1
0
Fork 0
stockfish/src/pawns.cpp

386 lines
11 KiB
C++

/*
Glaurung, a UCI chess playing engine.
Copyright (C) 2004-2008 Tord Romstad
Glaurung is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Glaurung is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include "pawns.h"
////
//// Local definitions
////
namespace {
/// Constants and variables
// Doubled pawn penalty by file, middle game.
const Value DoubledPawnMidgamePenalty[8] = {
Value(20), Value(30), Value(34), Value(34),
Value(34), Value(34), Value(30), Value(20)
};
// Doubled pawn penalty by file, endgame.
const Value DoubledPawnEndgamePenalty[8] = {
Value(35), Value(40), Value(40), Value(40),
Value(40), Value(40), Value(40), Value(35)
};
// Isolated pawn penalty by file, middle game.
const Value IsolatedPawnMidgamePenalty[8] = {
Value(20), Value(30), Value(34), Value(34),
Value(34), Value(34), Value(30), Value(20)
};
// Isolated pawn penalty by file, endgame.
const Value IsolatedPawnEndgamePenalty[8] = {
Value(35), Value(40), Value(40), Value(40),
Value(40), Value(40), Value(40), Value(35)
};
// Backward pawn penalty by file, middle game.
const Value BackwardPawnMidgamePenalty[8] = {
Value(16), Value(24), Value(27), Value(27),
Value(27), Value(27), Value(24), Value(16)
};
// Backward pawn penalty by file, endgame.
const Value BackwardPawnEndgamePenalty[8] = {
Value(28), Value(32), Value(32), Value(32),
Value(32), Value(32), Value(32), Value(28)
};
// Pawn chain membership bonus by file, middle game.
const Value ChainMidgameBonus[8] = {
Value(14), Value(16), Value(17), Value(18),
Value(18), Value(17), Value(16), Value(14)
};
// Pawn chain membership bonus by file, endgame.
const Value ChainEndgameBonus[8] = {
Value(16), Value(16), Value(16), Value(16),
Value(16), Value(16), Value(16), Value(16)
};
// Candidate passed pawn bonus by rank, middle game.
const Value CandidateMidgameBonus[8] = {
Value(0), Value(12), Value(12), Value(20),
Value(40), Value(90), Value(0), Value(0)
};
// Candidate passed pawn bonus by rank, endgame.
const Value CandidateEndgameBonus[8] = {
Value(0), Value(24), Value(24), Value(40),
Value(80), Value(180), Value(0), Value(0)
};
// Evaluate pawn storms?
const bool EvaluatePawnStorms = true;
// Pawn storm tables for positions with opposite castling:
const int QStormTable[64] = {
0, 0, 0, 0, 0, 0, 0, 0,
-22, -22, -22, -13, -4, 0, 0, 0,
-4, -9, -9, -9, -4, 0, 0, 0,
9, 18, 22, 18, 9, 0, 0, 0,
22, 31, 31, 22, 0, 0, 0, 0,
31, 40, 40, 31, 0, 0, 0, 0,
31, 40, 40, 31, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
};
const int KStormTable[64] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, -4, -13, -22, -27, -27,
0, 0, 0, -4, -9, -13, -18, -18,
0, 0, 0, 0, 9, 9, 9, 9,
0, 0, 0, 0, 9, 18, 27, 27,
0, 0, 0, 0, 9, 27, 40, 36,
0, 0, 0, 0, 0, 31, 40, 31,
0, 0, 0, 0, 0, 0, 0, 0
};
// Pawn storm open file bonuses by file:
const int KStormOpenFileBonus[8] = {
45, 45, 30, 0, 0, 0, 0, 0
};
const int QStormOpenFileBonus[8] = {
0, 0, 0, 0, 0, 30, 45, 30
};
}
////
//// Functions
////
/// Constructor
PawnInfoTable::PawnInfoTable(unsigned numOfEntries) {
size = numOfEntries;
entries = new PawnInfo[size];
if(entries == NULL) {
std::cerr << "Failed to allocate " << (numOfEntries * sizeof(PawnInfo))
<< " bytes for pawn hash table." << std::endl;
exit(EXIT_FAILURE);
}
this->clear();
}
/// Destructor
PawnInfoTable::~PawnInfoTable() {
delete [] entries;
}
/// PawnInfoTable::clear() clears the pawn hash table by setting all
/// entries to 0.
void PawnInfoTable::clear() {
memset(entries, 0, size * sizeof(PawnInfo));
}
/// PawnInfoTable::get_pawn_info() takes a position object as input, computes
/// a PawnInfo object, and returns a pointer to it. The result is also
/// stored in a hash table, so we don't have to recompute everything when
/// the same pawn structure occurs again.
PawnInfo *PawnInfoTable::get_pawn_info(const Position &pos) {
assert(pos.is_ok());
Key key = pos.get_pawn_key();
int index = int(key & (size - 1));
PawnInfo *pi = entries + index;
// If pi->key matches the position's pawn hash key, it means that we
// have analysed this pawn structure before, and we can simply return the
// information we found the last time instead of recomputing it:
if(pi->key == key)
return pi;
// Clear the PawnInfo object, and set the key:
pi->clear();
pi->key = key;
Value mgValue[2] = {Value(0), Value(0)};
Value egValue[2] = {Value(0), Value(0)};
// Loop through the pawns for both colors:
for(Color us = WHITE; us <= BLACK; us++) {
Color them = opposite_color(us);
Bitboard ourPawns = pos.pawns(us);
Bitboard theirPawns = pos.pawns(them);
Bitboard pawns = ourPawns;
// Initialize pawn storm scores by giving bonuses for open files:
if(EvaluatePawnStorms)
for(File f = FILE_A; f <= FILE_H; f++)
if(pos.file_is_half_open(us, f)) {
pi->ksStormValue[us] += KStormOpenFileBonus[f];
pi->qsStormValue[us] += QStormOpenFileBonus[f];
}
// Loop through all pawns of the current color and score each pawn:
while(pawns) {
Square s = pop_1st_bit(&pawns);
File f = square_file(s);
Rank r = square_rank(s);
bool passed, doubled, isolated, backward, chain, candidate;
int bonus;
assert(pos.piece_on(s) == pawn_of_color(us));
// The file containing the pawn is not half open:
pi->halfOpenFiles[us] &= ~(1 << f);
// Passed, isolated or doubled pawn?
passed = pos.pawn_is_passed(us, s);
isolated = pos.pawn_is_isolated(us, s);
doubled = pos.pawn_is_doubled(us, s);
if(EvaluatePawnStorms) {
// We calculate kingside and queenside pawn storm
// scores for both colors. These are used when evaluating
// middle game positions with opposite side castling.
//
// Each pawn is given a base score given by a piece square table
// (KStormTable[] or QStormTable[]). This score is increased if
// there are enemy pawns on adjacent files in front of the pawn.
// This is because we want to be able to open files against the
// enemy king, and to avoid blocking the pawn structure (e.g. white
// pawns on h6, g5, black pawns on h7, g6, f7).
// Kingside pawn storms:
bonus = KStormTable[relative_square(us, s)];
if(bonus > 0 && outpost_mask(us, s) & theirPawns) {
switch(f) {
case FILE_F:
bonus += bonus / 4;
break;
case FILE_G:
bonus += bonus / 2 + bonus / 4;
break;
case FILE_H:
bonus += bonus / 2;
break;
default:
break;
}
}
pi->ksStormValue[us] += bonus;
// Queenside pawn storms:
bonus = QStormTable[relative_square(us, s)];
if(bonus > 0 && passed_pawn_mask(us, s) & theirPawns) {
switch(f) {
case FILE_A:
bonus += bonus / 2;
break;
case FILE_B:
bonus += bonus / 2 + bonus / 4;
break;
case FILE_C:
bonus += bonus / 2;
break;
default:
break;
}
}
pi->qsStormValue[us] += bonus;
}
// Member of a pawn chain? We could speed up the test a little by
// introducing an array of masks indexed by color and square for doing
// the test, but because everything is hashed, it probably won't make
// any noticable difference.
chain = (us == WHITE)?
(ourPawns & neighboring_files_bb(f) & (rank_bb(r) | rank_bb(r-1))) :
(ourPawns & neighboring_files_bb(f) & (rank_bb(r) | rank_bb(r+1)));
// Test for backward pawn.
// If the pawn is isolated, passed, or member of a pawn chain, it cannot
// be backward:
if(passed || isolated || chain)
backward = false;
// If the pawn can capture an enemy pawn, it's not backward:
else if(pos.pawn_attacks(us, s) & theirPawns)
backward = false;
// Check for friendly pawns behind on neighboring files:
else if(ourPawns & in_front_bb(them, r) & neighboring_files_bb(f))
backward = false;
else {
// We now know that there is no friendly pawns beside or behind this
// pawn on neighboring files. We now check whether the pawn is
// backward by looking in the forward direction on the neighboring
// files, and seeing whether we meet a friendly or an enemy pawn first.
Bitboard b;
if(us == WHITE) {
for(b=pos.pawn_attacks(us, s); !(b&(ourPawns|theirPawns)); b<<=8);
backward = (b | (b << 8)) & theirPawns;
}
else {
for(b=pos.pawn_attacks(us, s); !(b&(ourPawns|theirPawns)); b>>=8);
backward = (b | (b >> 8)) & theirPawns;
}
}
// Test for candidate passed pawn.
candidate =
(!passed && pos.file_is_half_open(them, f) &&
count_1s_max_15(neighboring_files_bb(f)
& (in_front_bb(them, r) | rank_bb(r))
& ourPawns)
- count_1s_max_15(neighboring_files_bb(f) & in_front_bb(us, r)
& theirPawns)
>= 0);
// In order to prevent doubled passed pawns from receiving a too big
// bonus, only the frontmost passed pawn on each file is considered as
// a true passed pawn.
if(passed && (ourPawns & squares_in_front_of(us, s))) {
// candidate = true;
passed = false;
}
// Score this pawn:
Value mv = Value(0), ev = Value(0);
if(isolated) {
mv -= IsolatedPawnMidgamePenalty[f];
ev -= IsolatedPawnEndgamePenalty[f];
if(pos.file_is_half_open(them, f)) {
mv -= IsolatedPawnMidgamePenalty[f] / 2;
ev -= IsolatedPawnEndgamePenalty[f] / 2;
}
}
if(doubled) {
mv -= DoubledPawnMidgamePenalty[f];
ev -= DoubledPawnEndgamePenalty[f];
}
if(backward) {
mv -= BackwardPawnMidgamePenalty[f];
ev -= BackwardPawnEndgamePenalty[f];
if(pos.file_is_half_open(them, f)) {
mv -= BackwardPawnMidgamePenalty[f] / 2;
ev -= BackwardPawnEndgamePenalty[f] / 2;
}
}
if(chain) {
mv += ChainMidgameBonus[f];
ev += ChainEndgameBonus[f];
}
if(candidate) {
mv += CandidateMidgameBonus[pawn_rank(us, s)];
ev += CandidateEndgameBonus[pawn_rank(us, s)];
}
mgValue[us] += mv;
egValue[us] += ev;
// If the pawn is passed, set the square of the pawn in the passedPawns
// bitboard:
if(passed)
set_bit(&(pi->passedPawns), s);
}
}
pi->mgValue = int16_t(mgValue[WHITE] - mgValue[BLACK]);
pi->egValue = int16_t(egValue[WHITE] - egValue[BLACK]);
return pi;
}