1
0
Fork 0
stockfish/src/bitboard.cpp

223 lines
7.7 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <bitset>
#include "bitboard.h"
#include "misc.h"
namespace Stockfish {
uint8_t PopCnt16[1 << 16];
uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
Bitboard SquareBB[SQUARE_NB];
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
Magic RookMagics[SQUARE_NB];
Magic BishopMagics[SQUARE_NB];
namespace {
Bitboard RookTable[0x19000]; // To store rook attacks
Bitboard BishopTable[0x1480]; // To store bishop attacks
void init_magics(PieceType pt, Bitboard table[], Magic magics[]);
}
/// safe_destination() returns the bitboard of target square for the given step
/// from the given square. If the step is off the board, returns empty bitboard.
inline Bitboard safe_destination(Square s, int step) {
Square to = Square(s + step);
return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0);
}
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
/// to be printed to standard output. Useful for debugging.
std::string Bitboards::pretty(Bitboard b) {
std::string s = "+---+---+---+---+---+---+---+---+\n";
for (Rank r = RANK_8; r >= RANK_1; --r)
{
for (File f = FILE_A; f <= FILE_H; ++f)
s += b & make_square(f, r) ? "| X " : "| ";
s += "| " + std::to_string(1 + r) + "\n+---+---+---+---+---+---+---+---+\n";
}
s += " a b c d e f g h\n";
return s;
}
/// Bitboards::init() initializes various bitboard tables. It is called at
/// startup and relies on global objects to be already zero-initialized.
void Bitboards::init() {
for (unsigned i = 0; i < (1 << 16); ++i)
PopCnt16[i] = uint8_t(std::bitset<16>(i).count());
for (Square s = SQ_A1; s <= SQ_H8; ++s)
SquareBB[s] = (1ULL << s);
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
init_magics(ROOK, RookTable, RookMagics);
init_magics(BISHOP, BishopTable, BishopMagics);
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
{
PawnAttacks[WHITE][s1] = pawn_attacks_bb<WHITE>(square_bb(s1));
PawnAttacks[BLACK][s1] = pawn_attacks_bb<BLACK>(square_bb(s1));
for (int step : {-9, -8, -7, -1, 1, 7, 8, 9} )
PseudoAttacks[KING][s1] |= safe_destination(s1, step);
for (int step : {-17, -15, -10, -6, 6, 10, 15, 17} )
PseudoAttacks[KNIGHT][s1] |= safe_destination(s1, step);
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0);
for (PieceType pt : { BISHOP, ROOK })
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
{
if (PseudoAttacks[pt][s1] & s2)
{
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
BetweenBB[s1][s2] = (attacks_bb(pt, s1, square_bb(s2)) & attacks_bb(pt, s2, square_bb(s1)));
}
BetweenBB[s1][s2] |= s2;
}
}
}
namespace {
Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) {
Bitboard attacks = 0;
Direction RookDirections[4] = {NORTH, SOUTH, EAST, WEST};
Direction BishopDirections[4] = {NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST};
for (Direction d : (pt == ROOK ? RookDirections : BishopDirections))
{
Square s = sq;
while (safe_destination(s, d) && !(occupied & s))
attacks |= (s += d);
}
return attacks;
}
// init_magics() computes all rook and bishop attacks at startup. Magic
// bitboards are used to look up attacks of sliding pieces. As a reference see
// www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so
// called "fancy" approach.
void init_magics(PieceType pt, Bitboard table[], Magic magics[]) {
// Optimal PRNG seeds to pick the correct magics in the shortest time
int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 },
{ 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } };
Bitboard occupancy[4096], reference[4096], edges, b;
int epoch[4096] = {}, cnt = 0, size = 0;
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
// Board edges are not considered in the relevant occupancies
edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
// Given a square 's', the mask is the bitboard of sliding attacks from
// 's' computed on an empty board. The index must be big enough to contain
// all the attacks for each possible subset of the mask and so is 2 power
// the number of 1s of the mask. Hence we deduce the size of the shift to
// apply to the 64 or 32 bits word to get the index.
Magic& m = magics[s];
m.mask = sliding_attack(pt, s, 0) & ~edges;
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
// Set the offset for the attacks table of the square. We have individual
// table sizes for each square with "Fancy Magic Bitboards".
m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
// store the corresponding sliding attack bitboard in reference[].
b = size = 0;
do {
occupancy[size] = b;
reference[size] = sliding_attack(pt, s, b);
if (HasPext)
m.attacks[pext(b, m.mask)] = reference[size];
size++;
b = (b - m.mask) & m.mask;
} while (b);
if (HasPext)
continue;
PRNG rng(seeds[Is64Bit][rank_of(s)]);
// Find a magic for square 's' picking up an (almost) random number
// until we find the one that passes the verification test.
for (int i = 0; i < size; )
{
for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
m.magic = rng.sparse_rand<Bitboard>();
// A good magic must map every possible occupancy to an index that
// looks up the correct sliding attack in the attacks[s] database.
// Note that we build up the database for square 's' as a side
// effect of verifying the magic. Keep track of the attempt count
// and save it in epoch[], little speed-up trick to avoid resetting
// m.attacks[] after every failed attempt.
for (++cnt, i = 0; i < size; ++i)
{
unsigned idx = m.index(occupancy[i]);
if (epoch[idx] < cnt)
{
epoch[idx] = cnt;
m.attacks[idx] = reference[i];
}
else if (m.attacks[idx] != reference[i])
break;
}
}
}
}
}
} // namespace Stockfish