/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2009 Marco Costalba Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //// //// Includes //// #include #include #include #include #include #include #include "book.h" #include "evaluate.h" #include "history.h" #include "misc.h" #include "movegen.h" #include "movepick.h" #include "lock.h" #include "san.h" #include "search.h" #include "thread.h" #include "tt.h" #include "ucioption.h" using std::cout; using std::endl; //// //// Local definitions //// namespace { /// Types // ThreadsManager class is used to handle all the threads related stuff in search, // init, starting, parking and, the most important, launching a slave thread at a // split point are what this class does. All the access to shared thread data is // done through this class, so that we avoid using global variables instead. class ThreadsManager { /* As long as the single ThreadsManager object is defined as a global we don't need to explicitly initialize to zero its data members because variables with static storage duration are automatically set to zero before enter main() */ public: void init_threads(); void exit_threads(); int active_threads() const { return ActiveThreads; } void set_active_threads(int newActiveThreads) { ActiveThreads = newActiveThreads; } void incrementNodeCounter(int threadID) { threads[threadID].nodes++; } void incrementBetaCounter(Color us, Depth d, int threadID) { threads[threadID].betaCutOffs[us] += unsigned(d); } void print_current_line(SearchStack ss[], int ply, int threadID); void resetNodeCounters(); void resetBetaCounters(); int64_t nodes_searched() const; void get_beta_counters(Color us, int64_t& our, int64_t& their) const; bool available_thread_exists(int master) const; bool thread_is_available(int slave, int master) const; bool thread_should_stop(int threadID) const; void wake_sleeping_threads(); void put_threads_to_sleep(); void idle_loop(int threadID, SplitPoint* waitSp); bool split(const Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue, const Value futilityValue, Depth depth, int* moves, MovePicker* mp, int master, bool pvNode); private: friend void poll(); int ActiveThreads; volatile bool AllThreadsShouldExit, AllThreadsShouldSleep; Thread threads[MAX_THREADS]; SplitPoint SplitPointStack[MAX_THREADS][ACTIVE_SPLIT_POINTS_MAX]; Lock MPLock, IOLock; #if !defined(_MSC_VER) pthread_cond_t WaitCond; pthread_mutex_t WaitLock; #else HANDLE SitIdleEvent[MAX_THREADS]; #endif }; // RootMove struct is used for moves at the root at the tree. For each // root move, we store a score, a node count, and a PV (really a refutation // in the case of moves which fail low). struct RootMove { RootMove() { nodes = cumulativeNodes = ourBeta = theirBeta = 0ULL; } // RootMove::operator<() is the comparison function used when // sorting the moves. A move m1 is considered to be better // than a move m2 if it has a higher score, or if the moves // have equal score but m1 has the higher node count. bool operator<(const RootMove& m) const { return score != m.score ? score < m.score : theirBeta <= m.theirBeta; } Move move; Value score; int64_t nodes, cumulativeNodes, ourBeta, theirBeta; Move pv[PLY_MAX_PLUS_2]; }; // The RootMoveList class is essentially an array of RootMove objects, with // a handful of methods for accessing the data in the individual moves. class RootMoveList { public: RootMoveList(Position& pos, Move searchMoves[]); int move_count() const { return count; } Move get_move(int moveNum) const { return moves[moveNum].move; } Value get_move_score(int moveNum) const { return moves[moveNum].score; } void set_move_score(int moveNum, Value score) { moves[moveNum].score = score; } Move get_move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; } int64_t get_move_cumulative_nodes(int moveNum) const { return moves[moveNum].cumulativeNodes; } void set_move_nodes(int moveNum, int64_t nodes); void set_beta_counters(int moveNum, int64_t our, int64_t their); void set_move_pv(int moveNum, const Move pv[]); void sort(); void sort_multipv(int n); private: static const int MaxRootMoves = 500; RootMove moves[MaxRootMoves]; int count; }; /// Constants // Search depth at iteration 1 const Depth InitialDepth = OnePly; // Use internal iterative deepening? const bool UseIIDAtPVNodes = true; const bool UseIIDAtNonPVNodes = true; // Internal iterative deepening margin. At Non-PV moves, when // UseIIDAtNonPVNodes is true, we do an internal iterative deepening // search when the static evaluation is at most IIDMargin below beta. const Value IIDMargin = Value(0x100); // Easy move margin. An easy move candidate must be at least this much // better than the second best move. const Value EasyMoveMargin = Value(0x200); // Null move margin. A null move search will not be done if the static // evaluation of the position is more than NullMoveMargin below beta. const Value NullMoveMargin = Value(0x200); // If the TT move is at least SingleReplyMargin better then the // remaining ones we will extend it. const Value SingleReplyMargin = Value(0x20); // Depth limit for razoring const Depth RazorDepth = 4 * OnePly; /// Lookup tables initialized at startup // Reduction lookup tables and their getter functions int8_t PVReductionMatrix[64][64]; // [depth][moveNumber] int8_t NonPVReductionMatrix[64][64]; // [depth][moveNumber] inline Depth pv_reduction(Depth d, int mn) { return (Depth) PVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; } inline Depth nonpv_reduction(Depth d, int mn) { return (Depth) NonPVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; } // Futility lookup tables and their getter functions const Value FutilityMarginQS = Value(0x80); int32_t FutilityMarginsMatrix[14][64]; // [depth][moveNumber] int FutilityMoveCountArray[32]; // [depth] inline Value futility_margin(Depth d, int mn) { return Value(d < 7*OnePly ? FutilityMarginsMatrix[Max(d, 0)][Min(mn, 63)] : 2 * VALUE_INFINITE); } inline int futility_move_count(Depth d) { return d < 16*OnePly ? FutilityMoveCountArray[d] : 512; } /// Variables initialized by UCI options // Depth limit for use of dynamic threat detection Depth ThreatDepth; // Last seconds noise filtering (LSN) const bool UseLSNFiltering = true; const int LSNTime = 4000; // In milliseconds const Value LSNValue = value_from_centipawns(200); bool loseOnTime = false; // Extensions. Array index 0 is used at non-PV nodes, index 1 at PV nodes. Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2]; Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2]; // Iteration counters int Iteration; // Scores and number of times the best move changed for each iteration Value ValueByIteration[PLY_MAX_PLUS_2]; int BestMoveChangesByIteration[PLY_MAX_PLUS_2]; // Search window management int AspirationDelta; // MultiPV mode int MultiPV; // Time managment variables int RootMoveNumber; int SearchStartTime; int MaxNodes, MaxDepth; int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime; bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit; bool AbortSearch, Quit; bool AspirationFailLow; // Show current line? bool ShowCurrentLine; // Log file bool UseLogFile; std::ofstream LogFile; // MP related variables Depth MinimumSplitDepth; int MaxThreadsPerSplitPoint; ThreadsManager TM; // Node counters, used only by thread[0] but try to keep in different // cache lines (64 bytes each) from the heavy SMP read accessed variables. int NodesSincePoll; int NodesBetweenPolls = 30000; // History table History H; /// Functions Value id_loop(const Position& pos, Move searchMoves[]); Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta); Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove = MOVE_NONE); Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); void sp_search(SplitPoint* sp, int threadID); void sp_search_pv(SplitPoint* sp, int threadID); void init_node(SearchStack ss[], int ply, int threadID); void update_pv(SearchStack ss[], int ply); void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply); bool connected_moves(const Position& pos, Move m1, Move m2); bool value_is_mate(Value value); bool move_is_killer(Move m, const SearchStack& ss); Depth extension(const Position&, Move, bool, bool, bool, bool, bool, bool*); bool ok_to_do_nullmove(const Position& pos); bool ok_to_prune(const Position& pos, Move m, Move threat); bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply); Value refine_eval(const TTEntry* tte, Value defaultEval, int ply); void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount); void update_killers(Move m, SearchStack& ss); void update_gains(const Position& pos, Move move, Value before, Value after); int current_search_time(); int nps(); void poll(); void ponderhit(); void wait_for_stop_or_ponderhit(); void init_ss_array(SearchStack ss[]); #if !defined(_MSC_VER) void *init_thread(void *threadID); #else DWORD WINAPI init_thread(LPVOID threadID); #endif } //// //// Functions //// /// init_threads(), exit_threads() and nodes_searched() are helpers to /// give accessibility to some TM methods from outside of current file. void init_threads() { TM.init_threads(); } void exit_threads() { TM.exit_threads(); } int64_t nodes_searched() { return TM.nodes_searched(); } /// perft() is our utility to verify move generation is bug free. All the legal /// moves up to given depth are generated and counted and the sum returned. int perft(Position& pos, Depth depth) { Move move; int sum = 0; MovePicker mp = MovePicker(pos, MOVE_NONE, depth, H); // If we are at the last ply we don't need to do and undo // the moves, just to count them. if (depth <= OnePly) // Replace with '<' to test also qsearch { while (mp.get_next_move()) sum++; return sum; } // Loop through all legal moves CheckInfo ci(pos); while ((move = mp.get_next_move()) != MOVE_NONE) { StateInfo st; pos.do_move(move, st, ci, pos.move_is_check(move, ci)); sum += perft(pos, depth - OnePly); pos.undo_move(move); } return sum; } /// think() is the external interface to Stockfish's search, and is called when /// the program receives the UCI 'go' command. It initializes various /// search-related global variables, and calls root_search(). It returns false /// when a quit command is received during the search. bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, int time[], int increment[], int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) { // Initialize global search variables StopOnPonderhit = AbortSearch = Quit = false; AspirationFailLow = false; NodesSincePoll = 0; SearchStartTime = get_system_time(); ExactMaxTime = maxTime; MaxDepth = maxDepth; MaxNodes = maxNodes; InfiniteSearch = infinite; PonderSearch = ponder; UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch; // Look for a book move, only during games, not tests if (UseTimeManagement && get_option_value_bool("OwnBook")) { Move bookMove; if (get_option_value_string("Book File") != OpeningBook.file_name()) OpeningBook.open(get_option_value_string("Book File")); bookMove = OpeningBook.get_move(pos); if (bookMove != MOVE_NONE) { if (PonderSearch) wait_for_stop_or_ponderhit(); cout << "bestmove " << bookMove << endl; return true; } } TM.resetNodeCounters(); if (button_was_pressed("New Game")) loseOnTime = false; // Reset at the beginning of a new game // Read UCI option values TT.set_size(get_option_value_int("Hash")); if (button_was_pressed("Clear Hash")) TT.clear(); bool PonderingEnabled = get_option_value_bool("Ponder"); MultiPV = get_option_value_int("MultiPV"); CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)")); CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)")); SingleEvasionExtension[1] = Depth(get_option_value_int("Single Evasion Extension (PV nodes)")); SingleEvasionExtension[0] = Depth(get_option_value_int("Single Evasion Extension (non-PV nodes)")); PawnPushTo7thExtension[1] = Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)")); PawnPushTo7thExtension[0] = Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)")); PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)")); PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)")); PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)")); PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)")); MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)")); MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)")); ThreatDepth = get_option_value_int("Threat Depth") * OnePly; Chess960 = get_option_value_bool("UCI_Chess960"); ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine"); UseLogFile = get_option_value_bool("Use Search Log"); if (UseLogFile) LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app); MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly; MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point"); read_weights(pos.side_to_move()); // Set the number of active threads int newActiveThreads = get_option_value_int("Threads"); if (newActiveThreads != TM.active_threads()) { TM.set_active_threads(newActiveThreads); init_eval(TM.active_threads()); // HACK: init_eval() destroys the static castleRightsMask[] array in the // Position class. The below line repairs the damage. Position p(pos.to_fen()); assert(pos.is_ok()); } // Wake up sleeping threads TM.wake_sleeping_threads(); // Set thinking time int myTime = time[side_to_move]; int myIncrement = increment[side_to_move]; if (UseTimeManagement) { if (!movesToGo) // Sudden death time control { if (myIncrement) { MaxSearchTime = myTime / 30 + myIncrement; AbsoluteMaxSearchTime = Max(myTime / 4, myIncrement - 100); } else // Blitz game without increment { MaxSearchTime = myTime / 30; AbsoluteMaxSearchTime = myTime / 8; } } else // (x moves) / (y minutes) { if (movesToGo == 1) { MaxSearchTime = myTime / 2; AbsoluteMaxSearchTime = (myTime > 3000)? (myTime - 500) : ((myTime * 3) / 4); } else { MaxSearchTime = myTime / Min(movesToGo, 20); AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3); } } if (PonderingEnabled) { MaxSearchTime += MaxSearchTime / 4; MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime); } } // Set best NodesBetweenPolls interval if (MaxNodes) NodesBetweenPolls = Min(MaxNodes, 30000); else if (myTime && myTime < 1000) NodesBetweenPolls = 1000; else if (myTime && myTime < 5000) NodesBetweenPolls = 5000; else NodesBetweenPolls = 30000; // Write information to search log file if (UseLogFile) LogFile << "Searching: " << pos.to_fen() << endl << "infinite: " << infinite << " ponder: " << ponder << " time: " << myTime << " increment: " << myIncrement << " moves to go: " << movesToGo << endl; // LSN filtering. Used only for developing purpose. Disabled by default. if ( UseLSNFiltering && loseOnTime) { // Step 2. If after last move we decided to lose on time, do it now! while (SearchStartTime + myTime + 1000 > get_system_time()) /* wait here */; } // We're ready to start thinking. Call the iterative deepening loop function Value v = id_loop(pos, searchMoves); if (UseLSNFiltering) { // Step 1. If this is sudden death game and our position is hopeless, // decide to lose on time. if ( !loseOnTime // If we already lost on time, go to step 3. && myTime < LSNTime && myIncrement == 0 && movesToGo == 0 && v < -LSNValue) { loseOnTime = true; } else if (loseOnTime) { // Step 3. Now after stepping over the time limit, reset flag for next match. loseOnTime = false; } } if (UseLogFile) LogFile.close(); TM.put_threads_to_sleep(); return !Quit; } /// init_search() is called during startup. It initializes various lookup tables void init_search() { // Init our reduction lookup tables for (int i = 1; i < 64; i++) // i == depth (OnePly = 1) for (int j = 1; j < 64; j++) // j == moveNumber { double pvRed = 0.5 + log(double(i)) * log(double(j)) / 6.0; double nonPVRed = 0.5 + log(double(i)) * log(double(j)) / 3.0; PVReductionMatrix[i][j] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(OnePly)) : 0); NonPVReductionMatrix[i][j] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(OnePly)) : 0); } // Init futility margins array for (int i = 0; i < 14; i++) // i == depth (OnePly = 2) for (int j = 0; j < 64; j++) // j == moveNumber { FutilityMarginsMatrix[i][j] = (i < 2 ? 0 : 112 * bitScanReverse32(i * i / 2)) - 8 * j; // FIXME: test using log instead of BSR } // Init futility move count array for (int i = 0; i < 32; i++) // i == depth (OnePly = 2) FutilityMoveCountArray[i] = 3 + (1 << (3 * i / 8)); } // SearchStack::init() initializes a search stack. Used at the beginning of a // new search from the root. void SearchStack::init(int ply) { pv[ply] = pv[ply + 1] = MOVE_NONE; currentMove = threatMove = MOVE_NONE; reduction = Depth(0); eval = VALUE_NONE; } void SearchStack::initKillers() { mateKiller = MOVE_NONE; for (int i = 0; i < KILLER_MAX; i++) killers[i] = MOVE_NONE; } namespace { // id_loop() is the main iterative deepening loop. It calls root_search // repeatedly with increasing depth until the allocated thinking time has // been consumed, the user stops the search, or the maximum search depth is // reached. Value id_loop(const Position& pos, Move searchMoves[]) { Position p(pos); SearchStack ss[PLY_MAX_PLUS_2]; // searchMoves are verified, copied, scored and sorted RootMoveList rml(p, searchMoves); // Handle special case of searching on a mate/stale position if (rml.move_count() == 0) { if (PonderSearch) wait_for_stop_or_ponderhit(); return pos.is_check()? -VALUE_MATE : VALUE_DRAW; } // Print RootMoveList c'tor startup scoring to the standard output, // so that we print information also for iteration 1. cout << "info depth " << 1 << "\ninfo depth " << 1 << " score " << value_to_string(rml.get_move_score(0)) << " time " << current_search_time() << " nodes " << TM.nodes_searched() << " nps " << nps() << " pv " << rml.get_move(0) << "\n"; // Initialize TT.new_search(); H.clear(); init_ss_array(ss); ValueByIteration[1] = rml.get_move_score(0); Iteration = 1; // Is one move significantly better than others after initial scoring ? Move EasyMove = MOVE_NONE; if ( rml.move_count() == 1 || rml.get_move_score(0) > rml.get_move_score(1) + EasyMoveMargin) EasyMove = rml.get_move(0); // Iterative deepening loop while (Iteration < PLY_MAX) { // Initialize iteration rml.sort(); Iteration++; BestMoveChangesByIteration[Iteration] = 0; if (Iteration <= 5) ExtraSearchTime = 0; cout << "info depth " << Iteration << endl; // Calculate dynamic search window based on previous iterations Value alpha, beta; if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN) { int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2]; int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3]; AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16); AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE); beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE); } else { alpha = - VALUE_INFINITE; beta = VALUE_INFINITE; } // Search to the current depth Value value = root_search(p, ss, rml, alpha, beta); // Write PV to transposition table, in case the relevant entries have // been overwritten during the search. TT.insert_pv(p, ss[0].pv); if (AbortSearch) break; // Value cannot be trusted. Break out immediately! //Save info about search result ValueByIteration[Iteration] = value; // Drop the easy move if it differs from the new best move if (ss[0].pv[0] != EasyMove) EasyMove = MOVE_NONE; if (UseTimeManagement) { // Time to stop? bool stopSearch = false; // Stop search early if there is only a single legal move, // we search up to Iteration 6 anyway to get a proper score. if (Iteration >= 6 && rml.move_count() == 1) stopSearch = true; // Stop search early when the last two iterations returned a mate score if ( Iteration >= 6 && abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100 && abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100) stopSearch = true; // Stop search early if one move seems to be much better than the rest int64_t nodes = TM.nodes_searched(); if ( Iteration >= 8 && EasyMove == ss[0].pv[0] && ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100 && current_search_time() > MaxSearchTime / 16) ||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100 && current_search_time() > MaxSearchTime / 32))) stopSearch = true; // Add some extra time if the best move has changed during the last two iterations if (Iteration > 5 && Iteration <= 50) ExtraSearchTime = BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2) + BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3); // Stop search if most of MaxSearchTime is consumed at the end of the // iteration. We probably don't have enough time to search the first // move at the next iteration anyway. if (current_search_time() > ((MaxSearchTime + ExtraSearchTime) * 80) / 128) stopSearch = true; if (stopSearch) { if (!PonderSearch) break; else StopOnPonderhit = true; } } if (MaxDepth && Iteration >= MaxDepth) break; } rml.sort(); // If we are pondering or in infinite search, we shouldn't print the // best move before we are told to do so. if (!AbortSearch && (PonderSearch || InfiniteSearch)) wait_for_stop_or_ponderhit(); else // Print final search statistics cout << "info nodes " << TM.nodes_searched() << " nps " << nps() << " time " << current_search_time() << " hashfull " << TT.full() << endl; // Print the best move and the ponder move to the standard output if (ss[0].pv[0] == MOVE_NONE) { ss[0].pv[0] = rml.get_move(0); ss[0].pv[1] = MOVE_NONE; } cout << "bestmove " << ss[0].pv[0]; if (ss[0].pv[1] != MOVE_NONE) cout << " ponder " << ss[0].pv[1]; cout << endl; if (UseLogFile) { if (dbg_show_mean) dbg_print_mean(LogFile); if (dbg_show_hit_rate) dbg_print_hit_rate(LogFile); LogFile << "\nNodes: " << TM.nodes_searched() << "\nNodes/second: " << nps() << "\nBest move: " << move_to_san(p, ss[0].pv[0]); StateInfo st; p.do_move(ss[0].pv[0], st); LogFile << "\nPonder move: " << move_to_san(p, ss[0].pv[1]) << endl; } return rml.get_move_score(0); } // root_search() is the function which searches the root node. It is // similar to search_pv except that it uses a different move ordering // scheme and prints some information to the standard output. Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta) { int64_t nodes; Move move; StateInfo st; Depth depth, ext, newDepth; Value value; CheckInfo ci(pos); int researchCount = 0; bool moveIsCheck, captureOrPromotion, dangerous; Value alpha = oldAlpha; bool isCheck = pos.is_check(); // Evaluate the position statically EvalInfo ei; ss[0].eval = !isCheck ? evaluate(pos, ei, 0) : VALUE_NONE; while (1) // Fail low loop { // Loop through all the moves in the root move list for (int i = 0; i < rml.move_count() && !AbortSearch; i++) { if (alpha >= beta) { // We failed high, invalidate and skip next moves, leave node-counters // and beta-counters as they are and quickly return, we will try to do // a research at the next iteration with a bigger aspiration window. rml.set_move_score(i, -VALUE_INFINITE); continue; } RootMoveNumber = i + 1; // Save the current node count before the move is searched nodes = TM.nodes_searched(); // Reset beta cut-off counters TM.resetBetaCounters(); // Pick the next root move, and print the move and the move number to // the standard output. move = ss[0].currentMove = rml.get_move(i); if (current_search_time() >= 1000) cout << "info currmove " << move << " currmovenumber " << RootMoveNumber << endl; // Decide search depth for this move moveIsCheck = pos.move_is_check(move); captureOrPromotion = pos.move_is_capture_or_promotion(move); depth = (Iteration - 2) * OnePly + InitialDepth; ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous); newDepth = depth + ext; value = - VALUE_INFINITE; while (1) // Fail high loop { // Make the move, and search it pos.do_move(move, st, ci, moveIsCheck); if (i < MultiPV || value > alpha) { // Aspiration window is disabled in multi-pv case if (MultiPV > 1) alpha = -VALUE_INFINITE; value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); } else { // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. bool doFullDepthSearch = true; if ( depth >= 3*OnePly // FIXME was newDepth && !dangerous && !captureOrPromotion && !move_is_castle(move)) { ss[0].reduction = pv_reduction(depth, RootMoveNumber - MultiPV + 1); if (ss[0].reduction) { value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0); doFullDepthSearch = (value > alpha); } } if (doFullDepthSearch) { ss[0].reduction = Depth(0); value = -search(pos, ss, -alpha, newDepth, 1, true, 0); if (value > alpha) value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); } } pos.undo_move(move); // Can we exit fail high loop ? if (AbortSearch || value < beta) break; // We are failing high and going to do a research. It's important to update score // before research in case we run out of time while researching. rml.set_move_score(i, value); update_pv(ss, 0); TT.extract_pv(pos, ss[0].pv, PLY_MAX); rml.set_move_pv(i, ss[0].pv); // Print search information to the standard output cout << "info depth " << Iteration << " score " << value_to_string(value) << ((value >= beta) ? " lowerbound" : ((value <= alpha)? " upperbound" : "")) << " time " << current_search_time() << " nodes " << TM.nodes_searched() << " nps " << nps() << " pv "; for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++) cout << ss[0].pv[j] << " "; cout << endl; if (UseLogFile) { ValueType type = (value >= beta ? VALUE_TYPE_LOWER : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT)); LogFile << pretty_pv(pos, current_search_time(), Iteration, TM.nodes_searched(), value, type, ss[0].pv) << endl; } // Prepare for a research after a fail high, each time with a wider window researchCount++; beta = Min(beta + AspirationDelta * (1 << researchCount), VALUE_INFINITE); } // End of fail high loop // Finished searching the move. If AbortSearch is true, the search // was aborted because the user interrupted the search or because we // ran out of time. In this case, the return value of the search cannot // be trusted, and we break out of the loop without updating the best // move and/or PV. if (AbortSearch) break; // Remember beta-cutoff and searched nodes counts for this move. The // info is used to sort the root moves at the next iteration. int64_t our, their; TM.get_beta_counters(pos.side_to_move(), our, their); rml.set_beta_counters(i, our, their); rml.set_move_nodes(i, TM.nodes_searched() - nodes); assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE); if (value <= alpha && i >= MultiPV) rml.set_move_score(i, -VALUE_INFINITE); else { // PV move or new best move! // Update PV rml.set_move_score(i, value); update_pv(ss, 0); TT.extract_pv(pos, ss[0].pv, PLY_MAX); rml.set_move_pv(i, ss[0].pv); if (MultiPV == 1) { // We record how often the best move has been changed in each // iteration. This information is used for time managment: When // the best move changes frequently, we allocate some more time. if (i > 0) BestMoveChangesByIteration[Iteration]++; // Print search information to the standard output cout << "info depth " << Iteration << " score " << value_to_string(value) << ((value >= beta) ? " lowerbound" : ((value <= alpha)? " upperbound" : "")) << " time " << current_search_time() << " nodes " << TM.nodes_searched() << " nps " << nps() << " pv "; for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++) cout << ss[0].pv[j] << " "; cout << endl; if (UseLogFile) { ValueType type = (value >= beta ? VALUE_TYPE_LOWER : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT)); LogFile << pretty_pv(pos, current_search_time(), Iteration, TM.nodes_searched(), value, type, ss[0].pv) << endl; } if (value > alpha) alpha = value; } else // MultiPV > 1 { rml.sort_multipv(i); for (int j = 0; j < Min(MultiPV, rml.move_count()); j++) { cout << "info multipv " << j + 1 << " score " << value_to_string(rml.get_move_score(j)) << " depth " << ((j <= i)? Iteration : Iteration - 1) << " time " << current_search_time() << " nodes " << TM.nodes_searched() << " nps " << nps() << " pv "; for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++) cout << rml.get_move_pv(j, k) << " "; cout << endl; } alpha = rml.get_move_score(Min(i, MultiPV-1)); } } // PV move or new best move assert(alpha >= oldAlpha); AspirationFailLow = (alpha == oldAlpha); if (AspirationFailLow && StopOnPonderhit) StopOnPonderhit = false; } // Can we exit fail low loop ? if (AbortSearch || alpha > oldAlpha) break; // Prepare for a research after a fail low, each time with a wider window researchCount++; alpha = Max(alpha - AspirationDelta * (1 << researchCount), -VALUE_INFINITE); oldAlpha = alpha; } // Fail low loop return alpha; } // search_pv() is the main search function for PV nodes. Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta > alpha && beta <= VALUE_INFINITE); assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < TM.active_threads()); Move movesSearched[256]; StateInfo st; const TTEntry* tte; Move ttMove, move; Depth ext, newDepth; Value oldAlpha, value; bool isCheck, mateThreat, singleEvasion, moveIsCheck, captureOrPromotion, dangerous; int moveCount = 0; Value bestValue = value = -VALUE_INFINITE; if (depth < OnePly) return qsearch(pos, ss, alpha, beta, Depth(0), ply, threadID); // Initialize, and make an early exit in case of an aborted search, // an instant draw, maximum ply reached, etc. init_node(ss, ply, threadID); // After init_node() that calls poll() if (AbortSearch || TM.thread_should_stop(threadID)) return Value(0); if (pos.is_draw() || ply >= PLY_MAX - 1) return VALUE_DRAW; // Mate distance pruning oldAlpha = alpha; alpha = Max(value_mated_in(ply), alpha); beta = Min(value_mate_in(ply+1), beta); if (alpha >= beta) return alpha; // Transposition table lookup. At PV nodes, we don't use the TT for // pruning, but only for move ordering. This is to avoid problems in // the following areas: // // * Repetition draw detection // * Fifty move rule detection // * Searching for a mate // * Printing of full PV line // tte = TT.retrieve(pos.get_key()); ttMove = (tte ? tte->move() : MOVE_NONE); // Go with internal iterative deepening if we don't have a TT move if ( UseIIDAtPVNodes && depth >= 5*OnePly && ttMove == MOVE_NONE) { search_pv(pos, ss, alpha, beta, depth-2*OnePly, ply, threadID); ttMove = ss[ply].pv[ply]; tte = TT.retrieve(pos.get_key()); } isCheck = pos.is_check(); if (!isCheck) { // Update gain statistics of the previous move that lead // us in this position. EvalInfo ei; ss[ply].eval = evaluate(pos, ei, threadID); update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval); } // Initialize a MovePicker object for the current position, and prepare // to search all moves mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move())); CheckInfo ci(pos); MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]); // Loop through all legal moves until no moves remain or a beta cutoff // occurs. while ( alpha < beta && (move = mp.get_next_move()) != MOVE_NONE && !TM.thread_should_stop(threadID)) { assert(move_is_ok(move)); singleEvasion = (isCheck && mp.number_of_evasions() == 1); moveIsCheck = pos.move_is_check(move, ci); captureOrPromotion = pos.move_is_capture_or_promotion(move); // Decide the new search depth ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous); // Singular extension search. We extend the TT move if its value is much better than // its siblings. To verify this we do a reduced search on all the other moves but the // ttMove, if result is lower then ttValue minus a margin then we extend ttMove. if ( depth >= 6 * OnePly && tte && move == tte->move() && ext < OnePly && is_lower_bound(tte->type()) && tte->depth() >= depth - 3 * OnePly) { Value ttValue = value_from_tt(tte->value(), ply); if (abs(ttValue) < VALUE_KNOWN_WIN) { Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, move); if (excValue < ttValue - SingleReplyMargin) ext = OnePly; } } newDepth = depth - OnePly + ext; // Update current move movesSearched[moveCount++] = ss[ply].currentMove = move; // Make and search the move pos.do_move(move, st, ci, moveIsCheck); if (moveCount == 1) // The first move in list is the PV value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID); else { // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. bool doFullDepthSearch = true; if ( depth >= 3*OnePly && !dangerous && !captureOrPromotion && !move_is_castle(move) && !move_is_killer(move, ss[ply])) { ss[ply].reduction = pv_reduction(depth, moveCount); if (ss[ply].reduction) { value = -search(pos, ss, -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID); doFullDepthSearch = (value > alpha); } } if (doFullDepthSearch) // Go with full depth non-pv search { ss[ply].reduction = Depth(0); value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID); if (value > alpha && value < beta) value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID); } } pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if (value > bestValue) { bestValue = value; if (value > alpha) { alpha = value; update_pv(ss, ply); if (value == value_mate_in(ply + 1)) ss[ply].mateKiller = move; } } // Split? if ( TM.active_threads() > 1 && bestValue < beta && depth >= MinimumSplitDepth && Iteration <= 99 && TM.available_thread_exists(threadID) && !AbortSearch && !TM.thread_should_stop(threadID) && TM.split(pos, ss, ply, &alpha, beta, &bestValue, VALUE_NONE, depth, &moveCount, &mp, threadID, true)) break; } // All legal moves have been searched. A special case: If there were // no legal moves, it must be mate or stalemate. if (moveCount == 0) return (isCheck ? value_mated_in(ply) : VALUE_DRAW); // If the search is not aborted, update the transposition table, // history counters, and killer moves. if (AbortSearch || TM.thread_should_stop(threadID)) return bestValue; if (bestValue <= oldAlpha) TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE); else if (bestValue >= beta) { TM.incrementBetaCounter(pos.side_to_move(), depth, threadID); move = ss[ply].pv[ply]; if (!pos.move_is_capture_or_promotion(move)) { update_history(pos, move, depth, movesSearched, moveCount); update_killers(move, ss[ply]); } TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move); } else TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss[ply].pv[ply]); return bestValue; } // search() is the search function for zero-width nodes. Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove) { assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < TM.active_threads()); Move movesSearched[256]; EvalInfo ei; StateInfo st; const TTEntry* tte; Move ttMove, move; Depth ext, newDepth; Value bestValue, staticValue, nullValue, value, futilityValue, futilityValueScaled; bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous; bool mateThreat = false; int moveCount = 0; futilityValue = staticValue = bestValue = value = -VALUE_INFINITE; if (depth < OnePly) return qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID); // Initialize, and make an early exit in case of an aborted search, // an instant draw, maximum ply reached, etc. init_node(ss, ply, threadID); // After init_node() that calls poll() if (AbortSearch || TM.thread_should_stop(threadID)) return Value(0); if (pos.is_draw() || ply >= PLY_MAX - 1) return VALUE_DRAW; // Mate distance pruning if (value_mated_in(ply) >= beta) return beta; if (value_mate_in(ply + 1) < beta) return beta - 1; // We don't want the score of a partial search to overwrite a previous full search // TT value, so we use a different position key in case of an excluded move exsists. Key posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key(); // Transposition table lookup tte = TT.retrieve(posKey); ttMove = (tte ? tte->move() : MOVE_NONE); if (tte && ok_to_use_TT(tte, depth, beta, ply)) { ss[ply].currentMove = ttMove; // Can be MOVE_NONE return value_from_tt(tte->value(), ply); } isCheck = pos.is_check(); // Evaluate the position statically if (!isCheck) { if (tte && (tte->type() & VALUE_TYPE_EVAL)) staticValue = value_from_tt(tte->value(), ply); else staticValue = evaluate(pos, ei, threadID); ss[ply].eval = staticValue; futilityValue = staticValue + futility_margin(depth, 0); //FIXME: Remove me, only for split staticValue = refine_eval(tte, staticValue, ply); // Enhance accuracy with TT value if possible update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval); } // Static null move pruning. We're betting that the opponent doesn't have // a move that will reduce the score by more than FutilityMargins[int(depth)] // if we do a null move. if ( !isCheck && allowNullmove && depth < RazorDepth && staticValue - futility_margin(depth, 0) >= beta) return staticValue - futility_margin(depth, 0); // Null move search if ( allowNullmove && depth > OnePly && !isCheck && !value_is_mate(beta) && ok_to_do_nullmove(pos) && staticValue >= beta - (depth >= 4 * OnePly ? NullMoveMargin : 0)) { ss[ply].currentMove = MOVE_NULL; pos.do_null_move(st); // Null move dynamic reduction based on depth int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0); // Null move dynamic reduction based on value if (staticValue - beta > PawnValueMidgame) R++; nullValue = -search(pos, ss, -(beta-1), depth-R*OnePly, ply+1, false, threadID); pos.undo_null_move(); if (nullValue >= beta) { if (depth < 6 * OnePly) return beta; // Do zugzwang verification search Value v = search(pos, ss, beta, depth-5*OnePly, ply, false, threadID); if (v >= beta) return beta; } else { // The null move failed low, which means that we may be faced with // some kind of threat. If the previous move was reduced, check if // the move that refuted the null move was somehow connected to the // move which was reduced. If a connection is found, return a fail // low score (which will cause the reduced move to fail high in the // parent node, which will trigger a re-search with full depth). if (nullValue == value_mated_in(ply + 2)) mateThreat = true; ss[ply].threatMove = ss[ply + 1].currentMove; if ( depth < ThreatDepth && ss[ply - 1].reduction && connected_moves(pos, ss[ply - 1].currentMove, ss[ply].threatMove)) return beta - 1; } } // Null move search not allowed, try razoring else if ( !value_is_mate(beta) && !isCheck && depth < RazorDepth && staticValue < beta - (NullMoveMargin + 16 * depth) && ss[ply - 1].currentMove != MOVE_NULL && ttMove == MOVE_NONE && !pos.has_pawn_on_7th(pos.side_to_move())) { Value rbeta = beta - (NullMoveMargin + 16 * depth); Value v = qsearch(pos, ss, rbeta-1, rbeta, Depth(0), ply, threadID); if (v < rbeta) return v; } // Go with internal iterative deepening if we don't have a TT move if (UseIIDAtNonPVNodes && ttMove == MOVE_NONE && depth >= 8*OnePly && !isCheck && ss[ply].eval >= beta - IIDMargin) { search(pos, ss, beta, Min(depth/2, depth-2*OnePly), ply, false, threadID); ttMove = ss[ply].pv[ply]; tte = TT.retrieve(posKey); } // Initialize a MovePicker object for the current position, and prepare // to search all moves. MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]); CheckInfo ci(pos); // Loop through all legal moves until no moves remain or a beta cutoff occurs while ( bestValue < beta && (move = mp.get_next_move()) != MOVE_NONE && !TM.thread_should_stop(threadID)) { assert(move_is_ok(move)); if (move == excludedMove) continue; moveIsCheck = pos.move_is_check(move, ci); singleEvasion = (isCheck && mp.number_of_evasions() == 1); captureOrPromotion = pos.move_is_capture_or_promotion(move); // Decide the new search depth ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous); // Singular extension search. We extend the TT move if its value is much better than // its siblings. To verify this we do a reduced search on all the other moves but the // ttMove, if result is lower then ttValue minus a margin then we extend ttMove. if ( depth >= 8 * OnePly && tte && move == tte->move() && !excludedMove // Do not allow recursive single-reply search && ext < OnePly && is_lower_bound(tte->type()) && tte->depth() >= depth - 3 * OnePly) { Value ttValue = value_from_tt(tte->value(), ply); if (abs(ttValue) < VALUE_KNOWN_WIN) { Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, move); if (excValue < ttValue - SingleReplyMargin) ext = OnePly; } } newDepth = depth - OnePly + ext; // Update current move movesSearched[moveCount++] = ss[ply].currentMove = move; // Futility pruning if ( !isCheck && !dangerous && !captureOrPromotion && !move_is_castle(move) && move != ttMove) { // Move count based pruning if ( moveCount >= futility_move_count(depth) && ok_to_prune(pos, move, ss[ply].threatMove) && bestValue > value_mated_in(PLY_MAX)) continue; // Value based pruning Depth predictedDepth = newDepth - nonpv_reduction(depth, moveCount); //FIXME: We are ignoring condition: depth >= 3*OnePly, BUG?? futilityValueScaled = ss[ply].eval + futility_margin(predictedDepth, moveCount) + H.gain(pos.piece_on(move_from(move)), move_to(move)) + 45; if (futilityValueScaled < beta) { if (futilityValueScaled > bestValue) bestValue = futilityValueScaled; continue; } } // Make and search the move pos.do_move(move, st, ci, moveIsCheck); // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. bool doFullDepthSearch = true; if ( depth >= 3*OnePly && !dangerous && !captureOrPromotion && !move_is_castle(move) && !move_is_killer(move, ss[ply])) { ss[ply].reduction = nonpv_reduction(depth, moveCount); if (ss[ply].reduction) { value = -search(pos, ss, -(beta-1), newDepth-ss[ply].reduction, ply+1, true, threadID); doFullDepthSearch = (value >= beta); } } if (doFullDepthSearch) // Go with full depth non-pv search { ss[ply].reduction = Depth(0); value = -search(pos, ss, -(beta-1), newDepth, ply+1, true, threadID); } pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if (value > bestValue) { bestValue = value; if (value >= beta) update_pv(ss, ply); if (value == value_mate_in(ply + 1)) ss[ply].mateKiller = move; } // Split? if ( TM.active_threads() > 1 && bestValue < beta && depth >= MinimumSplitDepth && Iteration <= 99 && TM.available_thread_exists(threadID) && !AbortSearch && !TM.thread_should_stop(threadID) && TM.split(pos, ss, ply, NULL, beta, &bestValue, futilityValue, //FIXME: SMP & futilityValue depth, &moveCount, &mp, threadID, false)) break; } // All legal moves have been searched. A special case: If there were // no legal moves, it must be mate or stalemate. if (!moveCount) return excludedMove ? beta - 1 : (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW); // If the search is not aborted, update the transposition table, // history counters, and killer moves. if (AbortSearch || TM.thread_should_stop(threadID)) return bestValue; if (bestValue < beta) TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE); else { TM.incrementBetaCounter(pos.side_to_move(), depth, threadID); move = ss[ply].pv[ply]; TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move); if (!pos.move_is_capture_or_promotion(move)) { update_history(pos, move, depth, movesSearched, moveCount); update_killers(move, ss[ply]); } } assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // qsearch() is the quiescence search function, which is called by the main // search function when the remaining depth is zero (or, to be more precise, // less than OnePly). Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); assert(depth <= 0); assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < TM.active_threads()); EvalInfo ei; StateInfo st; Move ttMove, move; Value staticValue, bestValue, value, futilityBase, futilityValue; bool isCheck, enoughMaterial, moveIsCheck, evasionPrunable; const TTEntry* tte = NULL; int moveCount = 0; bool pvNode = (beta - alpha != 1); Value oldAlpha = alpha; // Initialize, and make an early exit in case of an aborted search, // an instant draw, maximum ply reached, etc. init_node(ss, ply, threadID); // After init_node() that calls poll() if (AbortSearch || TM.thread_should_stop(threadID)) return Value(0); if (pos.is_draw() || ply >= PLY_MAX - 1) return VALUE_DRAW; // Transposition table lookup. At PV nodes, we don't use the TT for // pruning, but only for move ordering. tte = TT.retrieve(pos.get_key()); ttMove = (tte ? tte->move() : MOVE_NONE); if (!pvNode && tte && ok_to_use_TT(tte, depth, beta, ply)) { assert(tte->type() != VALUE_TYPE_EVAL); ss[ply].currentMove = ttMove; // Can be MOVE_NONE return value_from_tt(tte->value(), ply); } isCheck = pos.is_check(); // Evaluate the position statically if (isCheck) staticValue = -VALUE_INFINITE; else if (tte && (tte->type() & VALUE_TYPE_EVAL)) staticValue = value_from_tt(tte->value(), ply); else staticValue = evaluate(pos, ei, threadID); if (!isCheck) { ss[ply].eval = staticValue; update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval); } // Initialize "stand pat score", and return it immediately if it is // at least beta. bestValue = staticValue; if (bestValue >= beta) { // Store the score to avoid a future costly evaluation() call if (!isCheck && !tte && ei.futilityMargin[pos.side_to_move()] == 0) TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EV_LO, Depth(-127*OnePly), MOVE_NONE); return bestValue; } if (bestValue > alpha) alpha = bestValue; // If we are near beta then try to get a cutoff pushing checks a bit further bool deepChecks = depth == -OnePly && staticValue >= beta - PawnValueMidgame / 8; // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions and checks (only if depth == 0 or depth == -OnePly // and we are near beta) will be generated. MovePicker mp = MovePicker(pos, ttMove, deepChecks ? Depth(0) : depth, H); CheckInfo ci(pos); enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame; futilityBase = staticValue + FutilityMarginQS + ei.futilityMargin[pos.side_to_move()]; // Loop through the moves until no moves remain or a beta cutoff // occurs. while ( alpha < beta && (move = mp.get_next_move()) != MOVE_NONE) { assert(move_is_ok(move)); moveIsCheck = pos.move_is_check(move, ci); // Update current move moveCount++; ss[ply].currentMove = move; // Futility pruning if ( enoughMaterial && !isCheck && !pvNode && !moveIsCheck && move != ttMove && !move_is_promotion(move) && !pos.move_is_passed_pawn_push(move)) { futilityValue = futilityBase + pos.endgame_value_of_piece_on(move_to(move)) + (move_is_ep(move) ? PawnValueEndgame : Value(0)); if (futilityValue < alpha) { if (futilityValue > bestValue) bestValue = futilityValue; continue; } } // Detect blocking evasions that are candidate to be pruned evasionPrunable = isCheck && bestValue != -VALUE_INFINITE && !pos.move_is_capture(move) && pos.type_of_piece_on(move_from(move)) != KING && !pos.can_castle(pos.side_to_move()); // Don't search moves with negative SEE values if ( (!isCheck || evasionPrunable) && !pvNode && move != ttMove && !move_is_promotion(move) && pos.see_sign(move) < 0) continue; // Make and search the move pos.do_move(move, st, ci, moveIsCheck); value = -qsearch(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID); pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if (value > bestValue) { bestValue = value; if (value > alpha) { alpha = value; update_pv(ss, ply); } } } // All legal moves have been searched. A special case: If we're in check // and no legal moves were found, it is checkmate. if (!moveCount && pos.is_check()) // Mate! return value_mated_in(ply); // Update transposition table Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1)); if (bestValue <= oldAlpha) { // If bestValue isn't changed it means it is still the static evaluation // of the node, so keep this info to avoid a future evaluation() call. ValueType type = (bestValue == staticValue && !ei.futilityMargin[pos.side_to_move()] ? VALUE_TYPE_EV_UP : VALUE_TYPE_UPPER); TT.store(pos.get_key(), value_to_tt(bestValue, ply), type, d, MOVE_NONE); } else if (bestValue >= beta) { move = ss[ply].pv[ply]; TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move); // Update killers only for good checking moves if (!pos.move_is_capture_or_promotion(move)) update_killers(move, ss[ply]); } else TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, d, ss[ply].pv[ply]); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // sp_search() is used to search from a split point. This function is called // by each thread working at the split point. It is similar to the normal // search() function, but simpler. Because we have already probed the hash // table, done a null move search, and searched the first move before // splitting, we don't have to repeat all this work in sp_search(). We // also don't need to store anything to the hash table here: This is taken // care of after we return from the split point. void sp_search(SplitPoint* sp, int threadID) { assert(threadID >= 0 && threadID < TM.active_threads()); assert(TM.active_threads() > 1); Position pos(*sp->pos); CheckInfo ci(pos); SearchStack* ss = sp->sstack[threadID]; Value value = -VALUE_INFINITE; Move move; int moveCount; bool isCheck = pos.is_check(); bool useFutilityPruning = sp->depth < 7 * OnePly //FIXME: sync with search && !isCheck; while ( lock_grab_bool(&(sp->lock)) && sp->bestValue < sp->beta && !TM.thread_should_stop(threadID) && (move = sp->mp->get_next_move()) != MOVE_NONE) { moveCount = ++sp->moves; lock_release(&(sp->lock)); assert(move_is_ok(move)); bool moveIsCheck = pos.move_is_check(move, ci); bool captureOrPromotion = pos.move_is_capture_or_promotion(move); ss[sp->ply].currentMove = move; // Decide the new search depth bool dangerous; Depth ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, false, false, &dangerous); Depth newDepth = sp->depth - OnePly + ext; // Prune? if ( useFutilityPruning && !dangerous && !captureOrPromotion) { // Move count based pruning if ( moveCount >= futility_move_count(sp->depth) && ok_to_prune(pos, move, ss[sp->ply].threatMove) && sp->bestValue > value_mated_in(PLY_MAX)) continue; // Value based pruning Value futilityValueScaled = sp->futilityValue - moveCount * 8; //FIXME: sync with search if (futilityValueScaled < sp->beta) { if (futilityValueScaled > sp->bestValue) // Less then 1% of cases { lock_grab(&(sp->lock)); if (futilityValueScaled > sp->bestValue) sp->bestValue = futilityValueScaled; lock_release(&(sp->lock)); } continue; } } // Make and search the move. StateInfo st; pos.do_move(move, st, ci, moveIsCheck); // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. bool doFullDepthSearch = true; if ( !dangerous && !captureOrPromotion && !move_is_castle(move) && !move_is_killer(move, ss[sp->ply])) { ss[sp->ply].reduction = nonpv_reduction(sp->depth, moveCount); if (ss[sp->ply].reduction) { value = -search(pos, ss, -(sp->beta-1), newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID); doFullDepthSearch = (value >= sp->beta); } } if (doFullDepthSearch) // Go with full depth non-pv search { ss[sp->ply].reduction = Depth(0); value = -search(pos, ss, -(sp->beta - 1), newDepth, sp->ply+1, true, threadID); } pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if (value > sp->bestValue) // Less then 2% of cases { lock_grab(&(sp->lock)); if (value > sp->bestValue && !TM.thread_should_stop(threadID)) { sp->bestValue = value; if (sp->bestValue >= sp->beta) { sp->stopRequest = true; sp_update_pv(sp->parentSstack, ss, sp->ply); } } lock_release(&(sp->lock)); } } /* Here we have the lock still grabbed */ sp->cpus--; sp->slaves[threadID] = 0; lock_release(&(sp->lock)); } // sp_search_pv() is used to search from a PV split point. This function // is called by each thread working at the split point. It is similar to // the normal search_pv() function, but simpler. Because we have already // probed the hash table and searched the first move before splitting, we // don't have to repeat all this work in sp_search_pv(). We also don't // need to store anything to the hash table here: This is taken care of // after we return from the split point. void sp_search_pv(SplitPoint* sp, int threadID) { assert(threadID >= 0 && threadID < TM.active_threads()); assert(TM.active_threads() > 1); Position pos(*sp->pos); CheckInfo ci(pos); SearchStack* ss = sp->sstack[threadID]; Value value = -VALUE_INFINITE; int moveCount; Move move; while ( lock_grab_bool(&(sp->lock)) && sp->alpha < sp->beta && !TM.thread_should_stop(threadID) && (move = sp->mp->get_next_move()) != MOVE_NONE) { moveCount = ++sp->moves; lock_release(&(sp->lock)); assert(move_is_ok(move)); bool moveIsCheck = pos.move_is_check(move, ci); bool captureOrPromotion = pos.move_is_capture_or_promotion(move); ss[sp->ply].currentMove = move; // Decide the new search depth bool dangerous; Depth ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous); Depth newDepth = sp->depth - OnePly + ext; // Make and search the move. StateInfo st; pos.do_move(move, st, ci, moveIsCheck); // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. bool doFullDepthSearch = true; if ( !dangerous && !captureOrPromotion && !move_is_castle(move) && !move_is_killer(move, ss[sp->ply])) { ss[sp->ply].reduction = pv_reduction(sp->depth, moveCount); if (ss[sp->ply].reduction) { Value localAlpha = sp->alpha; value = -search(pos, ss, -localAlpha, newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID); doFullDepthSearch = (value > localAlpha); } } if (doFullDepthSearch) // Go with full depth non-pv search { Value localAlpha = sp->alpha; ss[sp->ply].reduction = Depth(0); value = -search(pos, ss, -localAlpha, newDepth, sp->ply+1, true, threadID); if (value > localAlpha && value < sp->beta) { // If another thread has failed high then sp->alpha has been increased // to be higher or equal then beta, if so, avoid to start a PV search. localAlpha = sp->alpha; if (localAlpha < sp->beta) value = -search_pv(pos, ss, -sp->beta, -localAlpha, newDepth, sp->ply+1, threadID); else assert(TM.thread_should_stop(threadID)); } } pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if (value > sp->bestValue) // Less then 2% of cases { lock_grab(&(sp->lock)); if (value > sp->bestValue && !TM.thread_should_stop(threadID)) { sp->bestValue = value; if (value > sp->alpha) { // Ask threads to stop before to modify sp->alpha if (value >= sp->beta) sp->stopRequest = true; sp->alpha = value; sp_update_pv(sp->parentSstack, ss, sp->ply); if (value == value_mate_in(sp->ply + 1)) ss[sp->ply].mateKiller = move; } } lock_release(&(sp->lock)); } } /* Here we have the lock still grabbed */ sp->cpus--; sp->slaves[threadID] = 0; lock_release(&(sp->lock)); } // init_node() is called at the beginning of all the search functions // (search(), search_pv(), qsearch(), and so on) and initializes the // search stack object corresponding to the current node. Once every // NodesBetweenPolls nodes, init_node() also calls poll(), which polls // for user input and checks whether it is time to stop the search. void init_node(SearchStack ss[], int ply, int threadID) { assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < TM.active_threads()); TM.incrementNodeCounter(threadID); if (threadID == 0) { NodesSincePoll++; if (NodesSincePoll >= NodesBetweenPolls) { poll(); NodesSincePoll = 0; } } ss[ply].init(ply); ss[ply + 2].initKillers(); TM.print_current_line(ss, ply, threadID); } // update_pv() is called whenever a search returns a value > alpha. // It updates the PV in the SearchStack object corresponding to the // current node. void update_pv(SearchStack ss[], int ply) { assert(ply >= 0 && ply < PLY_MAX); int p; ss[ply].pv[ply] = ss[ply].currentMove; for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++) ss[ply].pv[p] = ss[ply + 1].pv[p]; ss[ply].pv[p] = MOVE_NONE; } // sp_update_pv() is a variant of update_pv for use at split points. The // difference between the two functions is that sp_update_pv also updates // the PV at the parent node. void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) { assert(ply >= 0 && ply < PLY_MAX); int p; ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove; for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++) ss[ply].pv[p] = pss[ply].pv[p] = ss[ply + 1].pv[p]; ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE; } // connected_moves() tests whether two moves are 'connected' in the sense // that the first move somehow made the second move possible (for instance // if the moving piece is the same in both moves). The first move is assumed // to be the move that was made to reach the current position, while the // second move is assumed to be a move from the current position. bool connected_moves(const Position& pos, Move m1, Move m2) { Square f1, t1, f2, t2; Piece p; assert(move_is_ok(m1)); assert(move_is_ok(m2)); if (m2 == MOVE_NONE) return false; // Case 1: The moving piece is the same in both moves f2 = move_from(m2); t1 = move_to(m1); if (f2 == t1) return true; // Case 2: The destination square for m2 was vacated by m1 t2 = move_to(m2); f1 = move_from(m1); if (t2 == f1) return true; // Case 3: Moving through the vacated square if ( piece_is_slider(pos.piece_on(f2)) && bit_is_set(squares_between(f2, t2), f1)) return true; // Case 4: The destination square for m2 is defended by the moving piece in m1 p = pos.piece_on(t1); if (bit_is_set(pos.attacks_from(p, t1), t2)) return true; // Case 5: Discovered check, checking piece is the piece moved in m1 if ( piece_is_slider(p) && bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2) && !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2)) { // discovered_check_candidates() works also if the Position's side to // move is the opposite of the checking piece. Color them = opposite_color(pos.side_to_move()); Bitboard dcCandidates = pos.discovered_check_candidates(them); if (bit_is_set(dcCandidates, f2)) return true; } return false; } // value_is_mate() checks if the given value is a mate one // eventually compensated for the ply. bool value_is_mate(Value value) { assert(abs(value) <= VALUE_INFINITE); return value <= value_mated_in(PLY_MAX) || value >= value_mate_in(PLY_MAX); } // move_is_killer() checks if the given move is among the // killer moves of that ply. bool move_is_killer(Move m, const SearchStack& ss) { const Move* k = ss.killers; for (int i = 0; i < KILLER_MAX; i++, k++) if (*k == m) return true; return false; } // extension() decides whether a move should be searched with normal depth, // or with extended depth. Certain classes of moves (checking moves, in // particular) are searched with bigger depth than ordinary moves and in // any case are marked as 'dangerous'. Note that also if a move is not // extended, as example because the corresponding UCI option is set to zero, // the move is marked as 'dangerous' so, at least, we avoid to prune it. Depth extension(const Position& pos, Move m, bool pvNode, bool captureOrPromotion, bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous) { assert(m != MOVE_NONE); Depth result = Depth(0); *dangerous = moveIsCheck | singleEvasion | mateThreat; if (*dangerous) { if (moveIsCheck) result += CheckExtension[pvNode]; if (singleEvasion) result += SingleEvasionExtension[pvNode]; if (mateThreat) result += MateThreatExtension[pvNode]; } if (pos.type_of_piece_on(move_from(m)) == PAWN) { Color c = pos.side_to_move(); if (relative_rank(c, move_to(m)) == RANK_7) { result += PawnPushTo7thExtension[pvNode]; *dangerous = true; } if (pos.pawn_is_passed(c, move_to(m))) { result += PassedPawnExtension[pvNode]; *dangerous = true; } } if ( captureOrPromotion && pos.type_of_piece_on(move_to(m)) != PAWN && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) - pos.midgame_value_of_piece_on(move_to(m)) == Value(0)) && !move_is_promotion(m) && !move_is_ep(m)) { result += PawnEndgameExtension[pvNode]; *dangerous = true; } if ( pvNode && captureOrPromotion && pos.type_of_piece_on(move_to(m)) != PAWN && pos.see_sign(m) >= 0) { result += OnePly/2; *dangerous = true; } return Min(result, OnePly); } // ok_to_do_nullmove() looks at the current position and decides whether // doing a 'null move' should be allowed. In order to avoid zugzwang // problems, null moves are not allowed when the side to move has very // little material left. Currently, the test is a bit too simple: Null // moves are avoided only when the side to move has only pawns left. // It's probably a good idea to avoid null moves in at least some more // complicated endgames, e.g. KQ vs KR. FIXME bool ok_to_do_nullmove(const Position& pos) { return pos.non_pawn_material(pos.side_to_move()) != Value(0); } // ok_to_prune() tests whether it is safe to forward prune a move. Only // non-tactical moves late in the move list close to the leaves are // candidates for pruning. bool ok_to_prune(const Position& pos, Move m, Move threat) { assert(move_is_ok(m)); assert(threat == MOVE_NONE || move_is_ok(threat)); assert(!pos.move_is_check(m)); assert(!pos.move_is_capture_or_promotion(m)); assert(!pos.move_is_passed_pawn_push(m)); Square mfrom, mto, tfrom, tto; // Prune if there isn't any threat move if (threat == MOVE_NONE) return true; mfrom = move_from(m); mto = move_to(m); tfrom = move_from(threat); tto = move_to(threat); // Case 1: Don't prune moves which move the threatened piece if (mfrom == tto) return false; // Case 2: If the threatened piece has value less than or equal to the // value of the threatening piece, don't prune move which defend it. if ( pos.move_is_capture(threat) && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto) || pos.type_of_piece_on(tfrom) == KING) && pos.move_attacks_square(m, tto)) return false; // Case 3: If the moving piece in the threatened move is a slider, don't // prune safe moves which block its ray. if ( piece_is_slider(pos.piece_on(tfrom)) && bit_is_set(squares_between(tfrom, tto), mto) && pos.see_sign(m) >= 0) return false; return true; } // ok_to_use_TT() returns true if a transposition table score // can be used at a given point in search. bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) { Value v = value_from_tt(tte->value(), ply); return ( tte->depth() >= depth || v >= Max(value_mate_in(PLY_MAX), beta) || v < Min(value_mated_in(PLY_MAX), beta)) && ( (is_lower_bound(tte->type()) && v >= beta) || (is_upper_bound(tte->type()) && v < beta)); } // refine_eval() returns the transposition table score if // possible otherwise falls back on static position evaluation. Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) { if (!tte) return defaultEval; Value v = value_from_tt(tte->value(), ply); if ( (is_lower_bound(tte->type()) && v >= defaultEval) || (is_upper_bound(tte->type()) && v < defaultEval)) return v; return defaultEval; } // update_history() registers a good move that produced a beta-cutoff // in history and marks as failures all the other moves of that ply. void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount) { Move m; H.success(pos.piece_on(move_from(move)), move_to(move), depth); for (int i = 0; i < moveCount - 1; i++) { m = movesSearched[i]; assert(m != move); if (!pos.move_is_capture_or_promotion(m)) H.failure(pos.piece_on(move_from(m)), move_to(m), depth); } } // update_killers() add a good move that produced a beta-cutoff // among the killer moves of that ply. void update_killers(Move m, SearchStack& ss) { if (m == ss.killers[0]) return; for (int i = KILLER_MAX - 1; i > 0; i--) ss.killers[i] = ss.killers[i - 1]; ss.killers[0] = m; } // update_gains() updates the gains table of a non-capture move given // the static position evaluation before and after the move. void update_gains(const Position& pos, Move m, Value before, Value after) { if ( m != MOVE_NULL && before != VALUE_NONE && after != VALUE_NONE && pos.captured_piece() == NO_PIECE_TYPE && !move_is_castle(m) && !move_is_promotion(m)) H.set_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after)); } // current_search_time() returns the number of milliseconds which have passed // since the beginning of the current search. int current_search_time() { return get_system_time() - SearchStartTime; } // nps() computes the current nodes/second count. int nps() { int t = current_search_time(); return (t > 0 ? int((TM.nodes_searched() * 1000) / t) : 0); } // poll() performs two different functions: It polls for user input, and it // looks at the time consumed so far and decides if it's time to abort the // search. void poll() { static int lastInfoTime; int t = current_search_time(); // Poll for input if (Bioskey()) { // We are line oriented, don't read single chars std::string command; if (!std::getline(std::cin, command)) command = "quit"; if (command == "quit") { AbortSearch = true; PonderSearch = false; Quit = true; return; } else if (command == "stop") { AbortSearch = true; PonderSearch = false; } else if (command == "ponderhit") ponderhit(); } // Print search information if (t < 1000) lastInfoTime = 0; else if (lastInfoTime > t) // HACK: Must be a new search where we searched less than // NodesBetweenPolls nodes during the first second of search. lastInfoTime = 0; else if (t - lastInfoTime >= 1000) { lastInfoTime = t; lock_grab(&TM.IOLock); if (dbg_show_mean) dbg_print_mean(); if (dbg_show_hit_rate) dbg_print_hit_rate(); cout << "info nodes " << TM.nodes_searched() << " nps " << nps() << " time " << t << " hashfull " << TT.full() << endl; lock_release(&TM.IOLock); if (ShowCurrentLine) TM.threads[0].printCurrentLineRequest = true; } // Should we stop the search? if (PonderSearch) return; bool stillAtFirstMove = RootMoveNumber == 1 && !AspirationFailLow && t > MaxSearchTime + ExtraSearchTime; bool noMoreTime = t > AbsoluteMaxSearchTime || stillAtFirstMove; if ( (Iteration >= 3 && UseTimeManagement && noMoreTime) || (ExactMaxTime && t >= ExactMaxTime) || (Iteration >= 3 && MaxNodes && TM.nodes_searched() >= MaxNodes)) AbortSearch = true; } // ponderhit() is called when the program is pondering (i.e. thinking while // it's the opponent's turn to move) in order to let the engine know that // it correctly predicted the opponent's move. void ponderhit() { int t = current_search_time(); PonderSearch = false; bool stillAtFirstMove = RootMoveNumber == 1 && !AspirationFailLow && t > MaxSearchTime + ExtraSearchTime; bool noMoreTime = t > AbsoluteMaxSearchTime || stillAtFirstMove; if (Iteration >= 3 && UseTimeManagement && (noMoreTime || StopOnPonderhit)) AbortSearch = true; } // init_ss_array() does a fast reset of the first entries of a SearchStack array void init_ss_array(SearchStack ss[]) { for (int i = 0; i < 3; i++) { ss[i].init(i); ss[i].initKillers(); } } // wait_for_stop_or_ponderhit() is called when the maximum depth is reached // while the program is pondering. The point is to work around a wrinkle in // the UCI protocol: When pondering, the engine is not allowed to give a // "bestmove" before the GUI sends it a "stop" or "ponderhit" command. // We simply wait here until one of these commands is sent, and return, // after which the bestmove and pondermove will be printed (in id_loop()). void wait_for_stop_or_ponderhit() { std::string command; while (true) { if (!std::getline(std::cin, command)) command = "quit"; if (command == "quit") { Quit = true; break; } else if (command == "ponderhit" || command == "stop") break; } } // init_thread() is the function which is called when a new thread is // launched. It simply calls the idle_loop() function with the supplied // threadID. There are two versions of this function; one for POSIX // threads and one for Windows threads. #if !defined(_MSC_VER) void* init_thread(void *threadID) { TM.idle_loop(*(int*)threadID, NULL); return NULL; } #else DWORD WINAPI init_thread(LPVOID threadID) { TM.idle_loop(*(int*)threadID, NULL); return NULL; } #endif /// The ThreadsManager class // resetNodeCounters(), resetBetaCounters(), searched_nodes() and // get_beta_counters() are getters/setters for the per thread // counters used to sort the moves at root. void ThreadsManager::resetNodeCounters() { for (int i = 0; i < MAX_THREADS; i++) threads[i].nodes = 0ULL; } void ThreadsManager::resetBetaCounters() { for (int i = 0; i < MAX_THREADS; i++) threads[i].betaCutOffs[WHITE] = threads[i].betaCutOffs[BLACK] = 0ULL; } int64_t ThreadsManager::nodes_searched() const { int64_t result = 0ULL; for (int i = 0; i < ActiveThreads; i++) result += threads[i].nodes; return result; } void ThreadsManager::get_beta_counters(Color us, int64_t& our, int64_t& their) const { our = their = 0UL; for (int i = 0; i < MAX_THREADS; i++) { our += threads[i].betaCutOffs[us]; their += threads[i].betaCutOffs[opposite_color(us)]; } } // idle_loop() is where the threads are parked when they have no work to do. // The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint // object for which the current thread is the master. void ThreadsManager::idle_loop(int threadID, SplitPoint* waitSp) { assert(threadID >= 0 && threadID < MAX_THREADS); while (true) { // Slave threads can exit as soon as AllThreadsShouldExit raises, // master should exit as last one. if (AllThreadsShouldExit && !waitSp) { threads[threadID].state = THREAD_TERMINATED; return; } // If we are not thinking, wait for a condition to be signaled // instead of wasting CPU time polling for work. while ( threadID != 0 && (AllThreadsShouldSleep || threadID >= ActiveThreads)) { threads[threadID].state = THREAD_SLEEPING; #if !defined(_MSC_VER) pthread_mutex_lock(&WaitLock); if (AllThreadsShouldSleep || threadID >= ActiveThreads) pthread_cond_wait(&WaitCond, &WaitLock); pthread_mutex_unlock(&WaitLock); #else WaitForSingleObject(SitIdleEvent[threadID], INFINITE); #endif } // If thread has just woken up, mark it as available if (threads[threadID].state == THREAD_SLEEPING) threads[threadID].state = THREAD_AVAILABLE; // If this thread has been assigned work, launch a search if (threads[threadID].state == THREAD_WORKISWAITING) { assert(!AllThreadsShouldExit); threads[threadID].state = THREAD_SEARCHING; if (threads[threadID].splitPoint->pvNode) sp_search_pv(threads[threadID].splitPoint, threadID); else sp_search(threads[threadID].splitPoint, threadID); assert(threads[threadID].state == THREAD_SEARCHING); threads[threadID].state = THREAD_AVAILABLE; } // If this thread is the master of a split point and all threads have // finished their work at this split point, return from the idle loop. if (waitSp != NULL && waitSp->cpus == 0) { assert(threads[threadID].state == THREAD_AVAILABLE); threads[threadID].state = THREAD_SEARCHING; return; } } } // init_threads() is called during startup. It launches all helper threads, // and initializes the split point stack and the global locks and condition // objects. void ThreadsManager::init_threads() { volatile int i; bool ok; #if !defined(_MSC_VER) pthread_t pthread[1]; #endif // Initialize global locks lock_init(&MPLock, NULL); lock_init(&IOLock, NULL); // Initialize SplitPointStack locks for (i = 0; i < MAX_THREADS; i++) for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++) { SplitPointStack[i][j].parent = NULL; lock_init(&(SplitPointStack[i][j].lock), NULL); } #if !defined(_MSC_VER) pthread_mutex_init(&WaitLock, NULL); pthread_cond_init(&WaitCond, NULL); #else for (i = 0; i < MAX_THREADS; i++) SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0); #endif // Will be set just before program exits to properly end the threads AllThreadsShouldExit = false; // Threads will be put to sleep as soon as created AllThreadsShouldSleep = true; // All threads except the main thread should be initialized to THREAD_AVAILABLE ActiveThreads = 1; threads[0].state = THREAD_SEARCHING; for (i = 1; i < MAX_THREADS; i++) threads[i].state = THREAD_AVAILABLE; // Launch the helper threads for (i = 1; i < MAX_THREADS; i++) { #if !defined(_MSC_VER) ok = (pthread_create(pthread, NULL, init_thread, (void*)(&i)) == 0); #else DWORD iID[1]; ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID) != NULL); #endif if (!ok) { cout << "Failed to create thread number " << i << endl; Application::exit_with_failure(); } // Wait until the thread has finished launching and is gone to sleep while (threads[i].state != THREAD_SLEEPING); } } // exit_threads() is called when the program exits. It makes all the // helper threads exit cleanly. void ThreadsManager::exit_threads() { ActiveThreads = MAX_THREADS; // HACK AllThreadsShouldSleep = true; // HACK wake_sleeping_threads(); // This makes the threads to exit idle_loop() AllThreadsShouldExit = true; // Wait for thread termination for (int i = 1; i < MAX_THREADS; i++) while (threads[i].state != THREAD_TERMINATED); // Now we can safely destroy the locks for (int i = 0; i < MAX_THREADS; i++) for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++) lock_destroy(&(SplitPointStack[i][j].lock)); } // thread_should_stop() checks whether the thread should stop its search. // This can happen if a beta cutoff has occurred in the thread's currently // active split point, or in some ancestor of the current split point. bool ThreadsManager::thread_should_stop(int threadID) const { assert(threadID >= 0 && threadID < ActiveThreads); SplitPoint* sp; for (sp = threads[threadID].splitPoint; sp && !sp->stopRequest; sp = sp->parent); return sp != NULL; } // thread_is_available() checks whether the thread with threadID "slave" is // available to help the thread with threadID "master" at a split point. An // obvious requirement is that "slave" must be idle. With more than two // threads, this is not by itself sufficient: If "slave" is the master of // some active split point, it is only available as a slave to the other // threads which are busy searching the split point at the top of "slave"'s // split point stack (the "helpful master concept" in YBWC terminology). bool ThreadsManager::thread_is_available(int slave, int master) const { assert(slave >= 0 && slave < ActiveThreads); assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); if (threads[slave].state != THREAD_AVAILABLE || slave == master) return false; // Make a local copy to be sure doesn't change under our feet int localActiveSplitPoints = threads[slave].activeSplitPoints; if (localActiveSplitPoints == 0) // No active split points means that the thread is available as // a slave for any other thread. return true; if (ActiveThreads == 2) return true; // Apply the "helpful master" concept if possible. Use localActiveSplitPoints // that is known to be > 0, instead of threads[slave].activeSplitPoints that // could have been set to 0 by another thread leading to an out of bound access. if (SplitPointStack[slave][localActiveSplitPoints - 1].slaves[master]) return true; return false; } // available_thread_exists() tries to find an idle thread which is available as // a slave for the thread with threadID "master". bool ThreadsManager::available_thread_exists(int master) const { assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); for (int i = 0; i < ActiveThreads; i++) if (thread_is_available(i, master)) return true; return false; } // split() does the actual work of distributing the work at a node between // several threads at PV nodes. If it does not succeed in splitting the // node (because no idle threads are available, or because we have no unused // split point objects), the function immediately returns false. If // splitting is possible, a SplitPoint object is initialized with all the // data that must be copied to the helper threads (the current position and // search stack, alpha, beta, the search depth, etc.), and we tell our // helper threads that they have been assigned work. This will cause them // to instantly leave their idle loops and call sp_search_pv(). When all // threads have returned from sp_search_pv (or, equivalently, when // splitPoint->cpus becomes 0), split() returns true. bool ThreadsManager::split(const Position& p, SearchStack* sstck, int ply, Value* alpha, const Value beta, Value* bestValue, const Value futilityValue, Depth depth, int* moves, MovePicker* mp, int master, bool pvNode) { assert(p.is_ok()); assert(sstck != NULL); assert(ply >= 0 && ply < PLY_MAX); assert(*bestValue >= -VALUE_INFINITE && *bestValue <= *alpha); assert(!pvNode || *alpha < beta); assert(beta <= VALUE_INFINITE); assert(depth > Depth(0)); assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); SplitPoint* splitPoint; lock_grab(&MPLock); // If no other thread is available to help us, or if we have too many // active split points, don't split. if ( !available_thread_exists(master) || threads[master].activeSplitPoints >= ACTIVE_SPLIT_POINTS_MAX) { lock_release(&MPLock); return false; } // Pick the next available split point object from the split point stack splitPoint = &SplitPointStack[master][threads[master].activeSplitPoints]; // Initialize the split point object splitPoint->parent = threads[master].splitPoint; splitPoint->stopRequest = false; splitPoint->ply = ply; splitPoint->depth = depth; splitPoint->alpha = pvNode ? *alpha : beta - 1; splitPoint->beta = beta; splitPoint->pvNode = pvNode; splitPoint->bestValue = *bestValue; splitPoint->futilityValue = futilityValue; splitPoint->master = master; splitPoint->mp = mp; splitPoint->moves = *moves; splitPoint->cpus = 1; splitPoint->pos = &p; splitPoint->parentSstack = sstck; for (int i = 0; i < ActiveThreads; i++) splitPoint->slaves[i] = 0; threads[master].splitPoint = splitPoint; threads[master].activeSplitPoints++; // If we are here it means we are not available assert(threads[master].state != THREAD_AVAILABLE); // Allocate available threads setting state to THREAD_BOOKED for (int i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++) if (thread_is_available(i, master)) { threads[i].state = THREAD_BOOKED; threads[i].splitPoint = splitPoint; splitPoint->slaves[i] = 1; splitPoint->cpus++; } assert(splitPoint->cpus > 1); // We can release the lock because slave threads are already booked and master is not available lock_release(&MPLock); // Tell the threads that they have work to do. This will make them leave // their idle loop. But before copy search stack tail for each thread. for (int i = 0; i < ActiveThreads; i++) if (i == master || splitPoint->slaves[i]) { memcpy(splitPoint->sstack[i] + ply - 1, sstck + ply - 1, 4 * sizeof(SearchStack)); assert(i == master || threads[i].state == THREAD_BOOKED); threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop() } // Everything is set up. The master thread enters the idle loop, from // which it will instantly launch a search, because its state is // THREAD_WORKISWAITING. We send the split point as a second parameter to the // idle loop, which means that the main thread will return from the idle // loop when all threads have finished their work at this split point // (i.e. when splitPoint->cpus == 0). idle_loop(master, splitPoint); // We have returned from the idle loop, which means that all threads are // finished. Update alpha, beta and bestValue, and return. lock_grab(&MPLock); if (pvNode) *alpha = splitPoint->alpha; *bestValue = splitPoint->bestValue; threads[master].activeSplitPoints--; threads[master].splitPoint = splitPoint->parent; lock_release(&MPLock); return true; } // wake_sleeping_threads() wakes up all sleeping threads when it is time // to start a new search from the root. void ThreadsManager::wake_sleeping_threads() { assert(AllThreadsShouldSleep); assert(ActiveThreads > 0); AllThreadsShouldSleep = false; if (ActiveThreads == 1) return; for (int i = 1; i < ActiveThreads; i++) assert(threads[i].state == THREAD_SLEEPING); #if !defined(_MSC_VER) pthread_mutex_lock(&WaitLock); pthread_cond_broadcast(&WaitCond); pthread_mutex_unlock(&WaitLock); #else for (int i = 1; i < MAX_THREADS; i++) SetEvent(SitIdleEvent[i]); #endif } // put_threads_to_sleep() makes all the threads go to sleep just before // to leave think(), at the end of the search. Threads should have already // finished the job and should be idle. void ThreadsManager::put_threads_to_sleep() { assert(!AllThreadsShouldSleep); // This makes the threads to go to sleep AllThreadsShouldSleep = true; // Wait for the threads to be all sleeping and reset flags // to a known state. for (int i = 1; i < ActiveThreads; i++) { while (threads[i].state != THREAD_SLEEPING); // This flag can be in a random state threads[i].printCurrentLineRequest = false; } } // print_current_line() prints _once_ the current line of search for a // given thread and then setup the print request for the next thread. // Called when the UCI option UCI_ShowCurrLine is 'true'. void ThreadsManager::print_current_line(SearchStack ss[], int ply, int threadID) { assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); if (!threads[threadID].printCurrentLineRequest) return; // One shot only threads[threadID].printCurrentLineRequest = false; if (threads[threadID].state == THREAD_SEARCHING) { lock_grab(&IOLock); cout << "info currline " << (threadID + 1); for (int p = 0; p < ply; p++) cout << " " << ss[p].currentMove; cout << endl; lock_release(&IOLock); } // Setup print request for the next thread ID if (threadID + 1 < ActiveThreads) threads[threadID + 1].printCurrentLineRequest = true; } /// The RootMoveList class // RootMoveList c'tor RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) { SearchStack ss[PLY_MAX_PLUS_2]; MoveStack mlist[MaxRootMoves]; StateInfo st; bool includeAllMoves = (searchMoves[0] == MOVE_NONE); // Generate all legal moves MoveStack* last = generate_moves(pos, mlist); // Add each move to the moves[] array for (MoveStack* cur = mlist; cur != last; cur++) { bool includeMove = includeAllMoves; for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++) includeMove = (searchMoves[k] == cur->move); if (!includeMove) continue; // Find a quick score for the move init_ss_array(ss); pos.do_move(cur->move, st); moves[count].move = cur->move; moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0); moves[count].pv[0] = cur->move; moves[count].pv[1] = MOVE_NONE; pos.undo_move(cur->move); count++; } sort(); } // RootMoveList simple methods definitions void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) { moves[moveNum].nodes = nodes; moves[moveNum].cumulativeNodes += nodes; } void RootMoveList::set_beta_counters(int moveNum, int64_t our, int64_t their) { moves[moveNum].ourBeta = our; moves[moveNum].theirBeta = their; } void RootMoveList::set_move_pv(int moveNum, const Move pv[]) { int j; for (j = 0; pv[j] != MOVE_NONE; j++) moves[moveNum].pv[j] = pv[j]; moves[moveNum].pv[j] = MOVE_NONE; } // RootMoveList::sort() sorts the root move list at the beginning of a new // iteration. void RootMoveList::sort() { sort_multipv(count - 1); // Sort all items } // RootMoveList::sort_multipv() sorts the first few moves in the root move // list by their scores and depths. It is used to order the different PVs // correctly in MultiPV mode. void RootMoveList::sort_multipv(int n) { int i,j; for (i = 1; i <= n; i++) { RootMove rm = moves[i]; for (j = i; j > 0 && moves[j - 1] < rm; j--) moves[j] = moves[j - 1]; moves[j] = rm; } } } // namspace