1
0
Fork 0
stockfish/src/tt.cpp

231 lines
6.0 KiB
C++

/*
Glaurung, a UCI chess playing engine.
Copyright (C) 2004-2008 Tord Romstad
Glaurung is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Glaurung is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <cmath>
#include "tt.h"
////
//// Functions
////
/// Constructor
TranspositionTable::TranspositionTable(unsigned mbSize) {
size = 0;
generation = 0;
writes = 0;
entries = 0;
this->set_size(mbSize);
}
/// Destructor
TranspositionTable::~TranspositionTable() {
delete [] entries;
}
/// TranspositionTable::set_size sets the size of the transposition table,
/// measured in megabytes.
void TranspositionTable::set_size(unsigned mbSize) {
unsigned newSize;
assert(mbSize >= 4 && mbSize <= 1024);
for(newSize = 1024; newSize * 4 * (sizeof(TTEntry)) <= (mbSize << 20);
newSize *= 2);
newSize /= 2;
if(newSize != size) {
size = newSize;
delete [] entries;
entries = new TTEntry[size * 4];
if(entries == NULL) {
std::cerr << "Failed to allocate " << mbSize
<< " MB for transposition table."
<< std::endl;
exit(EXIT_FAILURE);
}
this->clear();
}
}
/// TranspositionTable::clear overwrites the entire transposition table
/// with zeroes. It is called whenever the table is resized, or when the
/// user asks the program to clear the table (from the UCI interface).
/// Perhaps we should also clear it when the "ucinewgame" command is recieved?
void TranspositionTable::clear() {
memset(entries, 0, size * 4 * sizeof(TTEntry));
}
/// TranspositionTable::store writes a new entry containing a position,
/// a value, a value type, a search depth, and a best move to the
/// transposition table. The transposition table is organized in clusters
/// of four TTEntry objects, and when a new entry is written, it replaces
/// the least valuable of the four entries in a cluster. A TTEntry t1 is
/// considered to be more valuable than a TTEntry t2 if t1 is from the
/// current search and t2 is from a previous search, or if the depth of t1
/// is bigger than the depth of t2.
void TranspositionTable::store(const Position &pos, Value v, Depth d,
Move m, ValueType type) {
TTEntry *tte, *replace;
tte = replace = entries + int(pos.get_key() & (size - 1)) * 4;
for(int i = 0; i < 4; i++) {
if((tte+i)->key() == pos.get_key()) {
if(m == MOVE_NONE)
m = (tte+i)->move();
*(tte+i) = TTEntry(pos.get_key(), v, type, d, m, generation);
return;
}
if(replace->generation() == generation) {
if((tte+i)->generation() != generation ||
(tte+i)->depth() < replace->depth())
replace = tte+i;
}
else if((tte+i)->generation() != generation &&
(tte+i)->depth() < replace->depth())
replace = tte+i;
}
*replace = TTEntry(pos.get_key(), v, type, d, m, generation);
writes++;
}
/// TranspositionTable::retrieve looks up the current position in the
/// transposition table, and extracts the value, value type, depth and
/// best move if the position is found. The return value is true if
/// the position is found, and false if it isn't.
bool TranspositionTable::retrieve(const Position &pos, Value *value,
Depth *d, Move *move,
ValueType *type) const {
TTEntry *tte;
bool found = false;
tte = entries + int(pos.get_key() & (size - 1)) * 4;
for(int i = 0; i < 4 && !found ; i++)
if((tte+i)->key() == pos.get_key()) {
tte = tte + i;
found = true;
}
if(!found) {
*move = MOVE_NONE;
return false;
}
*value = tte->value();
*type = tte->type();
*d = tte->depth();
*move = tte->move();
return true;
}
/// TranspositionTable::new_search() is called at the beginning of every new
/// search. It increments the "generation" variable, which is used to
/// distinguish transposition table entries from previous searches from
/// entries from the current search.
void TranspositionTable::new_search() {
generation++;
writes = 0;
}
/// TranspositionTable::insert_pv() is called at the end of a search
/// iteration, and inserts the PV back into the PV. This makes sure the
/// old PV moves are searched first, even if the old TT entries have been
/// overwritten.
void TranspositionTable::insert_pv(const Position &pos, Move pv[]) {
UndoInfo u;
Position p(pos);
for(int i = 0; pv[i] != MOVE_NONE; i++) {
this->store(p, VALUE_NONE, Depth(0), pv[i], VALUE_TYPE_NONE);
p.do_move(pv[i], u);
}
}
/// TranspositionTable::full() returns the permill of all transposition table
/// entries which have received at least one write during the current search.
/// It is used to display the "info hashfull ..." information in UCI.
int TranspositionTable::full() {
double N = double(size) * 4.0;
return int(1000 * (1 - exp(writes * log(1.0 - 1.0/N))));
}
/// Constructors
TTEntry::TTEntry() {
}
TTEntry::TTEntry(Key k, Value v, ValueType t, Depth d, Move m,
int generation) {
key_ = k;
data = (m & 0x7FFFF) | (t << 20) | (generation << 23);
value_ = v;
depth_ = int16_t(d);
}
/// Functions for extracting data from TTEntry objects.
Key TTEntry::key() const {
return key_;
}
Depth TTEntry::depth() const {
return Depth(depth_);
}
Move TTEntry::move() const {
return Move(data & 0x7FFFF);
}
Value TTEntry::value() const {
return Value(value_);
}
ValueType TTEntry::type() const {
return ValueType((data >> 20) & 3);
}
int TTEntry::generation() const {
return (data >> 23);
}