1
0
Fork 0
stockfish/src/nnue/layers/clipped_relu.h

167 lines
6.3 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Definition of layer ClippedReLU of NNUE evaluation function
#ifndef NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED
#define NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED
#include "../nnue_common.h"
namespace Stockfish::Eval::NNUE::Layers {
// Clipped ReLU
template <typename PreviousLayer>
class ClippedReLU {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
using OutputType = std::uint8_t;
static_assert(std::is_same<InputType, std::int32_t>::value, "");
// Number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
static constexpr IndexType kOutputDimensions = kInputDimensions;
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
PreviousLayer::kBufferSize + kSelfBufferSize;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0x538D24C7u;
hash_value += PreviousLayer::GetHashValue();
return hash_value;
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
return previous_layer_.ReadParameters(stream);
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
const auto input = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const auto output = reinterpret_cast<OutputType*>(buffer);
#if defined(USE_AVX2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
const __m256i kZero = _mm256_setzero_si256();
const __m256i kOffsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
const auto in = reinterpret_cast<const __m256i*>(input);
const auto out = reinterpret_cast<__m256i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 0]),
_mm256_load_si256(&in[i * 4 + 1])), kWeightScaleBits);
const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 2]),
_mm256_load_si256(&in[i * 4 + 3])), kWeightScaleBits);
_mm256_store_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8(
_mm256_packs_epi16(words0, words1), kZero), kOffsets));
}
constexpr IndexType kStart = kNumChunks * kSimdWidth;
#elif defined(USE_SSE2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
#ifdef USE_SSE41
const __m128i kZero = _mm_setzero_si128();
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), kWeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), kWeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i],
#ifdef USE_SSE41
_mm_max_epi8(packedbytes, kZero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
);
}
constexpr IndexType kStart = kNumChunks * kSimdWidth;
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
const __m64 k0x80s = _mm_set1_pi8(-128);
const auto in = reinterpret_cast<const __m64*>(input);
const auto out = reinterpret_cast<__m64*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
const __m64 words0 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 0], in[i * 4 + 1]),
kWeightScaleBits);
const __m64 words1 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 2], in[i * 4 + 3]),
kWeightScaleBits);
const __m64 packedbytes = _mm_packs_pi16(words0, words1);
out[i] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s);
}
_mm_empty();
constexpr IndexType kStart = kNumChunks * kSimdWidth;
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kInputDimensions / (kSimdWidth / 2);
const int8x8_t kZero = {0};
const auto in = reinterpret_cast<const int32x4_t*>(input);
const auto out = reinterpret_cast<int8x8_t*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
int16x8_t shifted;
const auto pack = reinterpret_cast<int16x4_t*>(&shifted);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], kWeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], kWeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), kZero);
}
constexpr IndexType kStart = kNumChunks * (kSimdWidth / 2);
#else
constexpr IndexType kStart = 0;
#endif
for (IndexType i = kStart; i < kInputDimensions; ++i) {
output[i] = static_cast<OutputType>(
std::max(0, std::min(127, input[i] >> kWeightScaleBits)));
}
return output;
}
private:
PreviousLayer previous_layer_;
};
} // namespace Stockfish::Eval::NNUE::Layers
#endif // NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED