/* Glaurung, a UCI chess playing engine. Copyright (C) 2004-2008 Tord Romstad Glaurung is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Glaurung is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //// //// Includes //// #include #include #include #include #include #include "book.h" #include "evaluate.h" #include "history.h" #include "misc.h" #include "movepick.h" #include "san.h" #include "search.h" #include "thread.h" #include "tt.h" #include "ucioption.h" //// //// Local definitions //// namespace { /// Types // The RootMove class is used for moves at the root at the tree. For each // root move, we store a score, a node count, and a PV (really a refutation // in the case of moves which fail low). class RootMove { public: RootMove(); Move move; Value score; int64_t nodes, cumulativeNodes; Move pv[PLY_MAX_PLUS_2]; }; // The RootMoveList class is essentially an array of RootMove objects, with // a handful of methods for accessing the data in the individual moves. class RootMoveList { public: RootMoveList(Position &pos, Move searchMoves[]); Move get_move(int moveNum) const; Value get_move_score(int moveNum) const; void set_move_score(int moveNum, Value score); void set_move_nodes(int moveNum, int64_t nodes); void set_move_pv(int moveNum, const Move pv[]); Move get_move_pv(int moveNum, int i) const; int64_t get_move_cumulative_nodes(int moveNum); int move_count() const; Move scan_for_easy_move() const; void sort(); void sort_multipv(int n); private: static int compare_root_moves(const RootMove &rm1, const RootMove &rm2); static const int MaxRootMoves = 500; RootMove moves[MaxRootMoves]; int count; }; /// Constants and variables // Minimum number of full depth (i.e. non-reduced) moves at PV and non-PV // nodes: int LMRPVMoves = 15; int LMRNonPVMoves = 4; // Depth limit for use of dynamic threat detection: Depth ThreatDepth = 5*OnePly; // Depth limit for selective search: Depth SelectiveDepth = 7*OnePly; // Use internal iterative deepening? const bool UseIIDAtPVNodes = true; const bool UseIIDAtNonPVNodes = false; // Internal iterative deepening margin. At Non-PV moves, when // UseIIDAtNonPVNodes is true, we do an internal iterative deepening search // when the static evaluation is at most IIDMargin below beta. const Value IIDMargin = Value(0x100); // Use easy moves? const bool UseEasyMove = true; // Easy move margin. An easy move candidate must be at least this much // better than the second best move. const Value EasyMoveMargin = Value(0x200); // Problem margin. If the score of the first move at iteration N+1 has // dropped by more than this since iteration N, the boolean variable // "Problem" is set to true, which will make the program spend some extra // time looking for a better move. const Value ProblemMargin = Value(0x28); // No problem margin. If the boolean "Problem" is true, and a new move // is found at the root which is less than NoProblemMargin worse than the // best move from the previous iteration, Problem is set back to false. const Value NoProblemMargin = Value(0x14); // Null move margin. A null move search will not be done if the approximate // evaluation of the position is more than NullMoveMargin below beta. const Value NullMoveMargin = Value(0x300); // Pruning criterions. See the code and comments in ok_to_prune() to // understand their precise meaning. const bool PruneEscapeMoves = false; const bool PruneDefendingMoves = false; const bool PruneBlockingMoves = false; // Use futility pruning? bool UseQSearchFutilityPruning = true; bool UseFutilityPruning = true; // Margins for futility pruning in the quiescence search, at frontier // nodes, and at pre-frontier nodes: Value FutilityMargin0 = Value(0x80); Value FutilityMargin1 = Value(0x100); Value FutilityMargin2 = Value(0x300); // Razoring Depth RazorDepth = 4*OnePly; Value RazorMargin = Value(0x300); // Extensions. Array index 0 is used at non-PV nodes, index 1 at PV nodes. Depth CheckExtension[2] = {OnePly, OnePly}; Depth SingleReplyExtension[2] = {OnePly / 2, OnePly / 2}; Depth PawnPushTo7thExtension[2] = {OnePly / 2, OnePly / 2}; Depth PassedPawnExtension[2] = {Depth(0), Depth(0)}; Depth PawnEndgameExtension[2] = {OnePly, OnePly}; Depth MateThreatExtension[2] = {Depth(0), Depth(0)}; // Search depth at iteration 1: const Depth InitialDepth = OnePly /*+ OnePly/2*/; // Node counters int NodesSincePoll; int NodesBetweenPolls = 30000; // Iteration counter: int Iteration; // Scores and number of times the best move changed for each iteration: Value ValueByIteration[PLY_MAX_PLUS_2]; int BestMoveChangesByIteration[PLY_MAX_PLUS_2]; // MultiPV mode: int MultiPV = 1; // Time managment variables int SearchStartTime; int MaxNodes, MaxDepth; int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime; Move BestRootMove, PonderMove, EasyMove; int RootMoveNumber; bool InfiniteSearch; bool PonderSearch; bool StopOnPonderhit; bool AbortSearch; bool Quit; bool FailHigh; bool Problem; bool PonderingEnabled; int ExactMaxTime; // Show current line? bool ShowCurrentLine = false; // Log file bool UseLogFile = false; std::ofstream LogFile; // MP related variables Depth MinimumSplitDepth = 4*OnePly; int MaxThreadsPerSplitPoint = 4; Thread Threads[THREAD_MAX]; Lock MPLock; bool AllThreadsShouldExit = false; const int MaxActiveSplitPoints = 8; SplitPoint SplitPointStack[THREAD_MAX][MaxActiveSplitPoints]; bool Idle = true; #if !defined(_MSC_VER) pthread_cond_t WaitCond; pthread_mutex_t WaitLock; #else HANDLE SitIdleEvent[THREAD_MAX]; #endif /// Functions void id_loop(const Position &pos, Move searchMoves[]); Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml); Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); Value search(Position &pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID); Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); void sp_search(SplitPoint *sp, int threadID); void sp_search_pv(SplitPoint *sp, int threadID); void init_search_stack(SearchStack ss[]); void init_node(const Position &pos, SearchStack ss[], int ply, int threadID); void update_pv(SearchStack ss[], int ply); void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply); bool connected_moves(const Position &pos, Move m1, Move m2); Depth extension(const Position &pos, Move m, bool pvNode, bool check, bool singleReply, bool mateThreat); bool ok_to_do_nullmove(const Position &pos); bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d); bool fail_high_ply_1(); int current_search_time(); int nps(); void poll(); void ponderhit(); void print_current_line(SearchStack ss[], int ply, int threadID); void wait_for_stop_or_ponderhit(); void idle_loop(int threadID, SplitPoint *waitSp); void init_split_point_stack(); void destroy_split_point_stack(); bool thread_should_stop(int threadID); bool thread_is_available(int slave, int master); bool idle_thread_exists(int master); bool split(const Position &pos, SearchStack *ss, int ply, Value *alpha, Value *beta, Value *bestValue, Depth depth, int *moves, MovePicker *mp, Bitboard dcCandidates, int master, bool pvNode); void wake_sleeping_threads(); #if !defined(_MSC_VER) void *init_thread(void *threadID); #else DWORD WINAPI init_thread(LPVOID threadID); #endif } //// //// Global variables //// // The main transposition table TranspositionTable TT = TranspositionTable(TTDefaultSize); // Number of active threads: int ActiveThreads = 1; // Locks. In principle, there is no need for IOLock to be a global variable, // but it could turn out to be useful for debugging. Lock IOLock; History H; // Should be made local? //// //// Functions //// /// think() is the external interface to Glaurung's search, and is called when /// the program receives the UCI 'go' command. It initializes various /// search-related global variables, and calls root_search() void think(const Position &pos, bool infinite, bool ponder, int time, int increment, int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) { // Look for a book move: if(!infinite && !ponder && get_option_value_bool("OwnBook")) { Move bookMove; if(get_option_value_string("Book File") != OpeningBook.file_name()) { OpeningBook.close(); OpeningBook.open("book.bin"); } bookMove = OpeningBook.get_move(pos); if(bookMove != MOVE_NONE) { std::cout << "bestmove " << bookMove << std::endl; return; } } // Initialize global search variables: Idle = false; SearchStartTime = get_system_time(); BestRootMove = MOVE_NONE; PonderMove = MOVE_NONE; EasyMove = MOVE_NONE; for(int i = 0; i < THREAD_MAX; i++) { Threads[i].nodes = 0ULL; Threads[i].failHighPly1 = false; } NodesSincePoll = 0; InfiniteSearch = infinite; PonderSearch = ponder; StopOnPonderhit = false; AbortSearch = false; Quit = false; FailHigh = false; Problem = false; ExactMaxTime = maxTime; // Read UCI option values: TT.set_size(get_option_value_int("Hash")); if(button_was_pressed("Clear Hash")) TT.clear(); PonderingEnabled = get_option_value_int("Ponder"); MultiPV = get_option_value_int("MultiPV"); CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)")); CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)")); SingleReplyExtension[1] = Depth(get_option_value_int("Single Reply Extension (PV nodes)")); SingleReplyExtension[0] = Depth(get_option_value_int("Single Reply Extension (non-PV nodes)")); PawnPushTo7thExtension[1] = Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)")); PawnPushTo7thExtension[0] = Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)")); PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)")); PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)")); PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)")); PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)")); MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)")); MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)")); LMRPVMoves = get_option_value_int("Full Depth Moves (PV nodes)") + 1; LMRNonPVMoves = get_option_value_int("Full Depth Moves (non-PV nodes)") + 1; ThreatDepth = get_option_value_int("Threat Depth") * OnePly; SelectiveDepth = get_option_value_int("Selective Plies") * OnePly; Chess960 = get_option_value_bool("UCI_Chess960"); ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine"); UseLogFile = get_option_value_bool("Use Search Log"); if(UseLogFile) LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app); UseQSearchFutilityPruning = get_option_value_bool("Futility Pruning (Quiescence Search)"); UseFutilityPruning = get_option_value_bool("Futility Pruning (Main Search)"); FutilityMargin0 = value_from_centipawns(get_option_value_int("Futility Margin 0")); FutilityMargin1 = value_from_centipawns(get_option_value_int("Futility Margin 1")); FutilityMargin2 = value_from_centipawns(get_option_value_int("Futility Margin 2")); RazorDepth = (get_option_value_int("Maximum Razoring Depth") + 1) * OnePly; RazorMargin = value_from_centipawns(get_option_value_int("Razoring Margin")); MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly; MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point"); read_weights(pos.side_to_move()); int newActiveThreads = get_option_value_int("Threads"); if(newActiveThreads != ActiveThreads) { ActiveThreads = newActiveThreads; init_eval(ActiveThreads); } // Write information to search log file: if(UseLogFile) { LogFile << "Searching: " << pos.to_fen() << '\n'; LogFile << "infinite: " << infinite << " ponder: " << ponder << " time: " << time << " increment: " << increment << " moves to go: " << movesToGo << '\n'; } // Wake up sleeping threads: wake_sleeping_threads(); for(int i = 1; i < ActiveThreads; i++) assert(thread_is_available(i, 0)); // Set thinking time: if(!movesToGo) { // Sudden death time control if(increment) { MaxSearchTime = time / 30 + increment; AbsoluteMaxSearchTime = Max(time / 4, increment - 100); } else { // Blitz game without increment MaxSearchTime = time / 40; AbsoluteMaxSearchTime = time / 8; } } else { // (x moves) / (y minutes) if(movesToGo == 1) { MaxSearchTime = time / 2; AbsoluteMaxSearchTime = Min(time / 2, time - 500); } else { MaxSearchTime = time / Min(movesToGo, 20); AbsoluteMaxSearchTime = Min((4 * time) / movesToGo, time / 3); } } if(PonderingEnabled) { MaxSearchTime += MaxSearchTime / 4; MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime); } // Fixed depth or fixed number of nodes? MaxDepth = maxDepth; if(MaxDepth) InfiniteSearch = true; // HACK MaxNodes = maxNodes; if(MaxNodes) { NodesBetweenPolls = Min(MaxNodes, 30000); InfiniteSearch = true; // HACK } else NodesBetweenPolls = 30000; // We're ready to start thinking. Call the iterative deepening loop // function: id_loop(pos, searchMoves); if(UseLogFile) LogFile.close(); if(Quit) { OpeningBook.close(); stop_threads(); quit_eval(); exit(0); } Idle = true; } /// init_threads() is called during startup. It launches all helper threads, /// and initializes the split point stack and the global locks and condition /// objects. void init_threads() { volatile int i; #if !defined(_MSC_VER) pthread_t pthread[1]; #endif for(i = 0; i < THREAD_MAX; i++) Threads[i].activeSplitPoints = 0; // Initialize global locks: lock_init(&MPLock, NULL); lock_init(&IOLock, NULL); init_split_point_stack(); #if !defined(_MSC_VER) pthread_mutex_init(&WaitLock, NULL); pthread_cond_init(&WaitCond, NULL); #else for(i = 0; i < THREAD_MAX; i++) SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0); #endif // All threads except the main thread should be initialized to idle state: for(i = 1; i < THREAD_MAX; i++) { Threads[i].stop = false; Threads[i].workIsWaiting = false; Threads[i].idle = true; Threads[i].running = false; } // Launch the helper threads: for(i = 1; i < THREAD_MAX; i++) { #if !defined(_MSC_VER) pthread_create(pthread, NULL, init_thread, (void*)(&i)); #else { DWORD iID[1]; CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID); } #endif // Wait until the thread has finished launching: while(!Threads[i].running); } } /// stop_threads() is called when the program exits. It makes all the /// helper threads exit cleanly. void stop_threads() { ActiveThreads = THREAD_MAX; // HACK Idle = false; // HACK wake_sleeping_threads(); AllThreadsShouldExit = true; for(int i = 1; i < THREAD_MAX; i++) { Threads[i].stop = true; while(Threads[i].running); } destroy_split_point_stack(); } /// nodes_searched() returns the total number of nodes searched so far in /// the current search. int64_t nodes_searched() { int64_t result = 0ULL; for(int i = 0; i < ActiveThreads; i++) result += Threads[i].nodes; return result; } namespace { // id_loop() is the main iterative deepening loop. It calls root_search // repeatedly with increasing depth until the allocated thinking time has // been consumed, the user stops the search, or the maximum search depth is // reached. void id_loop(const Position &pos, Move searchMoves[]) { Position p(pos); RootMoveList rml(p, searchMoves); SearchStack ss[PLY_MAX_PLUS_2]; // Initialize TT.new_search(); H.clear(); init_search_stack(ss); ValueByIteration[0] = Value(0); ValueByIteration[1] = rml.get_move_score(0); Iteration = 1; EasyMove = rml.scan_for_easy_move(); // Iterative deepening loop while(!AbortSearch && Iteration < PLY_MAX) { // Initialize iteration rml.sort(); Iteration++; BestMoveChangesByIteration[Iteration] = 0; if(Iteration <= 5) ExtraSearchTime = 0; std::cout << "info depth " << Iteration << std::endl; // Search to the current depth ValueByIteration[Iteration] = root_search(p, ss, rml); // Erase the easy move if it differs from the new best move if(ss[0].pv[0] != EasyMove) EasyMove = MOVE_NONE; Problem = false; if(!InfiniteSearch) { // Time to stop? bool stopSearch = false; // Stop search early if there is only a single legal move: if(Iteration >= 6 && rml.move_count() == 1) stopSearch = true; // Stop search early when the last two iterations returned a mate // score: if(Iteration >= 6 && abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100 && abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100) stopSearch = true; // Stop search early if one move seems to be much better than the // rest: int64_t nodes = nodes_searched(); if(Iteration >= 8 && EasyMove == ss[0].pv[0] && ((rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100 && current_search_time() > MaxSearchTime / 16) || (rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100 && current_search_time() > MaxSearchTime / 32))) stopSearch = true; // Add some extra time if the best move has changed during the last // two iterations: if(Iteration > 5 && Iteration <= 50) ExtraSearchTime = BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2) + BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3); // Stop search if most of MaxSearchTime is consumed at the end of the // iteration. We probably don't have enough time to search the first // move at the next iteration anyway. if(current_search_time() > ((MaxSearchTime + ExtraSearchTime)*80) / 128) stopSearch = true; if(stopSearch) { if(!PonderSearch) break; else StopOnPonderhit = true; } } // Write PV to transposition table, in case the relevant entries have // been overwritten during the search: TT.insert_pv(p, ss[0].pv); if(MaxDepth && Iteration >= MaxDepth) break; } rml.sort(); // If we are pondering, we shouldn't print the best move before we // are told to do so if(PonderSearch) wait_for_stop_or_ponderhit(); else // Print final search statistics std::cout << "info nodes " << nodes_searched() << " nps " << nps() << " time " << current_search_time() << " hashfull " << TT.full() << std::endl; // Print the best move and the ponder move to the standard output: std::cout << "bestmove " << ss[0].pv[0]; if(ss[0].pv[1] != MOVE_NONE) std::cout << " ponder " << ss[0].pv[1]; std::cout << std::endl; if(UseLogFile) { UndoInfo u; LogFile << "Nodes: " << nodes_searched() << '\n'; LogFile << "Nodes/second: " << nps() << '\n'; LogFile << "Best move: " << move_to_san(p, ss[0].pv[0]) << '\n'; p.do_move(ss[0].pv[0], u); LogFile << "Ponder move: " << move_to_san(p, ss[0].pv[1]) << '\n'; LogFile << std::endl; } } // root_search() is the function which searches the root node. It is // similar to search_pv except that it uses a different move ordering // scheme (perhaps we should try to use this at internal PV nodes, too?) // and prints some information to the standard output. Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml) { Value alpha = -VALUE_INFINITE, beta = VALUE_INFINITE, value; Bitboard dcCandidates = pos.discovered_check_candidates(pos.side_to_move()); // Loop through all the moves in the root move list: for(int i = 0; i < rml.move_count() && !AbortSearch; i++) { int64_t nodes; Move move; UndoInfo u; Depth ext, newDepth; RootMoveNumber = i + 1; FailHigh = false; // Remember the node count before the move is searched. The node counts // are used to sort the root moves at the next iteration. nodes = nodes_searched(); // Pick the next root move, and print the move and the move number to // the standard output: move = ss[0].currentMove = rml.get_move(i); if(current_search_time() >= 1000) std::cout << "info currmove " << move << " currmovenumber " << i + 1 << std::endl; // Decide search depth for this move: ext = extension(pos, move, true, pos.move_is_check(move), false, false); newDepth = (Iteration-2)*OnePly + ext + InitialDepth; // Make the move, and search it. pos.do_move(move, u, dcCandidates); if(i < MultiPV) { value = -search_pv(pos, ss, -beta, VALUE_INFINITE, newDepth, 1, 0); // If the value has dropped a lot compared to the last iteration, // set the boolean variable Problem to true. This variable is used // for time managment: When Problem is true, we try to complete the // current iteration before playing a move. Problem = (Iteration >= 2 && value <= ValueByIteration[Iteration-1] - ProblemMargin); if(Problem && StopOnPonderhit) StopOnPonderhit = false; } else { value = -search(pos, ss, -alpha, newDepth, 1, true, 0); if(value > alpha) { // Fail high! Set the boolean variable FailHigh to true, and // re-search the move with a big window. The variable FailHigh is // used for time managment: We try to avoid aborting the search // prematurely during a fail high research. FailHigh = true; value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); } } pos.undo_move(move, u); // Finished searching the move. If AbortSearch is true, the search // was aborted because the user interrupted the search or because we // ran out of time. In this case, the return value of the search cannot // be trusted, and we break out of the loop without updating the best // move and/or PV: if(AbortSearch) break; // Remember the node count for this move. The node counts are used to // sort the root moves at the next iteration. rml.set_move_nodes(i, nodes_searched() - nodes); assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE); if(value <= alpha && i >= MultiPV) rml.set_move_score(i, -VALUE_INFINITE); else { // New best move! // Update PV: rml.set_move_score(i, value); update_pv(ss, 0); rml.set_move_pv(i, ss[0].pv); if(MultiPV == 1) { // We record how often the best move has been changed in each // iteration. This information is used for time managment: When // the best move changes frequently, we allocate some more time. if(i > 0) BestMoveChangesByIteration[Iteration]++; // Print search information to the standard output: std::cout << "info depth " << Iteration << " score " << value_to_string(value) << " time " << current_search_time() << " nodes " << nodes_searched() << " nps " << nps() << " pv "; for(int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++) std::cout << ss[0].pv[j] << " "; std::cout << std::endl; if(UseLogFile) LogFile << pretty_pv(pos, current_search_time(), Iteration, nodes_searched(), value, ss[0].pv) << std::endl; alpha = value; // Reset the global variable Problem to false if the value isn't too // far below the final value from the last iteration. if(value > ValueByIteration[Iteration - 1] - NoProblemMargin) Problem = false; } else { // MultiPV > 1 rml.sort_multipv(i); for(int j = 0; j < Min(MultiPV, rml.move_count()); j++) { int k; std::cout << "info multipv " << j + 1 << " score " << value_to_string(rml.get_move_score(j)) << " depth " << ((j <= i)? Iteration : Iteration - 1) << " time " << current_search_time() << " nodes " << nodes_searched() << " nps " << nps() << " pv "; for(k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++) std::cout << rml.get_move_pv(j, k) << " "; std::cout << std::endl; } alpha = rml.get_move_score(Min(i, MultiPV-1)); } } } return alpha; } // search_pv() is the main search function for PV nodes. Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta > alpha && beta <= VALUE_INFINITE); assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); EvalInfo ei; // Initialize, and make an early exit in case of an aborted search, // an instant draw, maximum ply reached, etc. Value oldAlpha = alpha; if(AbortSearch || thread_should_stop(threadID)) return Value(0); if(depth < OnePly) return qsearch(pos, ss, alpha, beta, Depth(0), ply, threadID); init_node(pos, ss, ply, threadID); if(pos.is_draw()) return VALUE_DRAW; if(ply >= PLY_MAX - 1) return evaluate(pos, ei, threadID); // Mate distance pruning alpha = Max(value_mated_in(ply), alpha); beta = Min(value_mate_in(ply+1), beta); if(alpha >= beta) return alpha; // Transposition table lookup. At PV nodes, we don't use the TT for // pruning, but only for move ordering. Value ttValue; Depth ttDepth; Move ttMove = MOVE_NONE; ValueType ttValueType; TT.retrieve(pos, &ttValue, &ttDepth, &ttMove, &ttValueType); // Internal iterative deepening. if(UseIIDAtPVNodes && ttMove == MOVE_NONE && depth >= 5*OnePly) { search_pv(pos, ss, alpha, beta, depth-2*OnePly, ply, threadID); ttMove = ss[ply].pv[ply]; } // Initialize a MovePicker object for the current position, and prepare // to search all moves: MovePicker mp = MovePicker(pos, true, ttMove, ss[ply].mateKiller, ss[ply].killer1, ss[ply].killer2, depth); Move move, movesSearched[256]; int moveCount = 0; Value value, bestValue = -VALUE_INFINITE; Bitboard dcCandidates = mp.discovered_check_candidates(); bool mateThreat = MateThreatExtension[1] > Depth(0) && pos.has_mate_threat(opposite_color(pos.side_to_move())); // Loop through all legal moves until no moves remain or a beta cutoff // occurs. while(alpha < beta && !thread_should_stop(threadID) && (move = mp.get_next_move()) != MOVE_NONE) { UndoInfo u; Depth ext, newDepth; bool singleReply = (pos.is_check() && mp.number_of_moves() == 1); bool moveIsCheck = pos.move_is_check(move, dcCandidates); bool moveIsCapture = pos.move_is_capture(move); bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move); assert(move_is_ok(move)); movesSearched[moveCount++] = ss[ply].currentMove = move; ss[ply].currentMoveCaptureValue = move_is_ep(move)? PawnValueMidgame : pos.midgame_value_of_piece_on(move_to(move)); // Decide the new search depth. ext = extension(pos, move, true, moveIsCheck, singleReply, mateThreat); newDepth = depth - OnePly + ext; // Make and search the move. pos.do_move(move, u, dcCandidates); if(moveCount == 1) value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID); else { if(depth >= 2*OnePly && ext == Depth(0) && moveCount >= LMRPVMoves && !moveIsCapture && !move_promotion(move) && !moveIsPassedPawnPush && !move_is_castle(move) && move != ss[ply].killer1 && move != ss[ply].killer2) { ss[ply].reduction = OnePly; value = -search(pos, ss, -alpha, newDepth-OnePly, ply+1, true, threadID); } else value = alpha + 1; if(value > alpha) { ss[ply].reduction = Depth(0); value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID); if(value > alpha && value < beta) { if(ply == 1 && RootMoveNumber == 1) // When the search fails high at ply 1 while searching the first // move at the root, set the flag failHighPly1. This is used for // time managment: We don't want to stop the search early in // such cases, because resolving the fail high at ply 1 could // result in a big drop in score at the root. Threads[threadID].failHighPly1 = true; value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID); Threads[threadID].failHighPly1 = false; } } } pos.undo_move(move, u); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if(value > bestValue) { bestValue = value; if(value > alpha) { alpha = value; update_pv(ss, ply); if(value == value_mate_in(ply + 1)) ss[ply].mateKiller = move; } // If we are at ply 1, and we are searching the first root move at // ply 0, set the 'Problem' variable if the score has dropped a lot // (from the computer's point of view) since the previous iteration: if(Iteration >= 2 && -value <= ValueByIteration[Iteration-1] - ProblemMargin) Problem = true; } // Split? if(ActiveThreads > 1 && bestValue < beta && depth >= MinimumSplitDepth && Iteration <= 99 && idle_thread_exists(threadID) && !AbortSearch && !thread_should_stop(threadID) && split(pos, ss, ply, &alpha, &beta, &bestValue, depth, &moveCount, &mp, dcCandidates, threadID, true)) break; } // All legal moves have been searched. A special case: If there were // no legal moves, it must be mate or stalemate: if(moveCount == 0) { if(pos.is_check()) return value_mated_in(ply); else return VALUE_DRAW; } // If the search is not aborted, update the transposition table, // history counters, and killer moves. This code is somewhat messy, // and definitely needs to be cleaned up. FIXME if(!AbortSearch && !thread_should_stop(threadID)) { if(bestValue <= oldAlpha) TT.store(pos, value_to_tt(bestValue, ply), depth, MOVE_NONE, VALUE_TYPE_UPPER); else if(bestValue >= beta) { Move m = ss[ply].pv[ply]; if(pos.square_is_empty(move_to(m)) && !move_promotion(m) && !move_is_ep(m)) { for(int i = 0; i < moveCount - 1; i++) if(pos.square_is_empty(move_to(movesSearched[i])) && !move_promotion(movesSearched[i]) && !move_is_ep(movesSearched[i])) H.failure(pos.piece_on(move_from(movesSearched[i])), movesSearched[i]); H.success(pos.piece_on(move_from(m)), m, depth); if(m != ss[ply].killer1) { ss[ply].killer2 = ss[ply].killer1; ss[ply].killer1 = m; } } TT.store(pos, value_to_tt(bestValue, ply), depth, m, VALUE_TYPE_LOWER); } else TT.store(pos, value_to_tt(bestValue, ply), depth, ss[ply].pv[ply], VALUE_TYPE_EXACT); } return bestValue; } // search() is the search function for zero-width nodes. Value search(Position &pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID) { assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); EvalInfo ei; // Initialize, and make an early exit in case of an aborted search, // an instant draw, maximum ply reached, etc. if(AbortSearch || thread_should_stop(threadID)) return Value(0); if(depth < OnePly) return qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID); init_node(pos, ss, ply, threadID); if(pos.is_draw()) return VALUE_DRAW; if(ply >= PLY_MAX - 1) return evaluate(pos, ei, threadID); // Mate distance pruning if(value_mated_in(ply) >= beta) return beta; if(value_mate_in(ply+1) < beta) return beta-1; // Transposition table lookup bool ttFound; Value ttValue; Depth ttDepth; Move ttMove = MOVE_NONE; ValueType ttValueType; ttFound = TT.retrieve(pos, &ttValue, &ttDepth, &ttMove, &ttValueType); if(ttFound) { ttValue = value_from_tt(ttValue, ply); if(ttDepth >= depth || ttValue >= Max(value_mate_in(100), beta) || ttValue < Min(value_mated_in(100), beta)) { if((is_lower_bound(ttValueType) && ttValue >= beta) || (is_upper_bound(ttValueType) && ttValue < beta)) { ss[ply].currentMove = ttMove; return ttValue; } } } Value approximateEval = quick_evaluate(pos); bool mateThreat = false; // Null move search if(!pos.is_check() && allowNullmove && ok_to_do_nullmove(pos) && approximateEval >= beta - NullMoveMargin) { UndoInfo u; Value nullValue; ss[ply].currentMove = MOVE_NULL; pos.do_null_move(u); nullValue = -search(pos, ss, -(beta-1), depth-4*OnePly, ply+1, false, threadID); pos.undo_null_move(u); if(nullValue >= beta) { if(depth >= 6 * OnePly) { // Do zugzwang verification search Value v = search(pos, ss, beta, depth-5*OnePly, ply, false, threadID); if(v >= beta) return beta; } else return beta; } else { // The null move failed low, which means that we may be faced with // some kind of threat. If the previous move was reduced, check if // the move that refuted the null move was somehow connected to the // move which was reduced. If a connection is found, return a fail // low score (which will cause the reduced move to fail high in the // parent node, which will trigger a re-search with full depth). if(nullValue == value_mated_in(ply+2)) mateThreat = true; ss[ply].threatMove = ss[ply+1].currentMove; if(depth < ThreatDepth && ss[ply-1].reduction && connected_moves(pos, ss[ply-1].currentMove, ss[ply].threatMove)) return beta - 1; } } // Razoring: else if(depth < RazorDepth && approximateEval < beta - RazorMargin && evaluate(pos, ei, threadID) < beta - RazorMargin) { Value v = qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID); if(v < beta) return v; } // Internal iterative deepening if(UseIIDAtNonPVNodes && ttMove == MOVE_NONE && depth >= 8*OnePly && evaluate(pos, ei, threadID) >= beta - IIDMargin) { search(pos, ss, beta, Min(depth/2, depth-2*OnePly), ply, false, threadID); ttMove = ss[ply].pv[ply]; } // Initialize a MovePicker object for the current position, and prepare // to search all moves: MovePicker mp = MovePicker(pos, false, ttMove, ss[ply].mateKiller, ss[ply].killer1, ss[ply].killer2, depth); Move move, movesSearched[256]; int moveCount = 0; Value value, bestValue = -VALUE_INFINITE, futilityValue = VALUE_NONE; Bitboard dcCandidates = mp.discovered_check_candidates(); bool isCheck = pos.is_check(); bool useFutilityPruning = UseFutilityPruning && depth < SelectiveDepth && !isCheck; // Loop through all legal moves until no moves remain or a beta cutoff // occurs. while(bestValue < beta && !thread_should_stop(threadID) && (move = mp.get_next_move()) != MOVE_NONE) { UndoInfo u; Depth ext, newDepth; bool singleReply = (isCheck && mp.number_of_moves() == 1); bool moveIsCheck = pos.move_is_check(move, dcCandidates); bool moveIsCapture = pos.move_is_capture(move); bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move); assert(move_is_ok(move)); movesSearched[moveCount++] = ss[ply].currentMove = move; // Decide the new search depth. ext = extension(pos, move, false, moveIsCheck, singleReply, mateThreat); newDepth = depth - OnePly + ext; // Futility pruning if(useFutilityPruning && ext == Depth(0) && !moveIsCapture && !moveIsPassedPawnPush && !move_promotion(move)) { if(moveCount >= 2 + int(depth) && ok_to_prune(pos, move, ss[ply].threatMove, depth)) continue; if(depth < 3 * OnePly && approximateEval < beta) { if(futilityValue == VALUE_NONE) futilityValue = evaluate(pos, ei, threadID) + ((depth < 2 * OnePly)? FutilityMargin1 : FutilityMargin2); if(futilityValue < beta) { if(futilityValue > bestValue) bestValue = futilityValue; continue; } } } // Make and search the move. pos.do_move(move, u, dcCandidates); if(depth >= 2*OnePly && ext == Depth(0) && moveCount >= LMRNonPVMoves && !moveIsCapture && !move_promotion(move) && !moveIsPassedPawnPush && !move_is_castle(move) && move != ss[ply].killer1 && move != ss[ply].killer2) { ss[ply].reduction = OnePly; value = -search(pos, ss, -(beta-1), newDepth-OnePly, ply+1, true, threadID); } else value = beta; if(value >= beta) { ss[ply].reduction = Depth(0); value = -search(pos, ss, -(beta-1), newDepth, ply+1, true, threadID); } pos.undo_move(move, u); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if(value > bestValue) { bestValue = value; if(value >= beta) update_pv(ss, ply); if(value == value_mate_in(ply + 1)) ss[ply].mateKiller = move; } // Split? if(ActiveThreads > 1 && bestValue < beta && depth >= MinimumSplitDepth && Iteration <= 99 && idle_thread_exists(threadID) && !AbortSearch && !thread_should_stop(threadID) && split(pos, ss, ply, &beta, &beta, &bestValue, depth, &moveCount, &mp, dcCandidates, threadID, false)) break; } // All legal moves have been searched. A special case: If there were // no legal moves, it must be mate or stalemate: if(moveCount == 0) { if(pos.is_check()) return value_mated_in(ply); else return VALUE_DRAW; } // If the search is not aborted, update the transposition table, // history counters, and killer moves. This code is somewhat messy, // and definitely needs to be cleaned up. FIXME if(!AbortSearch && !thread_should_stop(threadID)) { if(bestValue < beta) TT.store(pos, value_to_tt(bestValue, ply), depth, MOVE_NONE, VALUE_TYPE_UPPER); else { Move m = ss[ply].pv[ply]; if(pos.square_is_empty(move_to(m)) && !move_promotion(m) && !move_is_ep(m)) { for(int i = 0; i < moveCount - 1; i++) if(pos.square_is_empty(move_to(movesSearched[i])) && !move_promotion(movesSearched[i]) && !move_is_ep(movesSearched[i])) H.failure(pos.piece_on(move_from(movesSearched[i])), movesSearched[i]); H.success(pos.piece_on(move_from(m)), m, depth); if(m != ss[ply].killer1) { ss[ply].killer2 = ss[ply].killer1; ss[ply].killer1 = m; } } TT.store(pos, value_to_tt(bestValue, ply), depth, m, VALUE_TYPE_LOWER); } } return bestValue; } // qsearch() is the quiescence search function, which is called by the main // search function when the remaining depth is zero (or, to be more precise, // less than OnePly). Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID) { Value staticValue, bestValue, value; EvalInfo ei; assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); assert(depth <= 0); assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); // Initialize, and make an early exit in case of an aborted search, // an instant draw, maximum ply reached, etc. if(AbortSearch || thread_should_stop(threadID)) return Value(0); init_node(pos, ss, ply, threadID); if(pos.is_draw()) return VALUE_DRAW; // Evaluate the position statically: staticValue = evaluate(pos, ei, threadID); if(ply == PLY_MAX - 1) return staticValue; // Initialize "stand pat score", and return it immediately if it is // at least beta. if(pos.is_check()) bestValue = -VALUE_INFINITE; else { bestValue = staticValue; if(bestValue >= beta) return bestValue; if(bestValue > alpha) alpha = bestValue; } // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions and checks (only if depth == 0) will be generated. MovePicker mp = MovePicker(pos, false, MOVE_NONE, MOVE_NONE, MOVE_NONE, MOVE_NONE, depth); Move move; int moveCount = 0; Bitboard dcCandidates = mp.discovered_check_candidates(); bool isCheck = pos.is_check(); // Loop through the moves until no moves remain or a beta cutoff // occurs. while(alpha < beta && ((move = mp.get_next_move()) != MOVE_NONE)) { UndoInfo u; bool moveIsCheck = pos.move_is_check(move, dcCandidates); bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move); assert(move_is_ok(move)); moveCount++; ss[ply].currentMove = move; // Futility pruning if(UseQSearchFutilityPruning && !isCheck && !moveIsCheck && !move_promotion(move) && !moveIsPassedPawnPush && beta - alpha == 1 && pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame) { Value futilityValue = staticValue + Max(pos.midgame_value_of_piece_on(move_to(move)), pos.endgame_value_of_piece_on(move_to(move))) + FutilityMargin0 + ei.futilityMargin; if(futilityValue < alpha) { if(futilityValue > bestValue) bestValue = futilityValue; continue; } } // Don't search captures and checks with negative SEE values. if(!isCheck && !move_promotion(move) && pos.midgame_value_of_piece_on(move_from(move)) > pos.midgame_value_of_piece_on(move_to(move)) && pos.see(move) < 0) continue; // Make and search the move. pos.do_move(move, u, dcCandidates); value = -qsearch(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID); pos.undo_move(move, u); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if(value > bestValue) { bestValue = value; if(value > alpha) { alpha = value; update_pv(ss, ply); } } } // All legal moves have been searched. A special case: If we're in check // and no legal moves were found, it is checkmate: if(pos.is_check() && moveCount == 0) // Mate! return value_mated_in(ply); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // sp_search() is used to search from a split point. This function is called // by each thread working at the split point. It is similar to the normal // search() function, but simpler. Because we have already probed the hash // table, done a null move search, and searched the first move before // splitting, we don't have to repeat all this work in sp_search(). We // also don't need to store anything to the hash table here: This is taken // care of after we return from the split point. void sp_search(SplitPoint *sp, int threadID) { assert(threadID >= 0 && threadID < ActiveThreads); assert(ActiveThreads > 1); Position pos = Position(sp->pos); SearchStack *ss = sp->sstack[threadID]; Value value; Move move; int moveCount = sp->moves; bool isCheck = pos.is_check(); bool useFutilityPruning = UseFutilityPruning && sp->depth < SelectiveDepth && !isCheck; while(sp->bestValue < sp->beta && !thread_should_stop(threadID) && (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE) { UndoInfo u; Depth ext, newDepth; bool moveIsCheck = pos.move_is_check(move, sp->dcCandidates); bool moveIsCapture = pos.move_is_capture(move); bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move); assert(move_is_ok(move)); lock_grab(&(sp->lock)); sp->moves++; moveCount = sp->moves; lock_release(&(sp->lock)); ss[sp->ply].currentMove = move; // Decide the new search depth. ext = extension(pos, move, false, moveIsCheck, false, false); newDepth = sp->depth - OnePly + ext; // Prune? if(useFutilityPruning && ext == Depth(0) && !moveIsCapture && !moveIsPassedPawnPush && !move_promotion(move) && moveCount >= 2 + int(sp->depth) && ok_to_prune(pos, move, ss[sp->ply].threatMove, sp->depth)) continue; // Make and search the move. pos.do_move(move, u, sp->dcCandidates); if(ext == Depth(0) && moveCount >= LMRNonPVMoves && !moveIsCapture && !move_promotion(move) && !moveIsPassedPawnPush && !move_is_castle(move) && move != ss[sp->ply].killer1 && move != ss[sp->ply].killer2) { ss[sp->ply].reduction = OnePly; value = -search(pos, ss, -(sp->beta-1), newDepth - OnePly, sp->ply+1, true, threadID); } else value = sp->beta; if(value >= sp->beta) { ss[sp->ply].reduction = Depth(0); value = -search(pos, ss, -(sp->beta - 1), newDepth, sp->ply+1, true, threadID); } pos.undo_move(move, u); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); if(thread_should_stop(threadID)) break; // New best move? lock_grab(&(sp->lock)); if(value > sp->bestValue && !thread_should_stop(threadID)) { sp->bestValue = value; if(sp->bestValue >= sp->beta) { sp_update_pv(sp->parentSstack, ss, sp->ply); for(int i = 0; i < ActiveThreads; i++) if(i != threadID && (i == sp->master || sp->slaves[i])) Threads[i].stop = true; sp->finished = true; } } lock_release(&(sp->lock)); } lock_grab(&(sp->lock)); // If this is the master thread and we have been asked to stop because of // a beta cutoff higher up in the tree, stop all slave threads: if(sp->master == threadID && thread_should_stop(threadID)) for(int i = 0; i < ActiveThreads; i++) if(sp->slaves[i]) Threads[i].stop = true; sp->cpus--; sp->slaves[threadID] = 0; lock_release(&(sp->lock)); } // sp_search_pv() is used to search from a PV split point. This function // is called by each thread working at the split point. It is similar to // the normal search_pv() function, but simpler. Because we have already // probed the hash table and searched the first move before splitting, we // don't have to repeat all this work in sp_search_pv(). We also don't // need to store anything to the hash table here: This is taken care of // after we return from the split point. void sp_search_pv(SplitPoint *sp, int threadID) { assert(threadID >= 0 && threadID < ActiveThreads); assert(ActiveThreads > 1); Position pos = Position(sp->pos); SearchStack *ss = sp->sstack[threadID]; Value value; Move move; int moveCount = sp->moves; while(sp->alpha < sp->beta && !thread_should_stop(threadID) && (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE) { UndoInfo u; Depth ext, newDepth; bool moveIsCheck = pos.move_is_check(move, sp->dcCandidates); bool moveIsCapture = pos.move_is_capture(move); bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move); assert(move_is_ok(move)); ss[sp->ply].currentMoveCaptureValue = move_is_ep(move)? PawnValueMidgame : pos.midgame_value_of_piece_on(move_to(move)); lock_grab(&(sp->lock)); sp->moves++; moveCount = sp->moves; lock_release(&(sp->lock)); ss[sp->ply].currentMove = move; // Decide the new search depth. ext = extension(pos, move, true, moveIsCheck, false, false); newDepth = sp->depth - OnePly + ext; // Make and search the move. pos.do_move(move, u, sp->dcCandidates); if(ext == Depth(0) && moveCount >= LMRPVMoves && !moveIsCapture && !move_promotion(move) && !moveIsPassedPawnPush && !move_is_castle(move) && move != ss[sp->ply].killer1 && move != ss[sp->ply].killer2) { ss[sp->ply].reduction = OnePly; value = -search(pos, ss, -sp->alpha, newDepth - OnePly, sp->ply+1, true, threadID); } else value = sp->alpha + 1; if(value > sp->alpha) { ss[sp->ply].reduction = Depth(0); value = -search(pos, ss, -sp->alpha, newDepth, sp->ply+1, true, threadID); if(value > sp->alpha && value < sp->beta) { if(sp->ply == 1 && RootMoveNumber == 1) // When the search fails high at ply 1 while searching the first // move at the root, set the flag failHighPly1. This is used for // time managment: We don't want to stop the search early in // such cases, because resolving the fail high at ply 1 could // result in a big drop in score at the root. Threads[threadID].failHighPly1 = true; value = -search_pv(pos, ss, -sp->beta, -sp->alpha, newDepth, sp->ply+1, threadID); Threads[threadID].failHighPly1 = false; } } pos.undo_move(move, u); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); if(thread_should_stop(threadID)) break; // New best move? lock_grab(&(sp->lock)); if(value > sp->bestValue && !thread_should_stop(threadID)) { sp->bestValue = value; if(value > sp->alpha) { sp->alpha = value; sp_update_pv(sp->parentSstack, ss, sp->ply); if(value == value_mate_in(sp->ply + 1)) ss[sp->ply].mateKiller = move; if(value >= sp->beta) { for(int i = 0; i < ActiveThreads; i++) if(i != threadID && (i == sp->master || sp->slaves[i])) Threads[i].stop = true; sp->finished = true; } } // If we are at ply 1, and we are searching the first root move at // ply 0, set the 'Problem' variable if the score has dropped a lot // (from the computer's point of view) since the previous iteration: if(Iteration >= 2 && -value <= ValueByIteration[Iteration-1] - ProblemMargin) Problem = true; } lock_release(&(sp->lock)); } lock_grab(&(sp->lock)); // If this is the master thread and we have been asked to stop because of // a beta cutoff higher up in the tree, stop all slave threads: if(sp->master == threadID && thread_should_stop(threadID)) for(int i = 0; i < ActiveThreads; i++) if(sp->slaves[i]) Threads[i].stop = true; sp->cpus--; sp->slaves[threadID] = 0; lock_release(&(sp->lock)); } /// The RootMove class // Constructor RootMove::RootMove() { nodes = cumulativeNodes = 0ULL; } /// The RootMoveList class // Constructor RootMoveList::RootMoveList(Position &pos, Move searchMoves[]) { MoveStack mlist[MaxRootMoves]; bool includeAllMoves = (searchMoves[0] == MOVE_NONE); int i, j = 0, k; // Generate all legal moves count = generate_legal_moves(pos, mlist); // Add each move to the moves[] array for(i = 0; i < count; i++) { UndoInfo u; SearchStack ss[PLY_MAX_PLUS_2]; bool includeMove; if(includeAllMoves) includeMove = true; else { includeMove = false; for(k = 0; searchMoves[k] != MOVE_NONE; k++) if(searchMoves[k] == mlist[i].move) { includeMove = true; break; } } if(includeMove) { moves[j].move = mlist[i].move; moves[j].nodes = 0ULL; pos.do_move(moves[j].move, u); moves[j].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0); pos.undo_move(moves[j].move, u); moves[j].pv[0] = moves[i].move; moves[j].pv[1] = MOVE_NONE; // FIXME j++; } } count = j; this->sort(); } // Simple accessor methods for the RootMoveList class Move RootMoveList::get_move(int moveNum) const { return moves[moveNum].move; } Value RootMoveList::get_move_score(int moveNum) const { return moves[moveNum].score; } void RootMoveList::set_move_score(int moveNum, Value score) { moves[moveNum].score = score; } void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) { moves[moveNum].nodes = nodes; moves[moveNum].cumulativeNodes += nodes; } void RootMoveList::set_move_pv(int moveNum, const Move pv[]) { int j; for(j = 0; pv[j] != MOVE_NONE; j++) moves[moveNum].pv[j] = pv[j]; moves[moveNum].pv[j] = MOVE_NONE; } Move RootMoveList::get_move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; } int64_t RootMoveList::get_move_cumulative_nodes(int moveNum) { return moves[moveNum].cumulativeNodes; } int RootMoveList::move_count() const { return count; } // RootMoveList::scan_for_easy_move() is called at the end of the first // iteration, and is used to detect an "easy move", i.e. a move which appears // to be much bester than all the rest. If an easy move is found, the move // is returned, otherwise the function returns MOVE_NONE. It is very // important that this function is called at the right moment: The code // assumes that the first iteration has been completed and the moves have // been sorted. Move RootMoveList::scan_for_easy_move() const { Value bestMoveValue = this->get_move_score(0); for(int i = 1; i < this->move_count(); i++) if(this->get_move_score(i) >= bestMoveValue - EasyMoveMargin) return MOVE_NONE; return this->get_move(0); } // RootMoveList::sort() sorts the root move list at the beginning of a new // iteration. void RootMoveList::sort() { for(int i = 1; i < count; i++) { RootMove rm = moves[i]; int j; for(j = i; j > 0 && compare_root_moves(moves[j-1], rm); j--) moves[j] = moves[j-1]; moves[j] = rm; } } // RootMoveList::sort_multipv() sorts the first few moves in the root move // list by their scores and depths. It is used to order the different PVs // correctly in MultiPV mode. void RootMoveList::sort_multipv(int n) { for(int i = 1; i <= n; i++) { RootMove rm = moves[i]; int j; for(j = i; j > 0 && moves[j-1].score < rm.score; j--) moves[j] = moves[j-1]; moves[j] = rm; } } // RootMoveList::compare_root_moves() is the comparison function used by // RootMoveList::sort when sorting the moves. A move m1 is considered to // be better than a move m2 if it has a higher score, or if the moves have // equal score but m1 has the higher node count. int RootMoveList::compare_root_moves(const RootMove &rm1, const RootMove &rm2) { if(rm1.score < rm2.score) return 1; else if(rm1.score > rm2.score) return 0; else if(rm1.nodes < rm2.nodes) return 1; else if(rm1.nodes > rm2.nodes) return 0; else return 1; } // init_search_stack() initializes a search stack at the beginning of a // new search from the root. void init_search_stack(SearchStack ss[]) { for(int i = 0; i < 3; i++) { ss[i].pv[i] = MOVE_NONE; ss[i].pv[i+1] = MOVE_NONE; ss[i].currentMove = MOVE_NONE; ss[i].mateKiller = MOVE_NONE; ss[i].killer1 = MOVE_NONE; ss[i].killer2 = MOVE_NONE; ss[i].threatMove = MOVE_NONE; ss[i].reduction = Depth(0); } } // init_node() is called at the beginning of all the search functions // (search(), search_pv(), qsearch(), and so on) and initializes the search // stack object corresponding to the current node. Once every // NodesBetweenPolls nodes, init_node() also calls poll(), which polls // for user input and checks whether it is time to stop the search. void init_node(const Position &pos, SearchStack ss[], int ply, int threadID) { assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); Threads[threadID].nodes++; if(threadID == 0) { NodesSincePoll++; if(NodesSincePoll >= NodesBetweenPolls) { poll(); NodesSincePoll = 0; } } ss[ply].pv[ply] = ss[ply].pv[ply+1] = ss[ply].currentMove = MOVE_NONE; ss[ply+2].mateKiller = MOVE_NONE; ss[ply+2].killer1 = ss[ply+2].killer2 = MOVE_NONE; ss[ply].threatMove = MOVE_NONE; ss[ply].reduction = Depth(0); ss[ply].currentMoveCaptureValue = Value(0); if(Threads[threadID].printCurrentLine) print_current_line(ss, ply, threadID); } // update_pv() is called whenever a search returns a value > alpha. It // updates the PV in the SearchStack object corresponding to the current // node. void update_pv(SearchStack ss[], int ply) { assert(ply >= 0 && ply < PLY_MAX); ss[ply].pv[ply] = ss[ply].currentMove; int p; for(p = ply + 1; ss[ply+1].pv[p] != MOVE_NONE; p++) ss[ply].pv[p] = ss[ply+1].pv[p]; ss[ply].pv[p] = MOVE_NONE; } // sp_update_pv() is a variant of update_pv for use at split points. The // difference between the two functions is that sp_update_pv also updates // the PV at the parent node. void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply) { assert(ply >= 0 && ply < PLY_MAX); ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove; int p; for(p = ply + 1; ss[ply+1].pv[p] != MOVE_NONE; p++) ss[ply].pv[p] = pss[ply].pv[p] = ss[ply+1].pv[p]; ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE; } // connected_moves() tests whether two moves are 'connected' in the sense // that the first move somehow made the second move possible (for instance // if the moving piece is the same in both moves). The first move is // assumed to be the move that was made to reach the current position, while // the second move is assumed to be a move from the current position. bool connected_moves(const Position &pos, Move m1, Move m2) { Square f1, t1, f2, t2; assert(move_is_ok(m1)); assert(move_is_ok(m2)); if(m2 == MOVE_NONE) return false; // Case 1: The moving piece is the same in both moves. f2 = move_from(m2); t1 = move_to(m1); if(f2 == t1) return true; // Case 2: The destination square for m2 was vacated by m1. t2 = move_to(m2); f1 = move_from(m1); if(t2 == f1) return true; // Case 3: Moving through the vacated square: if(piece_is_slider(pos.piece_on(f2)) && bit_is_set(squares_between(f2, t2), f1)) return true; // Case 4: The destination square for m2 is attacked by the moving piece // in m1: if(pos.piece_attacks_square(t1, t2)) return true; // Case 5: Discovered check, checking piece is the piece moved in m1: if(piece_is_slider(pos.piece_on(t1)) && bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2) && !bit_is_set(squares_between(t2, pos.king_square(pos.side_to_move())), t2)) { Bitboard occ = pos.occupied_squares(); Color us = pos.side_to_move(); Square ksq = pos.king_square(us); clear_bit(&occ, f2); if(pos.type_of_piece_on(t1) == BISHOP) { if(bit_is_set(bishop_attacks_bb(ksq, occ), t1)) return true; } else if(pos.type_of_piece_on(t1) == ROOK) { if(bit_is_set(rook_attacks_bb(ksq, occ), t1)) return true; } else { assert(pos.type_of_piece_on(t1) == QUEEN); if(bit_is_set(queen_attacks_bb(ksq, occ), t1)) return true; } } return false; } // extension() decides whether a move should be searched with normal depth, // or with extended depth. Certain classes of moves (checking moves, in // particular) are searched with bigger depth than ordinary moves. Depth extension(const Position &pos, Move m, bool pvNode, bool check, bool singleReply, bool mateThreat) { Depth result = Depth(0); if(check) result += CheckExtension[pvNode]; if(singleReply) result += SingleReplyExtension[pvNode]; if(pos.move_is_pawn_push_to_7th(m)) result += PawnPushTo7thExtension[pvNode]; if(pos.move_is_passed_pawn_push(m)) result += PassedPawnExtension[pvNode]; if(mateThreat) result += MateThreatExtension[pvNode]; if(pos.midgame_value_of_piece_on(move_to(m)) >= RookValueMidgame && (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) - pos.midgame_value_of_piece_on(move_to(m)) == Value(0)) && !move_promotion(m)) result += PawnEndgameExtension[pvNode]; if(pvNode && pos.move_is_capture(m) && pos.type_of_piece_on(move_to(m)) != PAWN && pos.see(m) >= 0) result += OnePly/2; return Min(result, OnePly); } // ok_to_do_nullmove() looks at the current position and decides whether // doing a 'null move' should be allowed. In order to avoid zugzwang // problems, null moves are not allowed when the side to move has very // little material left. Currently, the test is a bit too simple: Null // moves are avoided only when the side to move has only pawns left. It's // probably a good idea to avoid null moves in at least some more // complicated endgames, e.g. KQ vs KR. FIXME bool ok_to_do_nullmove(const Position &pos) { if(pos.non_pawn_material(pos.side_to_move()) == Value(0)) return false; return true; } // ok_to_prune() tests whether it is safe to forward prune a move. Only // non-tactical moves late in the move list close to the leaves are // candidates for pruning. bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d) { Square mfrom, mto, tfrom, tto; assert(move_is_ok(m)); assert(threat == MOVE_NONE || move_is_ok(threat)); assert(!move_promotion(m)); assert(!pos.move_is_check(m)); assert(!pos.move_is_capture(m)); assert(!pos.move_is_passed_pawn_push(m)); assert(d >= OnePly); mfrom = move_from(m); mto = move_to(m); tfrom = move_from(threat); tto = move_to(threat); // Case 1: Castling moves are never pruned. if(move_is_castle(m)) return false; // Case 2: Don't prune moves which move the threatened piece if(!PruneEscapeMoves && threat != MOVE_NONE && mfrom == tto) return false; // Case 3: If the threatened piece has value less than or equal to the // value of the threatening piece, don't prune move which defend it. if(!PruneDefendingMoves && threat != MOVE_NONE && (piece_value_midgame(pos.piece_on(tfrom)) >= piece_value_midgame(pos.piece_on(tto))) && pos.move_attacks_square(m, tto)) return false; // Case 4: Don't prune moves with good history. if(!H.ok_to_prune(pos.piece_on(move_from(m)), m, d)) return false; // Case 5: If the moving piece in the threatened move is a slider, don't // prune safe moves which block its ray. if(!PruneBlockingMoves && threat != MOVE_NONE && piece_is_slider(pos.piece_on(tfrom)) && bit_is_set(squares_between(tfrom, tto), mto) && pos.see(m) >= 0) return false; return true; } // fail_high_ply_1() checks if some thread is currently resolving a fail // high at ply 1 at the node below the first root node. This information // is used for time managment. bool fail_high_ply_1() { for(int i = 0; i < ActiveThreads; i++) if(Threads[i].failHighPly1) return true; return false; } // current_search_time() returns the number of milliseconds which have passed // since the beginning of the current search. int current_search_time() { return get_system_time() - SearchStartTime; } // nps() computes the current nodes/second count. int nps() { int t = current_search_time(); return (t > 0)? int((nodes_searched() * 1000) / t) : 0; } // poll() performs two different functions: It polls for user input, and it // looks at the time consumed so far and decides if it's time to abort the // search. void poll() { int t, data; static int lastInfoTime; t = current_search_time(); // Poll for input data = Bioskey(); if(data) { char input[256]; if(fgets(input, 255, stdin) == NULL) strcpy(input, "quit\n"); if(strncmp(input, "quit", 4) == 0) { AbortSearch = true; PonderSearch = false; Quit = true; } else if(strncmp(input, "stop", 4) == 0) { AbortSearch = true; PonderSearch = false; } else if(strncmp(input, "ponderhit", 9) == 0) ponderhit(); } // Print search information if(t < 1000) lastInfoTime = 0; else if(lastInfoTime > t) // HACK: Must be a new search where we searched less than // NodesBetweenPolls nodes during the first second of search. lastInfoTime = 0; else if(t - lastInfoTime >= 1000) { lastInfoTime = t; lock_grab(&IOLock); std::cout << "info nodes " << nodes_searched() << " nps " << nps() << " time " << t << " hashfull " << TT.full() << std::endl; lock_release(&IOLock); if(ShowCurrentLine) Threads[0].printCurrentLine = true; } // Should we stop the search? if(!PonderSearch && Iteration >= 2 && (!InfiniteSearch && (t > AbsoluteMaxSearchTime || (RootMoveNumber == 1 && t > MaxSearchTime + ExtraSearchTime) || (!FailHigh && !fail_high_ply_1() && !Problem && t > 6*(MaxSearchTime + ExtraSearchTime))))) AbortSearch = true; if(!PonderSearch && ExactMaxTime && t >= ExactMaxTime) AbortSearch = true; if(!PonderSearch && Iteration >= 3 && MaxNodes && nodes_searched() >= MaxNodes) AbortSearch = true; } // ponderhit() is called when the program is pondering (i.e. thinking while // it's the opponent's turn to move) in order to let the engine know that // it correctly predicted the opponent's move. void ponderhit() { int t = current_search_time(); PonderSearch = false; if(Iteration >= 2 && (!InfiniteSearch && (StopOnPonderhit || t > AbsoluteMaxSearchTime || (RootMoveNumber == 1 && t > MaxSearchTime + ExtraSearchTime) || (!FailHigh && !fail_high_ply_1() && !Problem && t > 6*(MaxSearchTime + ExtraSearchTime))))) AbortSearch = true; } // print_current_line() prints the current line of search for a given // thread. Called when the UCI option UCI_ShowCurrLine is 'true'. void print_current_line(SearchStack ss[], int ply, int threadID) { assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); if(!Threads[threadID].idle) { lock_grab(&IOLock); std::cout << "info currline " << (threadID + 1); for(int p = 0; p < ply; p++) std::cout << " " << ss[p].currentMove; std::cout << std::endl; lock_release(&IOLock); } Threads[threadID].printCurrentLine = false; if(threadID + 1 < ActiveThreads) Threads[threadID + 1].printCurrentLine = true; } // wait_for_stop_or_ponderhit() is called when the maximum depth is reached // while the program is pondering. The point is to work around a wrinkle in // the UCI protocol: When pondering, the engine is not allowed to give a // "bestmove" before the GUI sends it a "stop" or "ponderhit" command. // We simply wait here until one of these commands is sent, and return, // after which the bestmove and pondermove will be printed (in id_loop()). void wait_for_stop_or_ponderhit() { std::string command; while(true) { if(!std::getline(std::cin, command)) command = "quit"; if(command == "quit") { OpeningBook.close(); stop_threads(); quit_eval(); exit(0); } else if(command == "ponderhit" || command == "stop") break; } } // idle_loop() is where the threads are parked when they have no work to do. // The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint // object for which the current thread is the master. void idle_loop(int threadID, SplitPoint *waitSp) { assert(threadID >= 0 && threadID < THREAD_MAX); Threads[threadID].running = true; while(true) { if(AllThreadsShouldExit && threadID != 0) break; // If we are not thinking, wait for a condition to be signaled instead // of wasting CPU time polling for work: while(threadID != 0 && (Idle || threadID >= ActiveThreads)) { #if !defined(_MSC_VER) pthread_mutex_lock(&WaitLock); if(Idle || threadID >= ActiveThreads) pthread_cond_wait(&WaitCond, &WaitLock); pthread_mutex_unlock(&WaitLock); #else WaitForSingleObject(SitIdleEvent[threadID], INFINITE); #endif } // If this thread has been assigned work, launch a search: if(Threads[threadID].workIsWaiting) { Threads[threadID].workIsWaiting = false; if(Threads[threadID].splitPoint->pvNode) sp_search_pv(Threads[threadID].splitPoint, threadID); else sp_search(Threads[threadID].splitPoint, threadID); Threads[threadID].idle = true; } // If this thread is the master of a split point and all threads have // finished their work at this split point, return from the idle loop: if(waitSp != NULL && waitSp->cpus == 0) return; } Threads[threadID].running = false; } // init_split_point_stack() is called during program initialization, and // initializes all split point objects. void init_split_point_stack() { for(int i = 0; i < THREAD_MAX; i++) for(int j = 0; j < MaxActiveSplitPoints; j++) { SplitPointStack[i][j].parent = NULL; lock_init(&(SplitPointStack[i][j].lock), NULL); } } // destroy_split_point_stack() is called when the program exits, and // destroys all locks in the precomputed split point objects. void destroy_split_point_stack() { for(int i = 0; i < THREAD_MAX; i++) for(int j = 0; j < MaxActiveSplitPoints; j++) lock_destroy(&(SplitPointStack[i][j].lock)); } // thread_should_stop() checks whether the thread with a given threadID has // been asked to stop, directly or indirectly. This can happen if a beta // cutoff has occured in thre thread's currently active split point, or in // some ancestor of the current split point. bool thread_should_stop(int threadID) { assert(threadID >= 0 && threadID < ActiveThreads); SplitPoint *sp; if(Threads[threadID].stop) return true; if(ActiveThreads <= 2) return false; for(sp = Threads[threadID].splitPoint; sp != NULL; sp = sp->parent) if(sp->finished) { Threads[threadID].stop = true; return true; } return false; } // thread_is_available() checks whether the thread with threadID "slave" is // available to help the thread with threadID "master" at a split point. An // obvious requirement is that "slave" must be idle. With more than two // threads, this is not by itself sufficient: If "slave" is the master of // some active split point, it is only available as a slave to the other // threads which are busy searching the split point at the top of "slave"'s // split point stack (the "helpful master concept" in YBWC terminology). bool thread_is_available(int slave, int master) { assert(slave >= 0 && slave < ActiveThreads); assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); if(!Threads[slave].idle || slave == master) return false; if(Threads[slave].activeSplitPoints == 0) // No active split points means that the thread is available as a slave // for any other thread. return true; if(ActiveThreads == 2) return true; // Apply the "helpful master" concept if possible. if(SplitPointStack[slave][Threads[slave].activeSplitPoints-1].slaves[master]) return true; return false; } // idle_thread_exists() tries to find an idle thread which is available as // a slave for the thread with threadID "master". bool idle_thread_exists(int master) { assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); for(int i = 0; i < ActiveThreads; i++) if(thread_is_available(i, master)) return true; return false; } // split() does the actual work of distributing the work at a node between // several threads at PV nodes. If it does not succeed in splitting the // node (because no idle threads are available, or because we have no unused // split point objects), the function immediately returns false. If // splitting is possible, a SplitPoint object is initialized with all the // data that must be copied to the helper threads (the current position and // search stack, alpha, beta, the search depth, etc.), and we tell our // helper threads that they have been assigned work. This will cause them // to instantly leave their idle loops and call sp_search_pv(). When all // threads have returned from sp_search_pv (or, equivalently, when // splitPoint->cpus becomes 0), split() returns true. bool split(const Position &p, SearchStack *sstck, int ply, Value *alpha, Value *beta, Value *bestValue, Depth depth, int *moves, MovePicker *mp, Bitboard dcCandidates, int master, bool pvNode) { assert(p.is_ok()); assert(sstck != NULL); assert(ply >= 0 && ply < PLY_MAX); assert(*bestValue >= -VALUE_INFINITE && *bestValue <= *alpha); assert(!pvNode || *alpha < *beta); assert(*beta <= VALUE_INFINITE); assert(depth > Depth(0)); assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); SplitPoint *splitPoint; int i; lock_grab(&MPLock); // If no other thread is available to help us, or if we have too many // active split points, don't split: if(!idle_thread_exists(master) || Threads[master].activeSplitPoints >= MaxActiveSplitPoints) { lock_release(&MPLock); return false; } // Pick the next available split point object from the split point stack: splitPoint = SplitPointStack[master] + Threads[master].activeSplitPoints; Threads[master].activeSplitPoints++; // Initialize the split point object: splitPoint->parent = Threads[master].splitPoint; splitPoint->finished = false; splitPoint->ply = ply; splitPoint->depth = depth; splitPoint->alpha = pvNode? *alpha : (*beta - 1); splitPoint->beta = *beta; splitPoint->pvNode = pvNode; splitPoint->dcCandidates = dcCandidates; splitPoint->bestValue = *bestValue; splitPoint->master = master; splitPoint->mp = mp; splitPoint->moves = *moves; splitPoint->cpus = 1; splitPoint->pos.copy(p); splitPoint->parentSstack = sstck; for(i = 0; i < ActiveThreads; i++) splitPoint->slaves[i] = 0; // Copy the current position and the search stack to the master thread: memcpy(splitPoint->sstack[master], sstck, (ply+1)*sizeof(SearchStack)); Threads[master].splitPoint = splitPoint; // Make copies of the current position and search stack for each thread: for(i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++) if(thread_is_available(i, master)) { memcpy(splitPoint->sstack[i], sstck, (ply+1)*sizeof(SearchStack)); Threads[i].splitPoint = splitPoint; splitPoint->slaves[i] = 1; splitPoint->cpus++; } // Tell the threads that they have work to do. This will make them leave // their idle loop. for(i = 0; i < ActiveThreads; i++) if(i == master || splitPoint->slaves[i]) { Threads[i].workIsWaiting = true; Threads[i].idle = false; Threads[i].stop = false; } lock_release(&MPLock); // Everything is set up. The master thread enters the idle loop, from // which it will instantly launch a search, because its workIsWaiting // slot is 'true'. We send the split point as a second parameter to the // idle loop, which means that the main thread will return from the idle // loop when all threads have finished their work at this split point // (i.e. when // splitPoint->cpus == 0). idle_loop(master, splitPoint); // We have returned from the idle loop, which means that all threads are // finished. Update alpha, beta and bestvalue, and return: lock_grab(&MPLock); if(pvNode) *alpha = splitPoint->alpha; *beta = splitPoint->beta; *bestValue = splitPoint->bestValue; Threads[master].stop = false; Threads[master].idle = false; Threads[master].activeSplitPoints--; Threads[master].splitPoint = splitPoint->parent; lock_release(&MPLock); return true; } // wake_sleeping_threads() wakes up all sleeping threads when it is time // to start a new search from the root. void wake_sleeping_threads() { if(ActiveThreads > 1) { for(int i = 1; i < ActiveThreads; i++) { Threads[i].idle = true; Threads[i].workIsWaiting = false; } #if !defined(_MSC_VER) pthread_mutex_lock(&WaitLock); pthread_cond_broadcast(&WaitCond); pthread_mutex_unlock(&WaitLock); #else for(int i = 1; i < THREAD_MAX; i++) SetEvent(SitIdleEvent[i]); #endif } } // init_thread() is the function which is called when a new thread is // launched. It simply calls the idle_loop() function with the supplied // threadID. There are two versions of this function; one for POSIX threads // and one for Windows threads. #if !defined(_MSC_VER) void *init_thread(void *threadID) { idle_loop(*(int *)threadID, NULL); return NULL; } #else DWORD WINAPI init_thread(LPVOID threadID) { idle_loop(*(int *)threadID, NULL); return NULL; } #endif }