1
0
Fork 0
stockfish/src/thread.cpp

262 lines
6.6 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm> // For std::count
#include <cassert>
#include "movegen.h"
#include "search.h"
#include "thread.h"
#include "uci.h"
using namespace Search;
ThreadPool Threads; // Global object
extern void check_time();
namespace {
// Helpers to launch a thread after creation and joining before delete. Must be
// outside Thread c'tor and d'tor because the object must be fully initialized
// when start_routine (and hence virtual idle_loop) is called and when joining.
template<typename T> T* new_thread() {
std::thread* th = new T;
*th = std::thread(&T::idle_loop, (T*)th); // Will go to sleep
return (T*)th;
}
void delete_thread(ThreadBase* th) {
th->mutex.lock();
th->exit = true; // Search must be already finished
th->mutex.unlock();
th->notify_one();
th->join(); // Wait for thread termination
delete th;
}
}
// ThreadBase::notify_one() wakes up the thread when there is some work to do
void ThreadBase::notify_one() {
std::unique_lock<Mutex> lk(mutex);
sleepCondition.notify_one();
}
// ThreadBase::wait() set the thread to sleep until 'condition' turns true
void ThreadBase::wait(volatile const bool& condition) {
std::unique_lock<Mutex> lk(mutex);
sleepCondition.wait(lk, [&]{ return condition; });
}
// ThreadBase::wait_while() set the thread to sleep until 'condition' turns false
void ThreadBase::wait_while(volatile const bool& condition) {
std::unique_lock<Mutex> lk(mutex);
sleepCondition.wait(lk, [&]{ return !condition; });
}
// Thread c'tor makes some init but does not launch any execution thread that
// will be started only when c'tor returns.
Thread::Thread() /* : splitPoints() */ { // Initialization of non POD broken in MSVC
searching = false;
maxPly = 0;
history.clear();
counterMoves.clear();
idx = Threads.size(); // Starts from 0
}
// TimerThread::idle_loop() is where the timer thread waits Resolution milliseconds
// and then calls check_time(). When not searching, thread sleeps until it's woken up.
void TimerThread::idle_loop() {
while (!exit)
{
std::unique_lock<Mutex> lk(mutex);
if (!exit)
sleepCondition.wait_for(lk, std::chrono::milliseconds(run ? Resolution : INT_MAX));
lk.unlock();
if (!exit && run)
check_time();
}
}
// Thread::idle_loop() is where the thread is parked when it has no work to do
void Thread::idle_loop() {
while (!exit)
{
std::unique_lock<Mutex> lk(mutex);
while (!searching && !exit)
sleepCondition.wait(lk);
lk.unlock();
if (!exit && searching)
search();
}
}
// MainThread::idle_loop() is where the main thread is parked waiting to be started
// when there is a new search. The main thread will launch all the slave threads.
void MainThread::idle_loop() {
while (!exit)
{
std::unique_lock<Mutex> lk(mutex);
thinking = false;
while (!thinking && !exit)
{
sleepCondition.notify_one(); // Wake up the UI thread if needed
sleepCondition.wait(lk);
}
lk.unlock();
if (!exit)
think();
}
}
// MainThread::join() waits for main thread to finish thinking
void MainThread::join() {
std::unique_lock<Mutex> lk(mutex);
sleepCondition.wait(lk, [&]{ return !thinking; });
}
// ThreadPool::init() is called at startup to create and launch requested threads,
// that will go immediately to sleep. We cannot use a c'tor because Threads is a
// static object and we need a fully initialized engine at this point due to
// allocation of Endgames in Thread c'tor.
void ThreadPool::init() {
timer = new_thread<TimerThread>();
push_back(new_thread<MainThread>());
read_uci_options();
}
// ThreadPool::exit() terminates the threads before the program exits. Cannot be
// done in d'tor because threads must be terminated before freeing us.
void ThreadPool::exit() {
delete_thread(timer); // As first because check_time() accesses threads data
timer = nullptr;
for (Thread* th : *this)
delete_thread(th);
clear(); // Get rid of stale pointers
}
// ThreadPool::read_uci_options() updates internal threads parameters from the
// corresponding UCI options and creates/destroys threads to match the requested
// number. Thread objects are dynamically allocated to avoid creating all possible
// threads in advance (which include pawns and material tables), even if only a
// few are to be used.
void ThreadPool::read_uci_options() {
size_t requested = Options["Threads"];
assert(requested > 0);
while (size() < requested)
push_back(new_thread<Thread>());
while (size() > requested)
{
delete_thread(back());
pop_back();
}
}
// ThreadPool::nodes_searched() returns the number of nodes searched
int64_t ThreadPool::nodes_searched() {
int64_t nodes = 0;
for (Thread *th : *this)
nodes += th->rootPos.nodes_searched();
return nodes;
}
// ThreadPool::start_thinking() wakes up the main thread sleeping in
// MainThread::idle_loop() and starts a new search, then returns immediately.
void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits,
StateStackPtr& states) {
main()->join();
Signals.stopOnPonderhit = Signals.firstRootMove = false;
Signals.stop = Signals.failedLowAtRoot = false;
main()->rootMoves.clear();
main()->rootPos = pos;
Limits = limits;
if (states.get()) // If we don't set a new position, preserve current state
{
SetupStates = std::move(states); // Ownership transfer here
assert(!states.get());
}
for (const auto& m : MoveList<LEGAL>(pos))
if ( limits.searchmoves.empty()
|| std::count(limits.searchmoves.begin(), limits.searchmoves.end(), m))
main()->rootMoves.push_back(RootMove(m));
main()->thinking = true;
main()->notify_one(); // Wake up main thread: 'thinking' must be already set
}