && eval - futility_margin(depth, improving) >= beta && eval < VALUE_KNOWN_WIN) // Do not return unproven wins return eval; // Step 9. Null move search with verification search (~40 Elo) if ( !PvNode && (ss-1)->currentMove != MOVE_NULL && (ss-1)->statScore < 22661 && eval >= beta && eval >= ss->staticEval && ss->staticEval >= beta - 33 * depth + 299 - improving * 30 && !excludedMove && pos.non_pawn_material(us) && (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor)) { assert(eval - beta >= 0); // Null move dynamic reduction based on depth and value Depth R = (835 + 70 * depth) / 256 + std::min(int(eval - beta) / 185, 3); ss->currentMove = MOVE_NULL; ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0]; pos.do_null_move(st); Value nullValue = -search(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); pos.undo_null_move(); if (nullValue >= beta) { // Do not return unproven mate scores if (nullValue >= VALUE_MATE_IN_MAX_PLY) nullValue = beta; if (thisThread->nmpMinPly || (abs(beta) < VALUE_KNOWN_WIN && depth < 13)) return nullValue; assert(!thisThread->nmpMinPly); // Recursive verification is not allowed // Do verification search at high depths, with null move pruning disabled // for us, until ply exceeds nmpMinPly. thisThread->nmpMinPly = ss->ply + 3 * (depth-R) / 4; thisThread->nmpColor = us; Value v = search(pos, ss, beta-1, beta, depth-R, false); thisThread->nmpMinPly = 0; if (v >= beta) return nullValue; } } // Step 10. ProbCut (~10 Elo) // If we have a good enough capture and a reduced search returns a value // much above beta, we can (almost) safely prune the previous move. if ( !PvNode && depth >= 5 && abs(beta) < VALUE_MATE_IN_MAX_PLY) { Value raisedBeta = std::min(beta + 191 - 46 * improving, VALUE_INFINITE); MovePicker mp(pos, ttMove, raisedBeta - ss->staticEval, &thisThread->captureHistory); int probCutCount = 0; while ( (move = mp.next_move()) != MOVE_NONE && probCutCount < 2 + 2 * cutNode) if (move != excludedMove && pos.legal(move)) { assert(pos.capture_or_promotion(move)); assert(depth >= 5); captureOrPromotion = true; probCutCount++; ss->currentMove = move; ss->continuationHistory = &thisThread->continuationHistory[inCheck] [captureOrPromotion] [pos.moved_piece(move)] [to_sq(move)]; pos.do_move(move, st); // Perform a preliminary qsearch to verify that the move holds value = -qsearch(pos, ss+1, -raisedBeta, -raisedBeta+1); // If the qsearch held, perform the regular search if (value >= raisedBeta) value = -search(pos, ss+1, -raisedBeta, -raisedBeta+1, depth - 4, !cutNode); pos.undo_move(move); if (value >= raisedBeta) return value; } } // Step 11. Internal iterative deepening (~2 Elo) if (depth >= 7 && !ttMove) { search(pos, ss, alpha, beta, depth - 7, cutNode); tte = TT.probe(posKey, ttHit); ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE; ttMove = ttHit ? tte->move() : MOVE_NONE; } moves_loop: // When in check, search starts from here const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory, nullptr , (ss-4)->continuationHistory, nullptr , (ss-6)->continuationHistory }; Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq]; MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, &thisThread->captureHistory, contHist, countermove, ss->killers); value = bestValue; singularLMR = moveCountPruning = false; ttCapture = ttMove && pos.capture_or_promotion(ttMove); // Mark this node as being searched ThreadHolding th(thisThread, posKey, ss->ply); // Step 12. Loop through all pseudo-legal moves until no moves remain // or a beta cutoff occurs. while ((move = mp.next_move(moveCountPruning)) != MOVE_NONE) { assert(is_ok(move)); if (move == excludedMove) continue; // At root obey the "searchmoves" option and skip moves not listed in Root // Move List. As a consequence any illegal move is also skipped. In MultiPV // mode we also skip PV moves which have been already searched and those // of lower "TB rank" if we are in a TB root position. if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx, thisThread->rootMoves.begin() + thisThread->pvLast, move)) continue; ss->moveCount = ++moveCount; if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000) sync_cout << "info depth " << depth << " currmove " << UCI::move(move, pos.is_chess960()) << " currmovenumber " << moveCount + thisThread->pvIdx << sync_endl; if (PvNode) (ss+1)->pv = nullptr; extension = 0; captureOrPromotion = pos.capture_or_promotion(move); movedPiece = pos.moved_piece(move); givesCheck = pos.gives_check(move); // Calculate new depth for this move newDepth = depth - 1; // Step 13. Pruning at shallow depth (~170 Elo) if ( !rootNode && pos.non_pawn_material(us) && bestValue > VALUE_MATED_IN_MAX_PLY) { // Skip quiet moves if movecount exceeds our FutilityMoveCount threshold moveCountPruning = moveCount >= futility_move_count(improving, depth); if ( !captureOrPromotion && !givesCheck) { // Reduced depth of the next LMR search int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount), 0); // Countermoves based pruning (~20 Elo) if ( lmrDepth < 4 + ((ss-1)->statScore > 0 || (ss-1)->moveCount == 1) && (*contHist[0])[movedPiece][to_sq(move)] < CounterMovePruneThreshold && (*contHist[1])[movedPiece][to_sq(move)] < CounterMovePruneThreshold) continue; // Futility pruning: parent node (~2 Elo) if ( lmrDepth < 6 && !inCheck && ss->staticEval + 250 + 211 * lmrDepth <= alpha) continue; // Prune moves with negative SEE (~10 Elo) if (!pos.see_ge(move, Value(-(31 - std::min(lmrDepth, 18)) * lmrDepth * lmrDepth))) continue; } else if (!pos.see_ge(move, Value(-199) * depth)) // (~20 Elo) continue; } // Step 14. Extensions (~70 Elo) // Singular extension search (~60 Elo). If all moves but one fail low on a // search of (alpha-s, beta-s), and just one fails high on (alpha, beta), // then that move is singular and should be extended. To verify this we do // a reduced search on all the other moves but the ttMove and if the // result is lower than ttValue minus a margin then we will extend the ttMove. if ( depth >= 6 && move == ttMove && !rootNode && !excludedMove // Avoid recursive singular search /* && ttValue != VALUE_NONE Already implicit in the next condition */ && abs(ttValue) < VALUE_KNOWN_WIN && (tte->bound() & BOUND_LOWER) && tte->depth() >= depth - 3 && pos.legal(move)) { Value singularBeta = ttValue - 2 * depth; Depth halfDepth = depth / 2; ss->excludedMove = move; value = search(pos, ss, singularBeta - 1, singularBeta, halfDepth, cutNode); ss->excludedMove = MOVE_NONE; if (value < singularBeta) { extension = 1; singularLMR = true; } // Multi-cut pruning // Our ttMove is assumed to fail high, and now we failed high also on a reduced // search without the ttMove. So we assume this expected Cut-node is not singular, // that multiple moves fail high, and we can prune the whole subtree by returning // a soft bound. else if (singularBeta >= beta) return singularBeta; } // Check extension (~2 Elo) else if ( givesCheck && (pos.is_discovery_check_on_king(~us, move) || pos.see_ge(move))) extension = 1; // Passed pawn extension else if ( move == ss->killers[0] && pos.advanced_pawn_push(move) && pos.pawn_passed(us, to_sq(move))) extension = 1; // Last captures extension else if ( PvNode && PieceValue[EG][pos.captured_piece()] > PawnValueEg && pos.non_pawn_material() <= 2 * RookValueMg) extension = 1; // Castling extension if (type_of(move) == CASTLING) extension = 1; // Add extension to new depth newDepth += extension; // Speculative prefetch as early as possible prefetch(TT.first_entry(pos.key_after(move))); // Check for legality just before making the move if (!rootNode && !pos.legal(move)) { ss->moveCount = --moveCount; continue; } // Update the current move (this must be done after singular extension search) ss->currentMove = move; ss->continuationHistory = &thisThread->continuationHistory[inCheck] [captureOrPromotion] [movedPiece] [to_sq(move)]; // Step 15. Make the move pos.do_move(move, st, givesCheck); // Step 16. Reduced depth search (LMR). If the move fails high it will be // re-searched at full depth. if ( depth >= 3 && moveCount > 1 + 2 * rootNode && (!rootNode || thisThread->best_move_count(move) == 0) && ( !captureOrPromotion || moveCountPruning || ss->staticEval + PieceValue[EG][pos.captured_piece()] <= alpha || cutNode || thisThread->ttHitAverage < 384 * ttHitAverageResolution * ttHitAverageWindow / 1024)) { Depth r = reduction(improving, depth, moveCount); // Decrease reduction if the ttHit running average is large if (thisThread->ttHitAverage > 544 * ttHitAverageResolution * ttHitAverageWindow / 1024) r--; // Reduction if other threads are searching this position. if (th.marked()) r++; // Decrease reduction if position is or has been on the PV if (ttPv) r -= 2; // Decrease reduction if opponent's move count is high (~10 Elo) if ((ss-1)->moveCount > 15) r--; // Decrease reduction if ttMove has been singularly extended if (singularLMR) r -= 2; if (!captureOrPromotion) { // Increase reduction if ttMove is a capture (~0 Elo) if (ttCapture) r++; // Increase reduction for cut nodes (~5 Elo) if (cutNode) r += 2; // Decrease reduction for moves that escape a capture. Filter out // castling moves, because they are coded as "king captures rook" and // hence break make_move(). (~5 Elo) else if ( type_of(move) == NORMAL && !pos.see_ge(reverse_move(move))) r -= 2; ss->statScore = thisThread->mainHistory[us][from_to(move)] + (*contHist[0])[movedPiece][to_sq(move)] + (*contHist[1])[movedPiece][to_sq(move)] + (*contHist[3])[movedPiece][to_sq(move)] - 4729; // Reset statScore to zero if negative and most stats shows >= 0 if ( ss->statScore < 0 && (*contHist[0])[movedPiece][to_sq(move)] >= 0 && (*contHist[1])[movedPiece][to_sq(move)] >= 0 && thisThread->mainHistory[us][from_to(move)] >= 0) ss->statScore = 0; // Decrease/increase reduction by comparing opponent's stat score (~10 Elo) if (ss->statScore >= -99 && (ss-1)->statScore < -116) r--; else if ((ss-1)->statScore >= -117 && ss->statScore < -144) r++; // Decrease/increase reduction for moves with a good/bad history (~30 Elo) r -= ss->statScore / 16384; } Depth d = clamp(newDepth - r, 1, newDepth); value = -search(pos, ss+1, -(alpha+1), -alpha, d, true); doFullDepthSearch = (value > alpha && d != newDepth), didLMR = true; } else doFullDepthSearch = !PvNode || moveCount > 1, didLMR = false; // Step 17. Full depth search when LMR is skipped or fails high if (doFullDepthSearch) { value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); if (didLMR && !captureOrPromotion) { int bonus = value > alpha ? stat_bonus(newDepth) : -stat_bonus(newDepth); if (move == ss->killers[0]) bonus += bonus / 4; update_continuation_histories(ss, movedPiece, to_sq(move), bonus); } } // For PV nodes only, do a full PV search on the first move or after a fail // high (in the latter case search only if value < beta), otherwise let the // parent node fail low with value <= alpha and try another move. if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta)))) { (ss+1)->pv = pv; (ss+1)->pv[0] = MOVE_NONE; value = -search(pos, ss+1, -beta, -alpha, newDepth, false); } // Step 18. Undo move pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // Step 19. Check for a new best move // Finished searching the move. If a stop occurred, the return value of // the search cannot be trusted, and we return immediately without // updating best move, PV and TT. if (Threads.stop.load(std::memory_order_relaxed)) return VALUE_ZERO; if (rootNode) { RootMove& rm = *std::find(thisThread->rootMoves.begin(), thisThread->rootMoves.end(), move); // PV move or new best move? if (moveCount == 1 || value > alpha) { rm.score = value; rm.selDepth = thisThread->selDepth; rm.pv.resize(1); assert((ss+1)->pv); for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m) rm.pv.push_back(*m); // We record how often the best move has been changed in each // iteration. This information is used for time management: When // the best move changes frequently, we allocate some more time. if (moveCount > 1) ++thisThread->bestMoveChanges; } else // All other moves but the PV are set to the lowest value: this // is not a problem when sorting because the sort is stable and the // move position in the list is preserved - just the PV is pushed up. rm.score = -VALUE_INFINITE; } if (value > bestValue) { bestValue = value; if (value > alpha) { bestMove = move; if (PvNode && !rootNode) // Update pv even in fail-high case update_pv(ss->pv, move, (ss+1)->pv); if (PvNode && value < beta) // Update alpha! Always alpha < beta alpha = value; else { assert(value >= beta); // Fail high ss->statScore = 0; break; } } } if (move != bestMove) { if (captureOrPromotion && captureCount < 32) capturesSearched[captureCount++] = move; else if (!captureOrPromotion && quietCount < 64) quietsSearched[quietCount++] = move; } } // The following condition would detect a stop only after move loop has been // completed. But in this case bestValue is valid because we have fully // searched our subtree, and we can anyhow save the result in TT. /* if (Threads.stop) return VALUE_DRAW; */ // Step 20. Check for mate and stalemate // All legal moves have been searched and if there are no legal moves, it // must be a mate or a stalemate. If we are in a singular extension search then // return a fail low score. assert(moveCount || !inCheck || excludedMove || !MoveList(pos).size()); if (!moveCount) bestValue = excludedMove ? alpha : inCheck ? mated_in(ss->ply) : VALUE_DRAW; else if (bestMove) update_all_stats(pos, ss, bestMove, bestValue, beta, prevSq, quietsSearched, quietCount, capturesSearched, captureCount, depth); // Bonus for prior countermove that caused the fail low else if ( (depth >= 3 || PvNode) && !priorCapture) update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth)); if (PvNode) bestValue = std::min(bestValue, maxValue); if (!excludedMove) tte->save(posKey, value_to_tt(bestValue, ss->ply), ttPv, bestValue >= beta ? BOUND_LOWER : PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, depth, bestMove, ss->staticEval); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // qsearch() is the quiescence search function, which is called by the main search // function with zero depth, or recursively with further decreasing depth per call. template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { constexpr bool PvNode = NT == PV; assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); assert(depth <= 0); Move pv[MAX_PLY+1]; StateInfo st; TTEntry* tte; Key posKey; Move ttMove, move, bestMove; Depth ttDepth; Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha; bool ttHit, pvHit, inCheck, givesCheck, captureOrPromotion, evasionPrunable; int moveCount; if (PvNode) { oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves (ss+1)->pv = pv; ss->pv[0] = MOVE_NONE; } Thread* thisThread = pos.this_thread(); (ss+1)->ply = ss->ply + 1; bestMove = MOVE_NONE; inCheck = pos.checkers(); moveCount = 0; // Check for an immediate draw or maximum ply reached if ( pos.is_draw(ss->ply) || ss->ply >= MAX_PLY) return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos) : VALUE_DRAW; assert(0 <= ss->ply && ss->ply < MAX_PLY); // Decide whether or not to include checks: this fixes also the type of // TT entry depth that we are going to use. Note that in qsearch we use // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. ttDepth = inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS; // Transposition table lookup posKey = pos.key(); tte = TT.probe(posKey, ttHit); ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE; ttMove = ttHit ? tte->move() : MOVE_NONE; pvHit = ttHit && tte->is_pv(); if ( !PvNode && ttHit && tte->depth() >= ttDepth && ttValue != VALUE_NONE // Only in case of TT access race && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) : (tte->bound() & BOUND_UPPER))) return ttValue; // Evaluate the position statically if (inCheck) { ss->staticEval = VALUE_NONE; bestValue = futilityBase = -VALUE_INFINITE; } else { if (ttHit) { // Never assume anything about values stored in TT if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE) ss->staticEval = bestValue = evaluate(pos); // Can ttValue be used as a better position evaluation? if ( ttValue != VALUE_NONE && (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))) bestValue = ttValue; } else ss->staticEval = bestValue = (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) : -(ss-1)->staticEval + 2 * Eval::Tempo; // Stand pat. Return immediately if static value is at least beta if (bestValue >= beta) { if (!ttHit) tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit, BOUND_LOWER, DEPTH_NONE, MOVE_NONE, ss->staticEval); return bestValue; } if (PvNode && bestValue > alpha) alpha = bestValue; futilityBase = bestValue + 153; } const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory, nullptr , (ss-4)->continuationHistory, nullptr , (ss-6)->continuationHistory }; // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will // be generated. MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, &thisThread->captureHistory, contHist, to_sq((ss-1)->currentMove)); // Loop through the moves until no moves remain or a beta cutoff occurs while ((move = mp.next_move()) != MOVE_NONE) { assert(is_ok(move)); givesCheck = pos.gives_check(move); captureOrPromotion = pos.capture_or_promotion(move); moveCount++; // Futility pruning if ( !inCheck && !givesCheck && futilityBase > -VALUE_KNOWN_WIN && !pos.advanced_pawn_push(move)) { assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))]; if (futilityValue <= alpha) { bestValue = std::max(bestValue, futilityValue); continue; } if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1)) { bestValue = std::max(bestValue, futilityBase); continue; } } // Detect non-capture evasions that are candidates to be pruned evasionPrunable = inCheck && (depth != 0 || moveCount > 2) && bestValue > VALUE_MATED_IN_MAX_PLY && !pos.capture(move); // Don't search moves with negative SEE values if ( (!inCheck || evasionPrunable) && !(givesCheck && pos.is_discovery_check_on_king(~pos.side_to_move(), move)) && !pos.see_ge(move)) continue; // Speculative prefetch as early as possible prefetch(TT.first_entry(pos.key_after(move))); // Check for legality just before making the move if (!pos.legal(move)) { moveCount--; continue; } ss->currentMove = move; ss->continuationHistory = &thisThread->continuationHistory[inCheck] [captureOrPromotion] [pos.moved_piece(move)] [to_sq(move)]; // Make and search the move pos.do_move(move, st, givesCheck); value = -qsearch(pos, ss+1, -beta, -alpha, depth - 1); pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // Check for a new best move if (value > bestValue) { bestValue = value; if (value > alpha) { bestMove = move; if (PvNode) // Update pv even in fail-high case update_pv(ss->pv, move, (ss+1)->pv); if (PvNode && value < beta) // Update alpha here! alpha = value; else break; // Fail high } } } // All legal moves have been searched. A special case: If we're in check // and no legal moves were found, it is checkmate. if (inCheck && bestValue == -VALUE_INFINITE) return mated_in(ss->ply); // Plies to mate from the root tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit, bestValue >= beta ? BOUND_LOWER : PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER, ttDepth, bestMove, ss->staticEval); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // value_to_tt() adjusts a mate score from "plies to mate from the root" to // "plies to mate from the current position". Non-mate scores are unchanged. // The function is called before storing a value in the transposition table. Value value_to_tt(Value v, int ply) { assert(v != VALUE_NONE); return v >= VALUE_MATE_IN_MAX_PLY ? v + ply : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v; } // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score // from the transposition table (which refers to the plies to mate/be mated // from current position) to "plies to mate/be mated from the root". Value value_from_tt(Value v, int ply, int r50c) { return v == VALUE_NONE ? VALUE_NONE : v >= VALUE_MATE_IN_MAX_PLY ? VALUE_MATE - v > 99 - r50c ? VALUE_MATE_IN_MAX_PLY : v - ply : v <= VALUE_MATED_IN_MAX_PLY ? VALUE_MATE + v > 99 - r50c ? VALUE_MATED_IN_MAX_PLY : v + ply : v; } // update_pv() adds current move and appends child pv[] void update_pv(Move* pv, Move move, Move* childPv) { for (*pv++ = move; childPv && *childPv != MOVE_NONE; ) *pv++ = *childPv++; *pv = MOVE_NONE; } // update_all_stats() updates stats at the end of search() when a bestMove is found void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq, Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth) { int bonus1, bonus2; Color us = pos.side_to_move(); Thread* thisThread = pos.this_thread(); CapturePieceToHistory& captureHistory = thisThread->captureHistory; Piece moved_piece = pos.moved_piece(bestMove); PieceType captured = type_of(pos.piece_on(to_sq(bestMove))); bonus1 = stat_bonus(depth + 1); bonus2 = bestValue > beta + PawnValueMg ? bonus1 // larger bonus : stat_bonus(depth); // smaller bonus if (!pos.capture_or_promotion(bestMove)) { update_quiet_stats(pos, ss, bestMove, bonus2); // Decrease all the non-best quiet moves for (int i = 0; i < quietCount; ++i) { thisThread->mainHistory[us][from_to(quietsSearched[i])] << -bonus2; update_continuation_histories(ss, pos.moved_piece(quietsSearched[i]), to_sq(quietsSearched[i]), -bonus2); } } else captureHistory[moved_piece][to_sq(bestMove)][captured] << bonus1; // Extra penalty for a quiet TT or main killer move in previous ply when it gets refuted if ( ((ss-1)->moveCount == 1 || ((ss-1)->currentMove == (ss-1)->killers[0])) && !pos.captured_piece()) update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -bonus1); // Decrease all the non-best capture moves for (int i = 0; i < captureCount; ++i) { moved_piece = pos.moved_piece(capturesSearched[i]); captured = type_of(pos.piece_on(to_sq(capturesSearched[i]))); captureHistory[moved_piece][to_sq(capturesSearched[i])][captured] << -bonus1; } } // update_continuation_histories() updates histories of the move pairs formed // by moves at ply -1, -2, and -4 with current move. void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) { for (int i : {1, 2, 4, 6}) if (is_ok((ss-i)->currentMove)) (*(ss-i)->continuationHistory)[pc][to] << bonus; } // update_quiet_stats() updates move sorting heuristics void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus) { if (ss->killers[0] != move) { ss->killers[1] = ss->killers[0]; ss->killers[0] = move; } Color us = pos.side_to_move(); Thread* thisThread = pos.this_thread(); thisThread->mainHistory[us][from_to(move)] << bonus; update_continuation_histories(ss, pos.moved_piece(move), to_sq(move), bonus); if (type_of(pos.moved_piece(move)) != PAWN) thisThread->mainHistory[us][from_to(reverse_move(move))] << -bonus; if (is_ok((ss-1)->currentMove)) { Square prevSq = to_sq((ss-1)->currentMove); thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move; } } // When playing with strength handicap, choose best move among a set of RootMoves // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. Move Skill::pick_best(size_t multiPV) { const RootMoves& rootMoves = Threads.main()->rootMoves; static PRNG rng(now()); // PRNG sequence should be non-deterministic // RootMoves are already sorted by score in descending order Value topScore = rootMoves[0].score; int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg); int weakness = 120 - 2 * level; int maxScore = -VALUE_INFINITE; // Choose best move. For each move score we add two terms, both dependent on // weakness. One is deterministic and bigger for weaker levels, and one is // random. Then we choose the move with the resulting highest score. for (size_t i = 0; i < multiPV; ++i) { // This is our magic formula int push = ( weakness * int(topScore - rootMoves[i].score) + delta * (rng.rand() % weakness)) / 128; if (rootMoves[i].score + push >= maxScore) { maxScore = rootMoves[i].score + push; best = rootMoves[i].pv[0]; } } return best; } } // namespace /// MainThread::check_time() is used to print debug info and, more importantly, /// to detect when we are out of available time and thus stop the search. void MainThread::check_time() { if (--callsCnt > 0) return; // When using nodes, ensure checking rate is not lower than 0.1% of nodes callsCnt = Limits.nodes ? std::min(1024, int(Limits.nodes / 1024)) : 1024; static TimePoint lastInfoTime = now(); TimePoint elapsed = Time.elapsed(); TimePoint tick = Limits.startTime + elapsed; if (tick - lastInfoTime >= 1000) { lastInfoTime = tick; dbg_print(); } // We should not stop pondering until told so by the GUI if (ponder) return; if ( (Limits.use_time_management() && (elapsed > Time.maximum() - 10 || stopOnPonderhit)) || (Limits.movetime && elapsed >= Limits.movetime) || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes)) Threads.stop = true; } /// UCI::pv() formats PV information according to the UCI protocol. UCI requires /// that all (if any) unsearched PV lines are sent using a previous search score. string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) { std::stringstream ss; TimePoint elapsed = Time.elapsed() + 1; const RootMoves& rootMoves = pos.this_thread()->rootMoves; size_t pvIdx = pos.this_thread()->pvIdx; size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size()); uint64_t nodesSearched = Threads.nodes_searched(); uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0); for (size_t i = 0; i < multiPV; ++i) { bool updated = (i <= pvIdx && rootMoves[i].score != -VALUE_INFINITE); if (depth == 1 && !updated) continue; Depth d = updated ? depth : depth - 1; Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore; bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY; v = tb ? rootMoves[i].tbScore : v; if (ss.rdbuf()->in_avail()) // Not at first line ss << "\n"; ss << "info" << " depth " << d << " seldepth " << rootMoves[i].selDepth << " multipv " << i + 1 << " score " << UCI::value(v); if (!tb && i == pvIdx) ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : ""); ss << " nodes " << nodesSearched << " nps " << nodesSearched * 1000 / elapsed; if (elapsed > 1000) // Earlier makes little sense ss << " hashfull " << TT.hashfull(); ss << " tbhits " << tbHits << " time " << elapsed << " pv"; for (Move m : rootMoves[i].pv) ss << " " << UCI::move(m, pos.is_chess960()); } return ss.str(); } /// RootMove::extract_ponder_from_tt() is called in case we have no ponder move /// before exiting the search, for instance, in case we stop the search during a /// fail high at root. We try hard to have a ponder move to return to the GUI, /// otherwise in case of 'ponder on' we have nothing to think on. bool RootMove::extract_ponder_from_tt(Position& pos) { StateInfo st; bool ttHit; assert(pv.size() == 1); if (pv[0] == MOVE_NONE) return false; pos.do_move(pv[0], st); TTEntry* tte = TT.probe(pos.key(), ttHit); if (ttHit) { Move m = tte->move(); // Local copy to be SMP safe if (MoveList(pos).contains(m)) pv.push_back(m); } pos.undo_move(pv[0]); return pv.size() > 1; } void Tablebases::rank_root_moves(Position& pos, Search::RootMoves& rootMoves) { RootInTB = false; UseRule50 = bool(Options["Syzygy50MoveRule"]); ProbeDepth = int(Options["SyzygyProbeDepth"]); Cardinality = int(Options["SyzygyProbeLimit"]); bool dtz_available = true; // Tables with fewer pieces than SyzygyProbeLimit are searched with // ProbeDepth == DEPTH_ZERO if (Cardinality > MaxCardinality) { Cardinality = MaxCardinality; ProbeDepth = 0; } if (Cardinality >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING)) { // Rank moves using DTZ tables RootInTB = root_probe(pos, rootMoves); if (!RootInTB) { // DTZ tables are missing; try to rank moves using WDL tables dtz_available = false; RootInTB = root_probe_wdl(pos, rootMoves); } } if (RootInTB) { // Sort moves according to TB rank std::sort(rootMoves.begin(), rootMoves.end(), [](const RootMove &a, const RootMove &b) { return a.tbRank > b.tbRank; } ); // Probe during search only if DTZ is not available and we are winning if (dtz_available || rootMoves[0].tbScore <= VALUE_DRAW) Cardinality = 0; } else { // Clean up if root_probe() and root_probe_wdl() have failed for (auto& m : rootMoves) m.tbRank = 0; } }