/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2009 Marco Costalba Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //// //// Includes //// #include #include #include #include #include "bitcount.h" #include "mersenne.h" #include "movegen.h" #include "movepick.h" #include "position.h" #include "psqtab.h" #include "san.h" #include "tt.h" #include "ucioption.h" using std::string; //// //// Variables //// int Position::castleRightsMask[64]; Key Position::zobrist[2][8][64]; Key Position::zobEp[64]; Key Position::zobCastle[16]; Key Position::zobMaterial[2][8][16]; Key Position::zobSideToMove; Score Position::PieceSquareTable[16][64]; static bool RequestPending = false; //// //// Functions //// /// Constructors Position::Position(const Position& pos) { copy(pos); } Position::Position(const string& fen) { from_fen(fen); } /// Position::from_fen() initializes the position object with the given FEN /// string. This function is not very robust - make sure that input FENs are /// correct (this is assumed to be the responsibility of the GUI). void Position::from_fen(const string& fen) { static const string pieceLetters = "KQRBNPkqrbnp"; static const Piece pieces[] = { WK, WQ, WR, WB, WN, WP, BK, BQ, BR, BB, BN, BP }; clear(); // Board Rank rank = RANK_8; File file = FILE_A; size_t i = 0; for ( ; fen[i] != ' '; i++) { if (isdigit(fen[i])) { // Skip the given number of files file += (fen[i] - '1' + 1); continue; } else if (fen[i] == '/') { file = FILE_A; rank--; continue; } size_t idx = pieceLetters.find(fen[i]); if (idx == string::npos) { std::cout << "Error in FEN at character " << i << std::endl; return; } Square square = make_square(file, rank); put_piece(pieces[idx], square); file++; } // Side to move i++; if (fen[i] != 'w' && fen[i] != 'b') { std::cout << "Error in FEN at character " << i << std::endl; return; } sideToMove = (fen[i] == 'w' ? WHITE : BLACK); // Castling rights i++; if (fen[i] != ' ') { std::cout << "Error in FEN at character " << i << std::endl; return; } i++; while(strchr("KQkqabcdefghABCDEFGH-", fen[i])) { if (fen[i] == '-') { i++; break; } else if(fen[i] == 'K') allow_oo(WHITE); else if(fen[i] == 'Q') allow_ooo(WHITE); else if(fen[i] == 'k') allow_oo(BLACK); else if(fen[i] == 'q') allow_ooo(BLACK); else if(fen[i] >= 'A' && fen[i] <= 'H') { File rookFile, kingFile = FILE_NONE; for(Square square = SQ_B1; square <= SQ_G1; square++) if(piece_on(square) == WK) kingFile = square_file(square); if(kingFile == FILE_NONE) { std::cout << "Error in FEN at character " << i << std::endl; return; } initialKFile = kingFile; rookFile = File(fen[i] - 'A') + FILE_A; if(rookFile < initialKFile) { allow_ooo(WHITE); initialQRFile = rookFile; } else { allow_oo(WHITE); initialKRFile = rookFile; } } else if(fen[i] >= 'a' && fen[i] <= 'h') { File rookFile, kingFile = FILE_NONE; for(Square square = SQ_B8; square <= SQ_G8; square++) if(piece_on(square) == BK) kingFile = square_file(square); if(kingFile == FILE_NONE) { std::cout << "Error in FEN at character " << i << std::endl; return; } initialKFile = kingFile; rookFile = File(fen[i] - 'a') + FILE_A; if(rookFile < initialKFile) { allow_ooo(BLACK); initialQRFile = rookFile; } else { allow_oo(BLACK); initialKRFile = rookFile; } } else { std::cout << "Error in FEN at character " << i << std::endl; return; } i++; } // Skip blanks while (fen[i] == ' ') i++; // En passant square if ( i <= fen.length() - 2 && (fen[i] >= 'a' && fen[i] <= 'h') && (fen[i+1] == '3' || fen[i+1] == '6')) st->epSquare = square_from_string(fen.substr(i, 2)); // Various initialisation for (Square sq = SQ_A1; sq <= SQ_H8; sq++) castleRightsMask[sq] = ALL_CASTLES; castleRightsMask[make_square(initialKFile, RANK_1)] ^= (WHITE_OO|WHITE_OOO); castleRightsMask[make_square(initialKFile, RANK_8)] ^= (BLACK_OO|BLACK_OOO); castleRightsMask[make_square(initialKRFile, RANK_1)] ^= WHITE_OO; castleRightsMask[make_square(initialKRFile, RANK_8)] ^= BLACK_OO; castleRightsMask[make_square(initialQRFile, RANK_1)] ^= WHITE_OOO; castleRightsMask[make_square(initialQRFile, RANK_8)] ^= BLACK_OOO; find_checkers(); st->key = compute_key(); st->pawnKey = compute_pawn_key(); st->materialKey = compute_material_key(); st->value = compute_value(); st->npMaterial[WHITE] = compute_non_pawn_material(WHITE); st->npMaterial[BLACK] = compute_non_pawn_material(BLACK); } /// Position::to_fen() converts the position object to a FEN string. This is /// probably only useful for debugging. const string Position::to_fen() const { static const string pieceLetters = " PNBRQK pnbrqk"; string fen; int skip; for (Rank rank = RANK_8; rank >= RANK_1; rank--) { skip = 0; for (File file = FILE_A; file <= FILE_H; file++) { Square sq = make_square(file, rank); if (!square_is_occupied(sq)) { skip++; continue; } if (skip > 0) { fen += (char)skip + '0'; skip = 0; } fen += pieceLetters[piece_on(sq)]; } if (skip > 0) fen += (char)skip + '0'; fen += (rank > RANK_1 ? '/' : ' '); } fen += (sideToMove == WHITE ? "w " : "b "); if (st->castleRights != NO_CASTLES) { if (can_castle_kingside(WHITE)) fen += 'K'; if (can_castle_queenside(WHITE)) fen += 'Q'; if (can_castle_kingside(BLACK)) fen += 'k'; if (can_castle_queenside(BLACK)) fen += 'q'; } else fen += '-'; fen += ' '; if (ep_square() != SQ_NONE) fen += square_to_string(ep_square()); else fen += '-'; return fen; } /// Position::print() prints an ASCII representation of the position to /// the standard output. If a move is given then also the san is print. void Position::print(Move m) const { static const string pieceLetters = " PNBRQK PNBRQK ."; // Check for reentrancy, as example when called from inside // MovePicker that is used also here in move_to_san() if (RequestPending) return; RequestPending = true; std::cout << std::endl; if (m != MOVE_NONE) { string col = (color_of_piece_on(move_from(m)) == BLACK ? ".." : ""); std::cout << "Move is: " << col << move_to_san(*this, m) << std::endl; } for (Rank rank = RANK_8; rank >= RANK_1; rank--) { std::cout << "+---+---+---+---+---+---+---+---+" << std::endl; for (File file = FILE_A; file <= FILE_H; file++) { Square sq = make_square(file, rank); Piece piece = piece_on(sq); if (piece == EMPTY && square_color(sq) == WHITE) piece = NO_PIECE; char col = (color_of_piece_on(sq) == BLACK ? '=' : ' '); std::cout << '|' << col << pieceLetters[piece] << col; } std::cout << '|' << std::endl; } std::cout << "+---+---+---+---+---+---+---+---+" << std::endl << "Fen is: " << to_fen() << std::endl << "Key is: " << st->key << std::endl; RequestPending = false; } /// Position::copy() creates a copy of the input position. void Position::copy(const Position& pos) { memcpy(this, &pos, sizeof(Position)); saveState(); // detach and copy state info } /// Position:hidden_checkers<>() returns a bitboard of all pinned (against the /// king) pieces for the given color and for the given pinner type. Or, when /// template parameter FindPinned is false, the pieces of the given color /// candidate for a discovery check against the enemy king. /// Note that checkersBB bitboard must be already updated. template Bitboard Position::hidden_checkers(Color c) const { Bitboard pinners, result = EmptyBoardBB; // Pinned pieces protect our king, dicovery checks attack // the enemy king. Square ksq = king_square(FindPinned ? c : opposite_color(c)); // Pinners are sliders, not checkers, that give check when // candidate pinned is removed. pinners = (pieces(ROOK, QUEEN, FindPinned ? opposite_color(c) : c) & RookPseudoAttacks[ksq]) | (pieces(BISHOP, QUEEN, FindPinned ? opposite_color(c) : c) & BishopPseudoAttacks[ksq]); if (FindPinned && pinners) pinners &= ~st->checkersBB; while (pinners) { Square s = pop_1st_bit(&pinners); Bitboard b = squares_between(s, ksq) & occupied_squares(); assert(b); if ( !(b & (b - 1)) // Only one bit set? && (b & pieces_of_color(c))) // Is an our piece? result |= b; } return result; } /// Position:pinned_pieces() returns a bitboard of all pinned (against the /// king) pieces for the given color. Bitboard Position::pinned_pieces(Color c) const { return hidden_checkers(c); } /// Position:discovered_check_candidates() returns a bitboard containing all /// pieces for the given side which are candidates for giving a discovered /// check. Bitboard Position::discovered_check_candidates(Color c) const { return hidden_checkers(c); } /// Position::attackers_to() computes a bitboard containing all pieces which /// attacks a given square. Bitboard Position::attackers_to(Square s) const { return (attacks_from(s, BLACK) & pieces(PAWN, WHITE)) | (attacks_from(s, WHITE) & pieces(PAWN, BLACK)) | (attacks_from(s) & pieces(KNIGHT)) | (attacks_from(s) & pieces(ROOK, QUEEN)) | (attacks_from(s) & pieces(BISHOP, QUEEN)) | (attacks_from(s) & pieces(KING)); } /// Position::attacks_from() computes a bitboard of all attacks /// of a given piece put in a given square. Bitboard Position::attacks_from(Piece p, Square s) const { assert(square_is_ok(s)); switch (p) { case WP: return attacks_from(s, WHITE); case BP: return attacks_from(s, BLACK); case WN: case BN: return attacks_from(s); case WB: case BB: return attacks_from(s); case WR: case BR: return attacks_from(s); case WQ: case BQ: return attacks_from(s); case WK: case BK: return attacks_from(s); default: break; } return false; } /// Position::move_attacks_square() tests whether a move from the current /// position attacks a given square. bool Position::move_attacks_square(Move m, Square s) const { assert(move_is_ok(m)); assert(square_is_ok(s)); Square f = move_from(m), t = move_to(m); assert(square_is_occupied(f)); if (bit_is_set(attacks_from(piece_on(f), t), s)) return true; // Move the piece and scan for X-ray attacks behind it Bitboard occ = occupied_squares(); Color us = color_of_piece_on(f); clear_bit(&occ, f); set_bit(&occ, t); Bitboard xray = ( (rook_attacks_bb(s, occ) & pieces(ROOK, QUEEN)) |(bishop_attacks_bb(s, occ) & pieces(BISHOP, QUEEN))) & pieces_of_color(us); // If we have attacks we need to verify that are caused by our move // and are not already existent ones. return xray && (xray ^ (xray & attacks_from(s))); } /// Position::find_checkers() computes the checkersBB bitboard, which /// contains a nonzero bit for each checking piece (0, 1 or 2). It /// currently works by calling Position::attackers_to, which is probably /// inefficient. Consider rewriting this function to use the last move /// played, like in non-bitboard versions of Glaurung. void Position::find_checkers() { Color us = side_to_move(); st->checkersBB = attackers_to(king_square(us)) & pieces_of_color(opposite_color(us)); } /// Position::pl_move_is_legal() tests whether a pseudo-legal move is legal bool Position::pl_move_is_legal(Move m, Bitboard pinned) const { assert(is_ok()); assert(move_is_ok(m)); assert(pinned == pinned_pieces(side_to_move())); // Castling moves are checked for legality during move generation. if (move_is_castle(m)) return true; Color us = side_to_move(); Square from = move_from(m); assert(color_of_piece_on(from) == us); assert(piece_on(king_square(us)) == piece_of_color_and_type(us, KING)); // En passant captures are a tricky special case. Because they are // rather uncommon, we do it simply by testing whether the king is attacked // after the move is made if (move_is_ep(m)) { Color them = opposite_color(us); Square to = move_to(m); Square capsq = make_square(square_file(to), square_rank(from)); Bitboard b = occupied_squares(); Square ksq = king_square(us); assert(to == ep_square()); assert(piece_on(from) == piece_of_color_and_type(us, PAWN)); assert(piece_on(capsq) == piece_of_color_and_type(them, PAWN)); assert(piece_on(to) == EMPTY); clear_bit(&b, from); clear_bit(&b, capsq); set_bit(&b, to); return !(rook_attacks_bb(ksq, b) & pieces(ROOK, QUEEN, them)) && !(bishop_attacks_bb(ksq, b) & pieces(BISHOP, QUEEN, them)); } // If the moving piece is a king, check whether the destination // square is attacked by the opponent. if (type_of_piece_on(from) == KING) return !(attackers_to(move_to(m)) & pieces_of_color(opposite_color(us))); // A non-king move is legal if and only if it is not pinned or it // is moving along the ray towards or away from the king. return ( !pinned || !bit_is_set(pinned, from) || (direction_between_squares(from, king_square(us)) == direction_between_squares(move_to(m), king_square(us)))); } /// Position::pl_move_is_evasion() tests whether a pseudo-legal move is a legal evasion bool Position::pl_move_is_evasion(Move m, Bitboard pinned) const { assert(is_check()); Color us = side_to_move(); Square from = move_from(m); Square to = move_to(m); // King moves and en-passant captures are verified in pl_move_is_legal() if (type_of_piece_on(from) == KING || move_is_ep(m)) return pl_move_is_legal(m, pinned); Bitboard target = checkers(); Square checksq = pop_1st_bit(&target); if (target) // double check ? return false; // Our move must be a blocking evasion or a capture of the checking piece target = squares_between(checksq, king_square(us)) | checkers(); return bit_is_set(target, to) && pl_move_is_legal(m, pinned); } /// Position::move_is_check() tests whether a pseudo-legal move is a check bool Position::move_is_check(Move m) const { Bitboard dc = discovered_check_candidates(side_to_move()); return move_is_check(m, dc); } bool Position::move_is_check(Move m, Bitboard dcCandidates) const { assert(is_ok()); assert(move_is_ok(m)); assert(dcCandidates == discovered_check_candidates(side_to_move())); Color us = side_to_move(); Color them = opposite_color(us); Square from = move_from(m); Square to = move_to(m); Square ksq = king_square(them); assert(color_of_piece_on(from) == us); assert(piece_on(ksq) == piece_of_color_and_type(them, KING)); // Proceed according to the type of the moving piece switch (type_of_piece_on(from)) { case PAWN: if (bit_is_set(attacks_from(ksq, them), to)) // Normal check? return true; if ( dcCandidates // Discovered check? && bit_is_set(dcCandidates, from) && (direction_between_squares(from, ksq) != direction_between_squares(to, ksq))) return true; if (move_is_promotion(m)) // Promotion with check? { Bitboard b = occupied_squares(); clear_bit(&b, from); switch (move_promotion_piece(m)) { case KNIGHT: return bit_is_set(attacks_from(to), ksq); case BISHOP: return bit_is_set(bishop_attacks_bb(to, b), ksq); case ROOK: return bit_is_set(rook_attacks_bb(to, b), ksq); case QUEEN: return bit_is_set(queen_attacks_bb(to, b), ksq); default: assert(false); } } // En passant capture with check? We have already handled the case // of direct checks and ordinary discovered check, the only case we // need to handle is the unusual case of a discovered check through the // captured pawn. else if (move_is_ep(m)) { Square capsq = make_square(square_file(to), square_rank(from)); Bitboard b = occupied_squares(); clear_bit(&b, from); clear_bit(&b, capsq); set_bit(&b, to); return (rook_attacks_bb(ksq, b) & pieces(ROOK, QUEEN, us)) ||(bishop_attacks_bb(ksq, b) & pieces(BISHOP, QUEEN, us)); } return false; // Test discovered check and normal check according to piece type case KNIGHT: return (dcCandidates && bit_is_set(dcCandidates, from)) || bit_is_set(attacks_from(ksq), to); case BISHOP: return (dcCandidates && bit_is_set(dcCandidates, from)) || (direction_is_diagonal(ksq, to) && bit_is_set(attacks_from(ksq), to)); case ROOK: return (dcCandidates && bit_is_set(dcCandidates, from)) || (direction_is_straight(ksq, to) && bit_is_set(attacks_from(ksq), to)); case QUEEN: // Discovered checks are impossible! assert(!bit_is_set(dcCandidates, from)); return ( (direction_is_straight(ksq, to) && bit_is_set(attacks_from(ksq), to)) || (direction_is_diagonal(ksq, to) && bit_is_set(attacks_from(ksq), to))); case KING: // Discovered check? if ( bit_is_set(dcCandidates, from) && (direction_between_squares(from, ksq) != direction_between_squares(to, ksq))) return true; // Castling with check? if (move_is_castle(m)) { Square kfrom, kto, rfrom, rto; Bitboard b = occupied_squares(); kfrom = from; rfrom = to; if (rfrom > kfrom) { kto = relative_square(us, SQ_G1); rto = relative_square(us, SQ_F1); } else { kto = relative_square(us, SQ_C1); rto = relative_square(us, SQ_D1); } clear_bit(&b, kfrom); clear_bit(&b, rfrom); set_bit(&b, rto); set_bit(&b, kto); return bit_is_set(rook_attacks_bb(rto, b), ksq); } return false; default: // NO_PIECE_TYPE break; } assert(false); return false; } /// Position::update_checkers() udpates chekers info given the move. It is called /// in do_move() and is faster then find_checkers(). template inline void Position::update_checkers(Bitboard* pCheckersBB, Square ksq, Square from, Square to, Bitboard dcCandidates) { const bool Bishop = (Piece == QUEEN || Piece == BISHOP); const bool Rook = (Piece == QUEEN || Piece == ROOK); const bool Slider = Bishop || Rook; // Direct checks if ( ( (Bishop && bit_is_set(BishopPseudoAttacks[ksq], to)) || (Rook && bit_is_set(RookPseudoAttacks[ksq], to))) && bit_is_set(attacks_from(ksq), to)) // slow, try to early skip set_bit(pCheckersBB, to); else if ( Piece != KING && !Slider && bit_is_set(Piece == PAWN ? attacks_from(ksq, opposite_color(sideToMove)) : attacks_from(ksq), to)) set_bit(pCheckersBB, to); // Discovery checks if (Piece != QUEEN && bit_is_set(dcCandidates, from)) { if (Piece != ROOK) (*pCheckersBB) |= (attacks_from(ksq) & pieces(ROOK, QUEEN, side_to_move())); if (Piece != BISHOP) (*pCheckersBB) |= (attacks_from(ksq) & pieces(BISHOP, QUEEN, side_to_move())); } } /// Position::do_move() makes a move, and saves all information necessary /// to a StateInfo object. The move is assumed to be legal. /// Pseudo-legal moves should be filtered out before this function is called. void Position::do_move(Move m, StateInfo& newSt) { do_move(m, newSt, discovered_check_candidates(side_to_move())); } void Position::do_move(Move m, StateInfo& newSt, Bitboard dcCandidates) { assert(is_ok()); assert(move_is_ok(m)); Bitboard key = st->key; // Copy some fields of old state to our new StateInfo object except the // ones which are recalculated from scratch anyway, then switch our state // pointer to point to the new, ready to be updated, state. struct ReducedStateInfo { Key key, pawnKey, materialKey; int castleRights, rule50, pliesFromNull; Square epSquare; Value value; Value npMaterial[2]; }; memcpy(&newSt, st, sizeof(ReducedStateInfo)); newSt.previous = st; st = &newSt; // Save the current key to the history[] array, in order to be able to // detect repetition draws. history[gamePly] = key; gamePly++; // Update side to move key ^= zobSideToMove; // Increment the 50 moves rule draw counter. Resetting it to zero in the // case of non-reversible moves is taken care of later. st->rule50++; st->pliesFromNull++; if (move_is_castle(m)) { st->key = key; do_castle_move(m); return; } Color us = side_to_move(); Color them = opposite_color(us); Square from = move_from(m); Square to = move_to(m); bool ep = move_is_ep(m); bool pm = move_is_promotion(m); Piece piece = piece_on(from); PieceType pt = type_of_piece(piece); assert(color_of_piece_on(from) == us); assert(color_of_piece_on(to) == them || square_is_empty(to)); assert(!(ep || pm) || piece == piece_of_color_and_type(us, PAWN)); assert(!pm || relative_rank(us, to) == RANK_8); st->capture = ep ? PAWN : type_of_piece_on(to); if (st->capture) do_capture_move(key, st->capture, them, to, ep); // Update hash key key ^= zobrist[us][pt][from] ^ zobrist[us][pt][to]; // Reset en passant square if (st->epSquare != SQ_NONE) { key ^= zobEp[st->epSquare]; st->epSquare = SQ_NONE; } // Update castle rights, try to shortcut a common case int cm = castleRightsMask[from] & castleRightsMask[to]; if (cm != ALL_CASTLES && ((cm & st->castleRights) != st->castleRights)) { key ^= zobCastle[st->castleRights]; st->castleRights &= castleRightsMask[from]; st->castleRights &= castleRightsMask[to]; key ^= zobCastle[st->castleRights]; } // Prefetch TT access as soon as we know key is updated TT.prefetch(key); // Move the piece Bitboard move_bb = make_move_bb(from, to); do_move_bb(&(byColorBB[us]), move_bb); do_move_bb(&(byTypeBB[pt]), move_bb); do_move_bb(&(byTypeBB[0]), move_bb); // HACK: byTypeBB[0] == occupied squares board[to] = board[from]; board[from] = EMPTY; // Update piece lists, note that index[from] is not updated and // becomes stale. This works as long as index[] is accessed just // by known occupied squares. index[to] = index[from]; pieceList[us][pt][index[to]] = to; // If the moving piece was a pawn do some special extra work if (pt == PAWN) { // Reset rule 50 draw counter st->rule50 = 0; // Update pawn hash key st->pawnKey ^= zobrist[us][PAWN][from] ^ zobrist[us][PAWN][to]; // Set en passant square, only if moved pawn can be captured if (abs(int(to) - int(from)) == 16) { if (attacks_from(from + (us == WHITE ? DELTA_N : DELTA_S), us) & pieces(PAWN, them)) { st->epSquare = Square((int(from) + int(to)) / 2); key ^= zobEp[st->epSquare]; } } } // Update incremental scores st->value += pst_delta(piece, from, to); if (pm) // promotion ? { PieceType promotion = move_promotion_piece(m); assert(promotion >= KNIGHT && promotion <= QUEEN); // Insert promoted piece instead of pawn clear_bit(&(byTypeBB[PAWN]), to); set_bit(&(byTypeBB[promotion]), to); board[to] = piece_of_color_and_type(us, promotion); // Update material key st->materialKey ^= zobMaterial[us][PAWN][pieceCount[us][PAWN]]; st->materialKey ^= zobMaterial[us][promotion][pieceCount[us][promotion]+1]; // Update piece counts pieceCount[us][PAWN]--; pieceCount[us][promotion]++; // Update piece lists, move the last pawn at index[to] position // and shrink the list. Add a new promotion piece to the list. Square lastPawnSquare = pieceList[us][PAWN][pieceCount[us][PAWN]]; index[lastPawnSquare] = index[to]; pieceList[us][PAWN][index[lastPawnSquare]] = lastPawnSquare; pieceList[us][PAWN][pieceCount[us][PAWN]] = SQ_NONE; index[to] = pieceCount[us][promotion] - 1; pieceList[us][promotion][index[to]] = to; // Partially revert hash keys update key ^= zobrist[us][PAWN][to] ^ zobrist[us][promotion][to]; st->pawnKey ^= zobrist[us][PAWN][to]; // Partially revert and update incremental scores st->value -= pst(us, PAWN, to); st->value += pst(us, promotion, to); // Update material st->npMaterial[us] += piece_value_midgame(promotion); } // Update the key with the final value st->key = key; // Update checkers bitboard, piece must be already moved if (ep | pm) st->checkersBB = attackers_to(king_square(them)) & pieces_of_color(us); else { st->checkersBB = EmptyBoardBB; Square ksq = king_square(them); switch (pt) { case PAWN: update_checkers(&(st->checkersBB), ksq, from, to, dcCandidates); break; case KNIGHT: update_checkers(&(st->checkersBB), ksq, from, to, dcCandidates); break; case BISHOP: update_checkers(&(st->checkersBB), ksq, from, to, dcCandidates); break; case ROOK: update_checkers(&(st->checkersBB), ksq, from, to, dcCandidates); break; case QUEEN: update_checkers(&(st->checkersBB), ksq, from, to, dcCandidates); break; case KING: update_checkers(&(st->checkersBB), ksq, from, to, dcCandidates); break; default: assert(false); break; } } // Finish sideToMove = opposite_color(sideToMove); st->value += (sideToMove == WHITE ? TempoValue : -TempoValue); assert(is_ok()); } /// Position::do_capture_move() is a private method used to update captured /// piece info. It is called from the main Position::do_move function. void Position::do_capture_move(Bitboard& key, PieceType capture, Color them, Square to, bool ep) { assert(capture != KING); Square capsq = to; if (ep) // en passant ? { capsq = (them == BLACK)? (to - DELTA_N) : (to - DELTA_S); assert(to == st->epSquare); assert(relative_rank(opposite_color(them), to) == RANK_6); assert(piece_on(to) == EMPTY); assert(piece_on(capsq) == piece_of_color_and_type(them, PAWN)); board[capsq] = EMPTY; } // Remove captured piece clear_bit(&(byColorBB[them]), capsq); clear_bit(&(byTypeBB[capture]), capsq); clear_bit(&(byTypeBB[0]), capsq); // Update hash key key ^= zobrist[them][capture][capsq]; // Update incremental scores st->value -= pst(them, capture, capsq); // If the captured piece was a pawn, update pawn hash key, // otherwise update non-pawn material. if (capture == PAWN) st->pawnKey ^= zobrist[them][PAWN][capsq]; else st->npMaterial[them] -= piece_value_midgame(capture); // Update material hash key st->materialKey ^= zobMaterial[them][capture][pieceCount[them][capture]]; // Update piece count pieceCount[them][capture]--; // Update piece list, move the last piece at index[capsq] position // // WARNING: This is a not perfectly revresible operation. When we // will reinsert the captured piece in undo_move() we will put it // at the end of the list and not in its original place, it means // index[] and pieceList[] are not guaranteed to be invariant to a // do_move() + undo_move() sequence. Square lastPieceSquare = pieceList[them][capture][pieceCount[them][capture]]; index[lastPieceSquare] = index[capsq]; pieceList[them][capture][index[lastPieceSquare]] = lastPieceSquare; pieceList[them][capture][pieceCount[them][capture]] = SQ_NONE; // Reset rule 50 counter st->rule50 = 0; } /// Position::do_castle_move() is a private method used to make a castling /// move. It is called from the main Position::do_move function. Note that /// castling moves are encoded as "king captures friendly rook" moves, for /// instance white short castling in a non-Chess960 game is encoded as e1h1. void Position::do_castle_move(Move m) { assert(move_is_ok(m)); assert(move_is_castle(m)); Color us = side_to_move(); Color them = opposite_color(us); // Reset capture field st->capture = NO_PIECE_TYPE; // Find source squares for king and rook Square kfrom = move_from(m); Square rfrom = move_to(m); // HACK: See comment at beginning of function Square kto, rto; assert(piece_on(kfrom) == piece_of_color_and_type(us, KING)); assert(piece_on(rfrom) == piece_of_color_and_type(us, ROOK)); // Find destination squares for king and rook if (rfrom > kfrom) // O-O { kto = relative_square(us, SQ_G1); rto = relative_square(us, SQ_F1); } else { // O-O-O kto = relative_square(us, SQ_C1); rto = relative_square(us, SQ_D1); } // Remove pieces from source squares: clear_bit(&(byColorBB[us]), kfrom); clear_bit(&(byTypeBB[KING]), kfrom); clear_bit(&(byTypeBB[0]), kfrom); // HACK: byTypeBB[0] == occupied squares clear_bit(&(byColorBB[us]), rfrom); clear_bit(&(byTypeBB[ROOK]), rfrom); clear_bit(&(byTypeBB[0]), rfrom); // HACK: byTypeBB[0] == occupied squares // Put pieces on destination squares: set_bit(&(byColorBB[us]), kto); set_bit(&(byTypeBB[KING]), kto); set_bit(&(byTypeBB[0]), kto); // HACK: byTypeBB[0] == occupied squares set_bit(&(byColorBB[us]), rto); set_bit(&(byTypeBB[ROOK]), rto); set_bit(&(byTypeBB[0]), rto); // HACK: byTypeBB[0] == occupied squares // Update board array Piece king = piece_of_color_and_type(us, KING); Piece rook = piece_of_color_and_type(us, ROOK); board[kfrom] = board[rfrom] = EMPTY; board[kto] = king; board[rto] = rook; // Update piece lists pieceList[us][KING][index[kfrom]] = kto; pieceList[us][ROOK][index[rfrom]] = rto; int tmp = index[rfrom]; // In Chess960 could be rto == kfrom index[kto] = index[kfrom]; index[rto] = tmp; // Update incremental scores st->value += pst_delta(king, kfrom, kto); st->value += pst_delta(rook, rfrom, rto); // Update hash key st->key ^= zobrist[us][KING][kfrom] ^ zobrist[us][KING][kto]; st->key ^= zobrist[us][ROOK][rfrom] ^ zobrist[us][ROOK][rto]; // Clear en passant square if (st->epSquare != SQ_NONE) { st->key ^= zobEp[st->epSquare]; st->epSquare = SQ_NONE; } // Update castling rights st->key ^= zobCastle[st->castleRights]; st->castleRights &= castleRightsMask[kfrom]; st->key ^= zobCastle[st->castleRights]; // Reset rule 50 counter st->rule50 = 0; // Update checkers BB st->checkersBB = attackers_to(king_square(them)) & pieces_of_color(us); // Finish sideToMove = opposite_color(sideToMove); st->value += (sideToMove == WHITE ? TempoValue : -TempoValue); assert(is_ok()); } /// Position::undo_move() unmakes a move. When it returns, the position should /// be restored to exactly the same state as before the move was made. void Position::undo_move(Move m) { assert(is_ok()); assert(move_is_ok(m)); gamePly--; sideToMove = opposite_color(sideToMove); if (move_is_castle(m)) { undo_castle_move(m); return; } Color us = side_to_move(); Color them = opposite_color(us); Square from = move_from(m); Square to = move_to(m); bool ep = move_is_ep(m); bool pm = move_is_promotion(m); PieceType pt = type_of_piece_on(to); assert(square_is_empty(from)); assert(color_of_piece_on(to) == us); assert(!pm || relative_rank(us, to) == RANK_8); assert(!ep || to == st->previous->epSquare); assert(!ep || relative_rank(us, to) == RANK_6); assert(!ep || piece_on(to) == piece_of_color_and_type(us, PAWN)); if (pm) // promotion ? { PieceType promotion = move_promotion_piece(m); pt = PAWN; assert(promotion >= KNIGHT && promotion <= QUEEN); assert(piece_on(to) == piece_of_color_and_type(us, promotion)); // Replace promoted piece with a pawn clear_bit(&(byTypeBB[promotion]), to); set_bit(&(byTypeBB[PAWN]), to); // Update piece counts pieceCount[us][promotion]--; pieceCount[us][PAWN]++; // Update piece list replacing promotion piece with a pawn Square lastPromotionSquare = pieceList[us][promotion][pieceCount[us][promotion]]; index[lastPromotionSquare] = index[to]; pieceList[us][promotion][index[lastPromotionSquare]] = lastPromotionSquare; pieceList[us][promotion][pieceCount[us][promotion]] = SQ_NONE; index[to] = pieceCount[us][PAWN] - 1; pieceList[us][PAWN][index[to]] = to; } // Put the piece back at the source square Bitboard move_bb = make_move_bb(to, from); do_move_bb(&(byColorBB[us]), move_bb); do_move_bb(&(byTypeBB[pt]), move_bb); do_move_bb(&(byTypeBB[0]), move_bb); // HACK: byTypeBB[0] == occupied squares board[from] = piece_of_color_and_type(us, pt); board[to] = EMPTY; // Update piece list index[from] = index[to]; pieceList[us][pt][index[from]] = from; if (st->capture) { Square capsq = to; if (ep) capsq = (us == WHITE)? (to - DELTA_N) : (to - DELTA_S); assert(st->capture != KING); assert(!ep || square_is_empty(capsq)); // Restore the captured piece set_bit(&(byColorBB[them]), capsq); set_bit(&(byTypeBB[st->capture]), capsq); set_bit(&(byTypeBB[0]), capsq); board[capsq] = piece_of_color_and_type(them, st->capture); // Update piece count pieceCount[them][st->capture]++; // Update piece list, add a new captured piece in capsq square index[capsq] = pieceCount[them][st->capture] - 1; pieceList[them][st->capture][index[capsq]] = capsq; } // Finally point our state pointer back to the previous state st = st->previous; assert(is_ok()); } /// Position::undo_castle_move() is a private method used to unmake a castling /// move. It is called from the main Position::undo_move function. Note that /// castling moves are encoded as "king captures friendly rook" moves, for /// instance white short castling in a non-Chess960 game is encoded as e1h1. void Position::undo_castle_move(Move m) { assert(move_is_ok(m)); assert(move_is_castle(m)); // When we have arrived here, some work has already been done by // Position::undo_move. In particular, the side to move has been switched, // so the code below is correct. Color us = side_to_move(); // Find source squares for king and rook Square kfrom = move_from(m); Square rfrom = move_to(m); // HACK: See comment at beginning of function Square kto, rto; // Find destination squares for king and rook if (rfrom > kfrom) // O-O { kto = relative_square(us, SQ_G1); rto = relative_square(us, SQ_F1); } else { // O-O-O kto = relative_square(us, SQ_C1); rto = relative_square(us, SQ_D1); } assert(piece_on(kto) == piece_of_color_and_type(us, KING)); assert(piece_on(rto) == piece_of_color_and_type(us, ROOK)); // Remove pieces from destination squares: clear_bit(&(byColorBB[us]), kto); clear_bit(&(byTypeBB[KING]), kto); clear_bit(&(byTypeBB[0]), kto); // HACK: byTypeBB[0] == occupied squares clear_bit(&(byColorBB[us]), rto); clear_bit(&(byTypeBB[ROOK]), rto); clear_bit(&(byTypeBB[0]), rto); // HACK: byTypeBB[0] == occupied squares // Put pieces on source squares: set_bit(&(byColorBB[us]), kfrom); set_bit(&(byTypeBB[KING]), kfrom); set_bit(&(byTypeBB[0]), kfrom); // HACK: byTypeBB[0] == occupied squares set_bit(&(byColorBB[us]), rfrom); set_bit(&(byTypeBB[ROOK]), rfrom); set_bit(&(byTypeBB[0]), rfrom); // HACK: byTypeBB[0] == occupied squares // Update board board[rto] = board[kto] = EMPTY; board[rfrom] = piece_of_color_and_type(us, ROOK); board[kfrom] = piece_of_color_and_type(us, KING); // Update piece lists pieceList[us][KING][index[kto]] = kfrom; pieceList[us][ROOK][index[rto]] = rfrom; int tmp = index[rto]; // In Chess960 could be rto == kfrom index[kfrom] = index[kto]; index[rfrom] = tmp; // Finally point our state pointer back to the previous state st = st->previous; assert(is_ok()); } /// Position::do_null_move makes() a "null move": It switches the side to move /// and updates the hash key without executing any move on the board. void Position::do_null_move(StateInfo& backupSt) { assert(is_ok()); assert(!is_check()); // Back up the information necessary to undo the null move to the supplied // StateInfo object. // Note that differently from normal case here backupSt is actually used as // a backup storage not as a new state to be used. backupSt.key = st->key; backupSt.epSquare = st->epSquare; backupSt.value = st->value; backupSt.previous = st->previous; backupSt.pliesFromNull = st->pliesFromNull; st->previous = &backupSt; // Save the current key to the history[] array, in order to be able to // detect repetition draws. history[gamePly] = st->key; // Update the necessary information if (st->epSquare != SQ_NONE) st->key ^= zobEp[st->epSquare]; st->key ^= zobSideToMove; TT.prefetch(st->key); sideToMove = opposite_color(sideToMove); st->epSquare = SQ_NONE; st->rule50++; st->pliesFromNull = 0; st->value += (sideToMove == WHITE) ? TempoValue : -TempoValue; gamePly++; } /// Position::undo_null_move() unmakes a "null move". void Position::undo_null_move() { assert(is_ok()); assert(!is_check()); // Restore information from the our backup StateInfo object StateInfo* backupSt = st->previous; st->key = backupSt->key; st->epSquare = backupSt->epSquare; st->value = backupSt->value; st->previous = backupSt->previous; st->pliesFromNull = backupSt->pliesFromNull; // Update the necessary information sideToMove = opposite_color(sideToMove); st->rule50--; gamePly--; } /// Position::see() is a static exchange evaluator: It tries to estimate the /// material gain or loss resulting from a move. There are three versions of /// this function: One which takes a destination square as input, one takes a /// move, and one which takes a 'from' and a 'to' square. The function does /// not yet understand promotions captures. int Position::see(Square to) const { assert(square_is_ok(to)); return see(SQ_NONE, to); } int Position::see(Move m) const { assert(move_is_ok(m)); return see(move_from(m), move_to(m)); } int Position::see_sign(Move m) const { assert(move_is_ok(m)); Square from = move_from(m); Square to = move_to(m); // Early return if SEE cannot be negative because capturing piece value // is not bigger then captured one. if ( midgame_value_of_piece_on(from) <= midgame_value_of_piece_on(to) && type_of_piece_on(from) != KING) return 1; return see(from, to); } int Position::see(Square from, Square to) const { // Material values static const int seeValues[18] = { 0, PawnValueMidgame, KnightValueMidgame, BishopValueMidgame, RookValueMidgame, QueenValueMidgame, QueenValueMidgame*10, 0, 0, PawnValueMidgame, KnightValueMidgame, BishopValueMidgame, RookValueMidgame, QueenValueMidgame, QueenValueMidgame*10, 0, 0, 0 }; Bitboard attackers, stmAttackers, b; assert(square_is_ok(from) || from == SQ_NONE); assert(square_is_ok(to)); // Initialize colors Color us = (from != SQ_NONE ? color_of_piece_on(from) : opposite_color(color_of_piece_on(to))); Color them = opposite_color(us); // Initialize pieces Piece piece = piece_on(from); Piece capture = piece_on(to); Bitboard occ = occupied_squares(); // King cannot be recaptured if (type_of_piece(piece) == KING) return seeValues[capture]; // Handle en passant moves if (st->epSquare == to && type_of_piece_on(from) == PAWN) { assert(capture == EMPTY); Square capQq = (side_to_move() == WHITE)? (to - DELTA_N) : (to - DELTA_S); capture = piece_on(capQq); assert(type_of_piece_on(capQq) == PAWN); // Remove the captured pawn clear_bit(&occ, capQq); } while (true) { // Find all attackers to the destination square, with the moving piece // removed, but possibly an X-ray attacker added behind it. clear_bit(&occ, from); attackers = (rook_attacks_bb(to, occ) & pieces(ROOK, QUEEN)) | (bishop_attacks_bb(to, occ) & pieces(BISHOP, QUEEN)) | (attacks_from(to) & pieces(KNIGHT)) | (attacks_from(to) & pieces(KING)) | (attacks_from(to, WHITE) & pieces(PAWN, BLACK)) | (attacks_from(to, BLACK) & pieces(PAWN, WHITE)); if (from != SQ_NONE) break; // If we don't have any attacker we are finished if ((attackers & pieces_of_color(us)) == EmptyBoardBB) return 0; // Locate the least valuable attacker to the destination square // and use it to initialize from square. stmAttackers = attackers & pieces_of_color(us); PieceType pt; for (pt = PAWN; !(stmAttackers & pieces(pt)); pt++) assert(pt < KING); from = first_1(stmAttackers & pieces(pt)); piece = piece_on(from); } // If the opponent has no attackers we are finished stmAttackers = attackers & pieces_of_color(them); if (!stmAttackers) return seeValues[capture]; attackers &= occ; // Remove the moving piece // The destination square is defended, which makes things rather more // difficult to compute. We proceed by building up a "swap list" containing // the material gain or loss at each stop in a sequence of captures to the // destination square, where the sides alternately capture, and always // capture with the least valuable piece. After each capture, we look for // new X-ray attacks from behind the capturing piece. int lastCapturingPieceValue = seeValues[piece]; int swapList[32], n = 1; Color c = them; PieceType pt; swapList[0] = seeValues[capture]; do { // Locate the least valuable attacker for the side to move. The loop // below looks like it is potentially infinite, but it isn't. We know // that the side to move still has at least one attacker left. for (pt = PAWN; !(stmAttackers & pieces(pt)); pt++) assert(pt < KING); // Remove the attacker we just found from the 'attackers' bitboard, // and scan for new X-ray attacks behind the attacker. b = stmAttackers & pieces(pt); occ ^= (b & (~b + 1)); attackers |= (rook_attacks_bb(to, occ) & pieces(ROOK, QUEEN)) | (bishop_attacks_bb(to, occ) & pieces(BISHOP, QUEEN)); attackers &= occ; // Add the new entry to the swap list assert(n < 32); swapList[n] = -swapList[n - 1] + lastCapturingPieceValue; n++; // Remember the value of the capturing piece, and change the side to move // before beginning the next iteration lastCapturingPieceValue = seeValues[pt]; c = opposite_color(c); stmAttackers = attackers & pieces_of_color(c); // Stop after a king capture if (pt == KING && stmAttackers) { assert(n < 32); swapList[n++] = QueenValueMidgame*10; break; } } while (stmAttackers); // Having built the swap list, we negamax through it to find the best // achievable score from the point of view of the side to move while (--n) swapList[n-1] = Min(-swapList[n], swapList[n-1]); return swapList[0]; } /// Position::saveState() copies the content of the current state /// inside startState and makes st point to it. This is needed /// when the st pointee could become stale, as example because /// the caller is about to going out of scope. void Position::saveState() { startState = *st; st = &startState; st->previous = NULL; // as a safe guard } /// Position::clear() erases the position object to a pristine state, with an /// empty board, white to move, and no castling rights. void Position::clear() { st = &startState; memset(st, 0, sizeof(StateInfo)); st->epSquare = SQ_NONE; memset(byColorBB, 0, sizeof(Bitboard) * 2); memset(byTypeBB, 0, sizeof(Bitboard) * 8); memset(pieceCount, 0, sizeof(int) * 2 * 8); memset(index, 0, sizeof(int) * 64); for (int i = 0; i < 64; i++) board[i] = EMPTY; for (int i = 0; i < 8; i++) for (int j = 0; j < 16; j++) pieceList[0][i][j] = pieceList[1][i][j] = SQ_NONE; sideToMove = WHITE; gamePly = 0; initialKFile = FILE_E; initialKRFile = FILE_H; initialQRFile = FILE_A; } /// Position::reset_game_ply() simply sets gamePly to 0. It is used from the /// UCI interface code, whenever a non-reversible move is made in a /// 'position fen moves m1 m2 ...' command. This makes it possible /// for the program to handle games of arbitrary length, as long as the GUI /// handles draws by the 50 move rule correctly. void Position::reset_game_ply() { gamePly = 0; } /// Position::put_piece() puts a piece on the given square of the board, /// updating the board array, bitboards, and piece counts. void Position::put_piece(Piece p, Square s) { Color c = color_of_piece(p); PieceType pt = type_of_piece(p); board[s] = p; index[s] = pieceCount[c][pt]; pieceList[c][pt][index[s]] = s; set_bit(&(byTypeBB[pt]), s); set_bit(&(byColorBB[c]), s); set_bit(&byTypeBB[0], s); // HACK: byTypeBB[0] contains all occupied squares. pieceCount[c][pt]++; } /// Position::allow_oo() gives the given side the right to castle kingside. /// Used when setting castling rights during parsing of FEN strings. void Position::allow_oo(Color c) { st->castleRights |= (1 + int(c)); } /// Position::allow_ooo() gives the given side the right to castle queenside. /// Used when setting castling rights during parsing of FEN strings. void Position::allow_ooo(Color c) { st->castleRights |= (4 + 4*int(c)); } /// Position::compute_key() computes the hash key of the position. The hash /// key is usually updated incrementally as moves are made and unmade, the /// compute_key() function is only used when a new position is set up, and /// to verify the correctness of the hash key when running in debug mode. Key Position::compute_key() const { Key result = Key(0ULL); for (Square s = SQ_A1; s <= SQ_H8; s++) if (square_is_occupied(s)) result ^= zobrist[color_of_piece_on(s)][type_of_piece_on(s)][s]; if (ep_square() != SQ_NONE) result ^= zobEp[ep_square()]; result ^= zobCastle[st->castleRights]; if (side_to_move() == BLACK) result ^= zobSideToMove; return result; } /// Position::compute_pawn_key() computes the hash key of the position. The /// hash key is usually updated incrementally as moves are made and unmade, /// the compute_pawn_key() function is only used when a new position is set /// up, and to verify the correctness of the pawn hash key when running in /// debug mode. Key Position::compute_pawn_key() const { Key result = Key(0ULL); Bitboard b; Square s; for (Color c = WHITE; c <= BLACK; c++) { b = pieces(PAWN, c); while(b) { s = pop_1st_bit(&b); result ^= zobrist[c][PAWN][s]; } } return result; } /// Position::compute_material_key() computes the hash key of the position. /// The hash key is usually updated incrementally as moves are made and unmade, /// the compute_material_key() function is only used when a new position is set /// up, and to verify the correctness of the material hash key when running in /// debug mode. Key Position::compute_material_key() const { Key result = Key(0ULL); for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= QUEEN; pt++) { int count = piece_count(c, pt); for (int i = 0; i <= count; i++) result ^= zobMaterial[c][pt][i]; } return result; } /// Position::compute_value() compute the incremental scores for the middle /// game and the endgame. These functions are used to initialize the incremental /// scores when a new position is set up, and to verify that the scores are correctly /// updated by do_move and undo_move when the program is running in debug mode. Score Position::compute_value() const { Score result = make_score(0, 0); Bitboard b; Square s; for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= KING; pt++) { b = pieces(pt, c); while(b) { s = pop_1st_bit(&b); assert(piece_on(s) == piece_of_color_and_type(c, pt)); result += pst(c, pt, s); } } result += (side_to_move() == WHITE ? TempoValue / 2 : -TempoValue / 2); return result; } /// Position::compute_non_pawn_material() computes the total non-pawn middle /// game material score for the given side. Material scores are updated /// incrementally during the search, this function is only used while /// initializing a new Position object. Value Position::compute_non_pawn_material(Color c) const { Value result = Value(0); for (PieceType pt = KNIGHT; pt <= QUEEN; pt++) { Bitboard b = pieces(pt, c); while (b) { assert(piece_on(first_1(b)) == piece_of_color_and_type(c, pt)); pop_1st_bit(&b); result += piece_value_midgame(pt); } } return result; } /// Position::is_draw() tests whether the position is drawn by material, /// repetition, or the 50 moves rule. It does not detect stalemates, this /// must be done by the search. bool Position::is_draw() const { // Draw by material? if ( !pieces(PAWN) && (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMidgame)) return true; // Draw by the 50 moves rule? if (st->rule50 > 100 || (st->rule50 == 100 && !is_check())) return true; // Draw by repetition? for (int i = 2; i < Min(Min(gamePly, st->rule50), st->pliesFromNull); i += 2) if (history[gamePly - i] == st->key) return true; return false; } /// Position::is_mate() returns true or false depending on whether the /// side to move is checkmated. bool Position::is_mate() const { MoveStack moves[256]; return is_check() && (generate_moves(*this, moves, false) == moves); } /// Position::has_mate_threat() tests whether a given color has a mate in one /// from the current position. bool Position::has_mate_threat(Color c) { StateInfo st1, st2; Color stm = side_to_move(); if (is_check()) return false; // If the input color is not equal to the side to move, do a null move if (c != stm) do_null_move(st1); MoveStack mlist[120]; bool result = false; Bitboard pinned = pinned_pieces(sideToMove); // Generate pseudo-legal non-capture and capture check moves MoveStack* last = generate_non_capture_checks(*this, mlist); last = generate_captures(*this, last); // Loop through the moves, and see if one of them is mate for (MoveStack* cur = mlist; cur != last; cur++) { Move move = cur->move; if (!pl_move_is_legal(move, pinned)) continue; do_move(move, st2); if (is_mate()) result = true; undo_move(move); } // Undo null move, if necessary if (c != stm) undo_null_move(); return result; } /// Position::init_zobrist() is a static member function which initializes the /// various arrays used to compute hash keys. void Position::init_zobrist() { for (int i = 0; i < 2; i++) for (int j = 0; j < 8; j++) for (int k = 0; k < 64; k++) zobrist[i][j][k] = Key(genrand_int64()); for (int i = 0; i < 64; i++) zobEp[i] = Key(genrand_int64()); for (int i = 0; i < 16; i++) zobCastle[i] = genrand_int64(); zobSideToMove = genrand_int64(); for (int i = 0; i < 2; i++) for (int j = 0; j < 8; j++) for (int k = 0; k < 16; k++) zobMaterial[i][j][k] = (k > 0)? Key(genrand_int64()) : Key(0LL); for (int i = 0; i < 16; i++) zobMaterial[0][KING][i] = zobMaterial[1][KING][i] = Key(0ULL); } /// Position::init_piece_square_tables() initializes the piece square tables. /// This is a two-step operation: First, the white halves of the tables are /// copied from the MgPST[][] and EgPST[][] arrays, with a small random number /// added to each entry if the "Randomness" UCI parameter is non-zero. /// Second, the black halves of the tables are initialized by mirroring /// and changing the sign of the corresponding white scores. void Position::init_piece_square_tables() { int r = get_option_value_int("Randomness"), i; for (Square s = SQ_A1; s <= SQ_H8; s++) for (Piece p = WP; p <= WK; p++) { i = (r == 0)? 0 : (genrand_int32() % (r*2) - r); PieceSquareTable[p][s] = make_score(MgPST[p][s] + i, EgPST[p][s] + i); } for (Square s = SQ_A1; s <= SQ_H8; s++) for (Piece p = BP; p <= BK; p++) PieceSquareTable[p][s] = -PieceSquareTable[p-8][flip_square(s)]; } /// Position::flipped_copy() makes a copy of the input position, but with /// the white and black sides reversed. This is only useful for debugging, /// especially for finding evaluation symmetry bugs. void Position::flipped_copy(const Position& pos) { assert(pos.is_ok()); clear(); // Board for (Square s = SQ_A1; s <= SQ_H8; s++) if (!pos.square_is_empty(s)) put_piece(Piece(int(pos.piece_on(s)) ^ 8), flip_square(s)); // Side to move sideToMove = opposite_color(pos.side_to_move()); // Castling rights if (pos.can_castle_kingside(WHITE)) allow_oo(BLACK); if (pos.can_castle_queenside(WHITE)) allow_ooo(BLACK); if (pos.can_castle_kingside(BLACK)) allow_oo(WHITE); if (pos.can_castle_queenside(BLACK)) allow_ooo(WHITE); initialKFile = pos.initialKFile; initialKRFile = pos.initialKRFile; initialQRFile = pos.initialQRFile; for (Square sq = SQ_A1; sq <= SQ_H8; sq++) castleRightsMask[sq] = ALL_CASTLES; castleRightsMask[make_square(initialKFile, RANK_1)] ^= (WHITE_OO | WHITE_OOO); castleRightsMask[make_square(initialKFile, RANK_8)] ^= (BLACK_OO | BLACK_OOO); castleRightsMask[make_square(initialKRFile, RANK_1)] ^= WHITE_OO; castleRightsMask[make_square(initialKRFile, RANK_8)] ^= BLACK_OO; castleRightsMask[make_square(initialQRFile, RANK_1)] ^= WHITE_OOO; castleRightsMask[make_square(initialQRFile, RANK_8)] ^= BLACK_OOO; // En passant square if (pos.st->epSquare != SQ_NONE) st->epSquare = flip_square(pos.st->epSquare); // Checkers find_checkers(); // Hash keys st->key = compute_key(); st->pawnKey = compute_pawn_key(); st->materialKey = compute_material_key(); // Incremental scores st->value = compute_value(); // Material st->npMaterial[WHITE] = compute_non_pawn_material(WHITE); st->npMaterial[BLACK] = compute_non_pawn_material(BLACK); assert(is_ok()); } /// Position::is_ok() performs some consitency checks for the position object. /// This is meant to be helpful when debugging. bool Position::is_ok(int* failedStep) const { // What features of the position should be verified? static const bool debugBitboards = false; static const bool debugKingCount = false; static const bool debugKingCapture = false; static const bool debugCheckerCount = false; static const bool debugKey = false; static const bool debugMaterialKey = false; static const bool debugPawnKey = false; static const bool debugIncrementalEval = false; static const bool debugNonPawnMaterial = false; static const bool debugPieceCounts = false; static const bool debugPieceList = false; if (failedStep) *failedStep = 1; // Side to move OK? if (!color_is_ok(side_to_move())) return false; // Are the king squares in the position correct? if (failedStep) (*failedStep)++; if (piece_on(king_square(WHITE)) != WK) return false; if (failedStep) (*failedStep)++; if (piece_on(king_square(BLACK)) != BK) return false; // Castle files OK? if (failedStep) (*failedStep)++; if (!file_is_ok(initialKRFile)) return false; if (!file_is_ok(initialQRFile)) return false; // Do both sides have exactly one king? if (failedStep) (*failedStep)++; if (debugKingCount) { int kingCount[2] = {0, 0}; for (Square s = SQ_A1; s <= SQ_H8; s++) if (type_of_piece_on(s) == KING) kingCount[color_of_piece_on(s)]++; if (kingCount[0] != 1 || kingCount[1] != 1) return false; } // Can the side to move capture the opponent's king? if (failedStep) (*failedStep)++; if (debugKingCapture) { Color us = side_to_move(); Color them = opposite_color(us); Square ksq = king_square(them); if (attackers_to(ksq) & pieces_of_color(us)) return false; } // Is there more than 2 checkers? if (failedStep) (*failedStep)++; if (debugCheckerCount && count_1s(st->checkersBB) > 2) return false; // Bitboards OK? if (failedStep) (*failedStep)++; if (debugBitboards) { // The intersection of the white and black pieces must be empty if ((pieces_of_color(WHITE) & pieces_of_color(BLACK)) != EmptyBoardBB) return false; // The union of the white and black pieces must be equal to all // occupied squares if ((pieces_of_color(WHITE) | pieces_of_color(BLACK)) != occupied_squares()) return false; // Separate piece type bitboards must have empty intersections for (PieceType p1 = PAWN; p1 <= KING; p1++) for (PieceType p2 = PAWN; p2 <= KING; p2++) if (p1 != p2 && (pieces(p1) & pieces(p2))) return false; } // En passant square OK? if (failedStep) (*failedStep)++; if (ep_square() != SQ_NONE) { // The en passant square must be on rank 6, from the point of view of the // side to move. if (relative_rank(side_to_move(), ep_square()) != RANK_6) return false; } // Hash key OK? if (failedStep) (*failedStep)++; if (debugKey && st->key != compute_key()) return false; // Pawn hash key OK? if (failedStep) (*failedStep)++; if (debugPawnKey && st->pawnKey != compute_pawn_key()) return false; // Material hash key OK? if (failedStep) (*failedStep)++; if (debugMaterialKey && st->materialKey != compute_material_key()) return false; // Incremental eval OK? if (failedStep) (*failedStep)++; if (debugIncrementalEval && st->value != compute_value()) return false; // Non-pawn material OK? if (failedStep) (*failedStep)++; if (debugNonPawnMaterial) { if (st->npMaterial[WHITE] != compute_non_pawn_material(WHITE)) return false; if (st->npMaterial[BLACK] != compute_non_pawn_material(BLACK)) return false; } // Piece counts OK? if (failedStep) (*failedStep)++; if (debugPieceCounts) for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= KING; pt++) if (pieceCount[c][pt] != count_1s(pieces(pt, c))) return false; if (failedStep) (*failedStep)++; if (debugPieceList) { for(Color c = WHITE; c <= BLACK; c++) for(PieceType pt = PAWN; pt <= KING; pt++) for(int i = 0; i < pieceCount[c][pt]; i++) { if (piece_on(piece_list(c, pt, i)) != piece_of_color_and_type(c, pt)) return false; if (index[piece_list(c, pt, i)] != i) return false; } } if (failedStep) *failedStep = 0; return true; }