/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Definition of layer AffineTransform of NNUE evaluation function #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED #define NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED #include #include "../nnue_common.h" namespace Stockfish::Eval::NNUE::Layers { // Affine transformation layer template class AffineTransform { public: // Input/output type using InputType = typename PreviousLayer::OutputType; using OutputType = std::int32_t; static_assert(std::is_same::value, ""); // Number of input/output dimensions static constexpr IndexType InputDimensions = PreviousLayer::OutputDimensions; static constexpr IndexType OutputDimensions = OutDims; static constexpr IndexType PaddedInputDimensions = ceil_to_multiple(InputDimensions, MaxSimdWidth); #if defined (USE_AVX512) static constexpr const IndexType OutputSimdWidth = SimdWidth / 2; #elif defined (USE_SSSE3) static constexpr const IndexType OutputSimdWidth = SimdWidth / 4; #endif // Size of forward propagation buffer used in this layer static constexpr std::size_t SelfBufferSize = ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize); // Size of the forward propagation buffer used from the input layer to this layer static constexpr std::size_t BufferSize = PreviousLayer::BufferSize + SelfBufferSize; // Hash value embedded in the evaluation file static constexpr std::uint32_t get_hash_value() { std::uint32_t hashValue = 0xCC03DAE4u; hashValue += OutputDimensions; hashValue ^= PreviousLayer::get_hash_value() >> 1; hashValue ^= PreviousLayer::get_hash_value() << 31; return hashValue; } // Read network parameters bool read_parameters(std::istream& stream) { if (!previousLayer.read_parameters(stream)) return false; for (std::size_t i = 0; i < OutputDimensions; ++i) biases[i] = read_little_endian(stream); for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) #if !defined (USE_SSSE3) weights[i] = read_little_endian(stream); #else weights[ (i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 + i / PaddedInputDimensions * 4 + i % 4 ] = read_little_endian(stream); // Determine if eights of weight and input products can be summed using 16bits // without saturation. We assume worst case combinations of 0 and 127 for all inputs. if (OutputDimensions > 1 && !stream.fail()) { canSaturate16.count = 0; #if !defined(USE_VNNI) for (IndexType i = 0; i < PaddedInputDimensions; i += 16) for (IndexType j = 0; j < OutputDimensions; ++j) for (int x = 0; x < 2; ++x) { WeightType* w = &weights[i * OutputDimensions + j * 4 + x * 2]; int sum[2] = {0, 0}; for (int k = 0; k < 8; ++k) { IndexType idx = k / 2 * OutputDimensions * 4 + k % 2; sum[w[idx] < 0] += w[idx]; } for (int sign : { -1, 1 }) while (sign * sum[sign == -1] > 258) { int maxK = 0, maxW = 0; for (int k = 0; k < 8; ++k) { IndexType idx = k / 2 * OutputDimensions * 4 + k % 2; if (maxW < sign * w[idx]) maxK = k, maxW = sign * w[idx]; } IndexType idx = maxK / 2 * OutputDimensions * 4 + maxK % 2; sum[sign == -1] -= w[idx]; canSaturate16.add(j, i + maxK / 2 * 4 + maxK % 2 + x * 2, w[idx]); w[idx] = 0; } } // Non functional optimization for faster more linear access std::sort(canSaturate16.ids, canSaturate16.ids + canSaturate16.count, [](const typename CanSaturate::Entry& e1, const typename CanSaturate::Entry& e2) { return e1.in == e2.in ? e1.out < e2.out : e1.in < e2.in; }); #endif } #endif return !stream.fail(); } // Forward propagation const OutputType* propagate( const TransformedFeatureType* transformedFeatures, char* buffer) const { const auto input = previousLayer.propagate( transformedFeatures, buffer + SelfBufferSize); #if defined (USE_AVX512) [[maybe_unused]] const __m512i Ones512 = _mm512_set1_epi16(1); [[maybe_unused]] auto m512_hadd = [](__m512i sum, int bias) -> int { return _mm512_reduce_add_epi32(sum) + bias; }; [[maybe_unused]] auto m512_add_dpbusd_epi32 = [=](__m512i& acc, __m512i a, __m512i b) { #if defined (USE_VNNI) acc = _mm512_dpbusd_epi32(acc, a, b); #else __m512i product0 = _mm512_maddubs_epi16(a, b); product0 = _mm512_madd_epi16(product0, Ones512); acc = _mm512_add_epi32(acc, product0); #endif }; [[maybe_unused]] auto m512_add_dpbusd_epi32x4 = [=](__m512i& acc, __m512i a0, __m512i b0, __m512i a1, __m512i b1, __m512i a2, __m512i b2, __m512i a3, __m512i b3) { #if defined (USE_VNNI) acc = _mm512_dpbusd_epi32(acc, a0, b0); acc = _mm512_dpbusd_epi32(acc, a1, b1); acc = _mm512_dpbusd_epi32(acc, a2, b2); acc = _mm512_dpbusd_epi32(acc, a3, b3); #else __m512i product0 = _mm512_maddubs_epi16(a0, b0); __m512i product1 = _mm512_maddubs_epi16(a1, b1); __m512i product2 = _mm512_maddubs_epi16(a2, b2); __m512i product3 = _mm512_maddubs_epi16(a3, b3); product0 = _mm512_add_epi16(product0, product1); product2 = _mm512_add_epi16(product2, product3); product0 = _mm512_add_epi16(product0, product2); product0 = _mm512_madd_epi16(product0, Ones512); acc = _mm512_add_epi32(acc, product0); #endif }; #endif #if defined (USE_AVX2) [[maybe_unused]] const __m256i Ones256 = _mm256_set1_epi16(1); [[maybe_unused]] auto m256_hadd = [](__m256i sum, int bias) -> int { __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1)); sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC)); sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB)); return _mm_cvtsi128_si32(sum128) + bias; }; [[maybe_unused]] auto m256_add_dpbusd_epi32 = [=](__m256i& acc, __m256i a, __m256i b) { #if defined (USE_VNNI) acc = _mm256_dpbusd_epi32(acc, a, b); #else __m256i product0 = _mm256_maddubs_epi16(a, b); product0 = _mm256_madd_epi16(product0, Ones256); acc = _mm256_add_epi32(acc, product0); #endif }; [[maybe_unused]] auto m256_add_dpbusd_epi32x4 = [=](__m256i& acc, __m256i a0, __m256i b0, __m256i a1, __m256i b1, __m256i a2, __m256i b2, __m256i a3, __m256i b3) { #if defined (USE_VNNI) acc = _mm256_dpbusd_epi32(acc, a0, b0); acc = _mm256_dpbusd_epi32(acc, a1, b1); acc = _mm256_dpbusd_epi32(acc, a2, b2); acc = _mm256_dpbusd_epi32(acc, a3, b3); #else __m256i product0 = _mm256_maddubs_epi16(a0, b0); __m256i product1 = _mm256_maddubs_epi16(a1, b1); __m256i product2 = _mm256_maddubs_epi16(a2, b2); __m256i product3 = _mm256_maddubs_epi16(a3, b3); product0 = _mm256_add_epi16(product0, product1); product2 = _mm256_add_epi16(product2, product3); product0 = _mm256_add_epi16(product0, product2); product0 = _mm256_madd_epi16(product0, Ones256); acc = _mm256_add_epi32(acc, product0); #endif }; #endif #if defined (USE_SSSE3) [[maybe_unused]] const __m128i Ones128 = _mm_set1_epi16(1); [[maybe_unused]] auto m128_hadd = [](__m128i sum, int bias) -> int { sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB return _mm_cvtsi128_si32(sum) + bias; }; [[maybe_unused]] auto m128_add_dpbusd_epi32 = [=](__m128i& acc, __m128i a, __m128i b) { __m128i product0 = _mm_maddubs_epi16(a, b); product0 = _mm_madd_epi16(product0, Ones128); acc = _mm_add_epi32(acc, product0); }; [[maybe_unused]] auto m128_add_dpbusd_epi32x4 = [=](__m128i& acc, __m128i a0, __m128i b0, __m128i a1, __m128i b1, __m128i a2, __m128i b2, __m128i a3, __m128i b3) { __m128i product0 = _mm_maddubs_epi16(a0, b0); __m128i product1 = _mm_maddubs_epi16(a1, b1); __m128i product2 = _mm_maddubs_epi16(a2, b2); __m128i product3 = _mm_maddubs_epi16(a3, b3); product0 = _mm_add_epi16(product0, product1); product2 = _mm_add_epi16(product2, product3); product0 = _mm_add_epi16(product0, product2); product0 = _mm_madd_epi16(product0, Ones128); acc = _mm_add_epi32(acc, product0); }; #endif #if defined (USE_AVX512) using vec_t = __m512i; #define vec_setzero _mm512_setzero_si512 #define vec_set_32 _mm512_set1_epi32 auto& vec_add_dpbusd_32 = m512_add_dpbusd_epi32; auto& vec_add_dpbusd_32x4 = m512_add_dpbusd_epi32x4; auto& vec_hadd = m512_hadd; #elif defined (USE_AVX2) using vec_t = __m256i; #define vec_setzero _mm256_setzero_si256 #define vec_set_32 _mm256_set1_epi32 auto& vec_add_dpbusd_32 = m256_add_dpbusd_epi32; auto& vec_add_dpbusd_32x4 = m256_add_dpbusd_epi32x4; auto& vec_hadd = m256_hadd; #elif defined (USE_SSSE3) using vec_t = __m128i; #define vec_setzero _mm_setzero_si128 #define vec_set_32 _mm_set1_epi32 auto& vec_add_dpbusd_32 = m128_add_dpbusd_epi32; auto& vec_add_dpbusd_32x4 = m128_add_dpbusd_epi32x4; auto& vec_hadd = m128_hadd; #endif #if defined (USE_SSSE3) const auto output = reinterpret_cast(buffer); const auto inputVector = reinterpret_cast(input); static_assert(OutputDimensions % OutputSimdWidth == 0 || OutputDimensions == 1); // OutputDimensions is either 1 or a multiple of SimdWidth // because then it is also an input dimension. if constexpr (OutputDimensions % OutputSimdWidth == 0) { constexpr IndexType NumChunks = PaddedInputDimensions / 4; const auto input32 = reinterpret_cast(input); vec_t* outptr = reinterpret_cast(output); std::memcpy(output, biases, OutputDimensions * sizeof(OutputType)); for (int i = 0; i < (int)NumChunks - 3; i += 4) { const vec_t in0 = vec_set_32(input32[i + 0]); const vec_t in1 = vec_set_32(input32[i + 1]); const vec_t in2 = vec_set_32(input32[i + 2]); const vec_t in3 = vec_set_32(input32[i + 3]); const auto col0 = reinterpret_cast(&weights[(i + 0) * OutputDimensions * 4]); const auto col1 = reinterpret_cast(&weights[(i + 1) * OutputDimensions * 4]); const auto col2 = reinterpret_cast(&weights[(i + 2) * OutputDimensions * 4]); const auto col3 = reinterpret_cast(&weights[(i + 3) * OutputDimensions * 4]); for (int j = 0; j * OutputSimdWidth < OutputDimensions; ++j) vec_add_dpbusd_32x4(outptr[j], in0, col0[j], in1, col1[j], in2, col2[j], in3, col3[j]); } for (int i = 0; i < canSaturate16.count; ++i) output[canSaturate16.ids[i].out] += input[canSaturate16.ids[i].in] * canSaturate16.ids[i].w; } else if constexpr (OutputDimensions == 1) { #if defined (USE_AVX512) if constexpr (PaddedInputDimensions % (SimdWidth * 2) != 0) { constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth; const auto inputVector256 = reinterpret_cast(input); __m256i sum0 = _mm256_setzero_si256(); const auto row0 = reinterpret_cast(&weights[0]); for (int j = 0; j < (int)NumChunks; ++j) { const __m256i in = inputVector256[j]; m256_add_dpbusd_epi32(sum0, in, row0[j]); } output[0] = m256_hadd(sum0, biases[0]); } else #endif { #if defined (USE_AVX512) constexpr IndexType NumChunks = PaddedInputDimensions / (SimdWidth * 2); #else constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth; #endif vec_t sum0 = vec_setzero(); const auto row0 = reinterpret_cast(&weights[0]); for (int j = 0; j < (int)NumChunks; ++j) { const vec_t in = inputVector[j]; vec_add_dpbusd_32(sum0, in, row0[j]); } output[0] = vec_hadd(sum0, biases[0]); } } #else // Use old implementation for the other architectures. auto output = reinterpret_cast(buffer); #if defined(USE_SSE2) constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth; const __m128i Zeros = _mm_setzero_si128(); const auto inputVector = reinterpret_cast(input); #elif defined(USE_MMX) constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth; const __m64 Zeros = _mm_setzero_si64(); const auto inputVector = reinterpret_cast(input); #elif defined(USE_NEON) constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth; const auto inputVector = reinterpret_cast(input); #endif for (IndexType i = 0; i < OutputDimensions; ++i) { const IndexType offset = i * PaddedInputDimensions; #if defined(USE_SSE2) __m128i sumLo = _mm_cvtsi32_si128(biases[i]); __m128i sumHi = Zeros; const auto row = reinterpret_cast(&weights[offset]); for (IndexType j = 0; j < NumChunks; ++j) { __m128i row_j = _mm_load_si128(&row[j]); __m128i input_j = _mm_load_si128(&inputVector[j]); __m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8); __m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8); __m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros); __m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros); __m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo); __m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi); sumLo = _mm_add_epi32(sumLo, productLo); sumHi = _mm_add_epi32(sumHi, productHi); } __m128i sum = _mm_add_epi32(sumLo, sumHi); __m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2)); sum = _mm_add_epi32(sum, sumHigh_64); __m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2)); sum = _mm_add_epi32(sum, sum_second_32); output[i] = _mm_cvtsi128_si32(sum); #elif defined(USE_MMX) __m64 sumLo = _mm_cvtsi32_si64(biases[i]); __m64 sumHi = Zeros; const auto row = reinterpret_cast(&weights[offset]); for (IndexType j = 0; j < NumChunks; ++j) { __m64 row_j = row[j]; __m64 input_j = inputVector[j]; __m64 extendedRowLo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8); __m64 extendedRowHi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8); __m64 extendedInputLo = _mm_unpacklo_pi8(input_j, Zeros); __m64 extendedInputHi = _mm_unpackhi_pi8(input_j, Zeros); __m64 productLo = _mm_madd_pi16(extendedRowLo, extendedInputLo); __m64 productHi = _mm_madd_pi16(extendedRowHi, extendedInputHi); sumLo = _mm_add_pi32(sumLo, productLo); sumHi = _mm_add_pi32(sumHi, productHi); } __m64 sum = _mm_add_pi32(sumLo, sumHi); sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum)); output[i] = _mm_cvtsi64_si32(sum); #elif defined(USE_NEON) int32x4_t sum = {biases[i]}; const auto row = reinterpret_cast(&weights[offset]); for (IndexType j = 0; j < NumChunks; ++j) { int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]); product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]); sum = vpadalq_s16(sum, product); } output[i] = sum[0] + sum[1] + sum[2] + sum[3]; #else OutputType sum = biases[i]; for (IndexType j = 0; j < InputDimensions; ++j) { sum += weights[offset + j] * input[j]; } output[i] = sum; #endif } #if defined(USE_MMX) _mm_empty(); #endif #endif return output; } private: using BiasType = OutputType; using WeightType = std::int8_t; PreviousLayer previousLayer; alignas(CacheLineSize) BiasType biases[OutputDimensions]; alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions]; #if defined (USE_SSSE3) struct CanSaturate { int count; struct Entry { uint16_t out; uint16_t in; int8_t w; } ids[PaddedInputDimensions * OutputDimensions * 3 / 4]; void add(int i, int j, int8_t w) { ids[count].out = i; ids[count].in = j; ids[count].w = w; ++count; } } canSaturate16; #endif }; } // namespace Stockfish::Eval::NNUE::Layers #endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED