/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "mpconfig.h" #include "nlr.h" #include "misc.h" #include "qstr.h" #include "obj.h" #include "runtime.h" #include "irq.h" #include "pin.h" #include "genhdr/pins.h" #include "bufhelper.h" #include "spi.h" #include MICROPY_HAL_H /// \moduleref pyb /// \class SPI - a master-driven serial protocol /// /// SPI is a serial protocol that is driven by a master. At the physical level /// there are 3 lines: SCK, MOSI, MISO. /// /// See usage model of I2C; SPI is very similar. Main difference is /// parameters to init the SPI bus: /// /// from pyb import SPI /// spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=0, crc=0x7) /// /// Only required parameter is mode, SPI.MASTER or SPI.SLAVE. Polarity can be /// 0 or 1, and is the level the idle clock line sits at. Phase can be 0 or 1 /// to sample data on the first or second clock edge respectively. Crc can be /// None for no CRC, or a polynomial specifier. /// /// Additional method for SPI: /// /// data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes /// buf = bytearray(4) /// spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf /// spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf #if MICROPY_HW_ENABLE_SPI1 SPI_HandleTypeDef SPIHandle1 = {.Instance = NULL}; #endif SPI_HandleTypeDef SPIHandle2 = {.Instance = NULL}; #if MICROPY_HW_ENABLE_SPI3 SPI_HandleTypeDef SPIHandle3 = {.Instance = NULL}; #endif // Possible DMA configurations for SPI busses: // SPI1_RX: DMA2_Stream0.CHANNEL_3 or DMA2_Stream2.CHANNEL_3 // SPI1_TX: DMA2_Stream3.CHANNEL_3 or DMA2_Stream5.CHANNEL_3 // SPI2_RX: DMA1_Stream3.CHANNEL_0 // SPI2_TX: DMA1_Stream4.CHANNEL_0 // SPI3_RX: DMA1_Stream0.CHANNEL_0 or DMA1_Stream2.CHANNEL_0 // SPI3_TX: DMA1_Stream5.CHANNEL_0 or DMA1_Stream7.CHANNEL_0 #define SPI1_DMA_CLK_ENABLE __DMA2_CLK_ENABLE #define SPI1_RX_DMA_STREAM (DMA2_Stream2) #define SPI1_TX_DMA_STREAM (DMA2_Stream5) #define SPI1_DMA_CHANNEL (DMA_CHANNEL_3) #define SPI1_RX_DMA_IRQN (DMA2_Stream2_IRQn) #define SPI1_TX_DMA_IRQN (DMA2_Stream5_IRQn) #define SPI1_RX_DMA_IRQ_HANDLER DMA2_Stream2_IRQHandler #define SPI1_TX_DMA_IRQ_HANDLER DMA2_Stream5_IRQHandler #define SPI2_DMA_CLK_ENABLE __DMA1_CLK_ENABLE #define SPI2_RX_DMA_STREAM (DMA1_Stream3) #define SPI2_TX_DMA_STREAM (DMA1_Stream4) #define SPI2_DMA_CHANNEL (DMA_CHANNEL_0) #define SPI2_RX_DMA_IRQN (DMA1_Stream3_IRQn) #define SPI2_TX_DMA_IRQN (DMA1_Stream4_IRQn) #define SPI2_RX_DMA_IRQ_HANDLER DMA1_Stream3_IRQHandler #define SPI2_TX_DMA_IRQ_HANDLER DMA1_Stream4_IRQHandler #define SPI3_DMA_CLK_ENABLE __DMA1_CLK_ENABLE #define SPI3_RX_DMA_STREAM (DMA1_Stream2) #define SPI3_TX_DMA_STREAM (DMA1_Stream7) #define SPI3_DMA_CHANNEL (DMA_CHANNEL_0) #define SPI3_RX_DMA_IRQN (DMA1_Stream2_IRQn) #define SPI3_TX_DMA_IRQN (DMA1_Stream7_IRQn) #define SPI3_RX_DMA_IRQ_HANDLER DMA1_Stream2_IRQHandler #define SPI3_TX_DMA_IRQ_HANDLER DMA1_Stream7_IRQHandler #if MICROPY_HW_ENABLE_SPI1 STATIC DMA_HandleTypeDef spi1_rx_dma_handle; STATIC DMA_HandleTypeDef spi1_tx_dma_handle; void SPI1_RX_DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&spi1_rx_dma_handle); } void SPI1_TX_DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&spi1_tx_dma_handle); } #endif STATIC DMA_HandleTypeDef spi2_rx_dma_handle; STATIC DMA_HandleTypeDef spi2_tx_dma_handle; void SPI2_RX_DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&spi2_rx_dma_handle); } void SPI2_TX_DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&spi2_tx_dma_handle); } #if MICROPY_HW_ENABLE_SPI3 STATIC DMA_HandleTypeDef spi3_rx_dma_handle; STATIC DMA_HandleTypeDef spi3_tx_dma_handle; void SPI3_RX_DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&spi3_rx_dma_handle); } void SPI3_TX_DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&spi3_tx_dma_handle); } #endif void spi_init0(void) { // reset the SPI handles #if MICROPY_HW_ENABLE_SPI1 memset(&SPIHandle1, 0, sizeof(SPI_HandleTypeDef)); SPIHandle1.Instance = SPI1; #endif memset(&SPIHandle2, 0, sizeof(SPI_HandleTypeDef)); SPIHandle2.Instance = SPI2; #if MICROPY_HW_ENABLE_SPI3 memset(&SPIHandle3, 0, sizeof(SPI_HandleTypeDef)); SPIHandle3.Instance = SPI3; #endif } // TODO allow to take a list of pins to use void spi_init(SPI_HandleTypeDef *spi, bool enable_nss_pin) { // init the GPIO lines GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Speed = GPIO_SPEED_FAST; GPIO_InitStructure.Pull = spi->Init.CLKPolarity == SPI_POLARITY_LOW ? GPIO_PULLDOWN : GPIO_PULLUP; DMA_HandleTypeDef *rx_dma, *tx_dma; IRQn_Type rx_dma_irqn, tx_dma_irqn; const pin_obj_t *pins[4]; if (0) { #if MICROPY_HW_ENABLE_SPI1 } else if (spi->Instance == SPI1) { // X-skin: X5=PA4=SPI1_NSS, X6=PA5=SPI1_SCK, X7=PA6=SPI1_MISO, X8=PA7=SPI1_MOSI pins[0] = &pin_A4; pins[1] = &pin_A5; pins[2] = &pin_A6; pins[3] = &pin_A7; GPIO_InitStructure.Alternate = GPIO_AF5_SPI1; // enable the SPI clock __SPI1_CLK_ENABLE(); // configure DMA SPI1_DMA_CLK_ENABLE(); spi1_rx_dma_handle.Instance = SPI1_RX_DMA_STREAM; spi1_rx_dma_handle.Init.Channel = SPI1_DMA_CHANNEL; spi1_tx_dma_handle.Instance = SPI1_TX_DMA_STREAM; rx_dma = &spi1_rx_dma_handle; tx_dma = &spi1_tx_dma_handle; rx_dma_irqn = SPI1_RX_DMA_IRQN; tx_dma_irqn = SPI1_TX_DMA_IRQN; #endif } else if (spi->Instance == SPI2) { // Y-skin: Y5=PB12=SPI2_NSS, Y6=PB13=SPI2_SCK, Y7=PB14=SPI2_MISO, Y8=PB15=SPI2_MOSI pins[0] = &pin_B12; pins[1] = &pin_B13; pins[2] = &pin_B14; pins[3] = &pin_B15; GPIO_InitStructure.Alternate = GPIO_AF5_SPI2; // enable the SPI clock __SPI2_CLK_ENABLE(); // configure DMA SPI2_DMA_CLK_ENABLE(); spi2_rx_dma_handle.Instance = SPI2_RX_DMA_STREAM; spi2_rx_dma_handle.Init.Channel = SPI2_DMA_CHANNEL; spi2_tx_dma_handle.Instance = SPI2_TX_DMA_STREAM; rx_dma = &spi2_rx_dma_handle; tx_dma = &spi2_tx_dma_handle; rx_dma_irqn = SPI2_RX_DMA_IRQN; tx_dma_irqn = SPI2_TX_DMA_IRQN; #if MICROPY_HW_ENABLE_SPI3 } else if (spi->Instance == SPI3) { pins[0] = &pin_A4; pins[1] = &pin_B3; pins[2] = &pin_B4; pins[3] = &pin_B5; GPIO_InitStructure.Alternate = GPIO_AF6_SPI3; // enable the SPI clock __SPI3_CLK_ENABLE(); // configure DMA SPI3_DMA_CLK_ENABLE(); spi3_rx_dma_handle.Instance = SPI3_RX_DMA_STREAM; spi3_rx_dma_handle.Init.Channel = SPI3_DMA_CHANNEL; spi3_tx_dma_handle.Instance = SPI3_TX_DMA_STREAM; rx_dma = &spi3_rx_dma_handle; tx_dma = &spi3_tx_dma_handle; rx_dma_irqn = SPI3_RX_DMA_IRQN; tx_dma_irqn = SPI3_TX_DMA_IRQN; #endif } else { // SPI does not exist for this board (shouldn't get here, should be checked by caller) return; } for (uint i = (enable_nss_pin ? 0 : 1); i < 4; i++) { GPIO_InitStructure.Pin = pins[i]->pin_mask; HAL_GPIO_Init(pins[i]->gpio, &GPIO_InitStructure); } // init the SPI device if (HAL_SPI_Init(spi) != HAL_OK) { // init error // TODO should raise an exception, but this function is not necessarily going to be // called via Python, so may not be properly wrapped in an NLR handler printf("OSError: HAL_SPI_Init failed\n"); return; } // configure DMA rx_dma->Init.Direction = DMA_PERIPH_TO_MEMORY; rx_dma->Init.PeriphInc = DMA_PINC_DISABLE; rx_dma->Init.MemInc = DMA_MINC_ENABLE; rx_dma->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; rx_dma->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; rx_dma->Init.Mode = DMA_NORMAL; rx_dma->Init.Priority = DMA_PRIORITY_LOW; rx_dma->Init.FIFOMode = DMA_FIFOMODE_DISABLE; rx_dma->Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; rx_dma->Init.MemBurst = DMA_MBURST_INC4; rx_dma->Init.PeriphBurst = DMA_PBURST_INC4; tx_dma->Init = rx_dma->Init; // copy rx settings tx_dma->Init.Direction = DMA_MEMORY_TO_PERIPH; __HAL_LINKDMA(spi, hdmarx, *rx_dma); HAL_DMA_DeInit(rx_dma); HAL_DMA_Init(rx_dma); __HAL_LINKDMA(spi, hdmatx, *tx_dma); HAL_DMA_DeInit(tx_dma); HAL_DMA_Init(tx_dma); // Enable the relevant IRQs. HAL_NVIC_SetPriority(rx_dma_irqn, 6, 0); HAL_NVIC_EnableIRQ(rx_dma_irqn); HAL_NVIC_SetPriority(tx_dma_irqn, 6, 0); HAL_NVIC_EnableIRQ(tx_dma_irqn); } void spi_deinit(SPI_HandleTypeDef *spi) { HAL_SPI_DeInit(spi); if (0) { #if MICROPY_HW_ENABLE_SPI1 } else if (spi->Instance == SPI1) { __SPI1_FORCE_RESET(); __SPI1_RELEASE_RESET(); __SPI1_CLK_DISABLE(); #endif } else if (spi->Instance == SPI2) { __SPI2_FORCE_RESET(); __SPI2_RELEASE_RESET(); __SPI2_CLK_DISABLE(); #if MICROPY_HW_ENABLE_SPI3 } else if (spi->Instance == SPI3) { __SPI3_FORCE_RESET(); __SPI3_RELEASE_RESET(); __SPI3_CLK_DISABLE(); #endif } } STATIC HAL_StatusTypeDef spi_wait_dma_finished(SPI_HandleTypeDef *spi, uint32_t timeout) { uint32_t start = HAL_GetTick(); while (HAL_SPI_GetState(spi) != HAL_SPI_STATE_READY) { if (HAL_GetTick() - start >= timeout) { return HAL_TIMEOUT; } __WFI(); } return HAL_OK; } /******************************************************************************/ /* Micro Python bindings */ typedef struct _pyb_spi_obj_t { mp_obj_base_t base; SPI_HandleTypeDef *spi; } pyb_spi_obj_t; STATIC const pyb_spi_obj_t pyb_spi_obj[] = { #if MICROPY_HW_ENABLE_SPI1 {{&pyb_spi_type}, &SPIHandle1}, #else {{&pyb_spi_type}, NULL}, #endif {{&pyb_spi_type}, &SPIHandle2}, #if MICROPY_HW_ENABLE_SPI3 {{&pyb_spi_type}, &SPIHandle3}, #else {{&pyb_spi_type}, NULL}, #endif }; #define PYB_NUM_SPI MP_ARRAY_SIZE(pyb_spi_obj) SPI_HandleTypeDef *spi_get_handle(mp_obj_t o) { if (!MP_OBJ_IS_TYPE(o, &pyb_spi_type)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "expecting an SPI object")); } pyb_spi_obj_t *self = o; return self->spi; } STATIC void pyb_spi_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { pyb_spi_obj_t *self = self_in; uint spi_num; if (self->spi->Instance == SPI1) { spi_num = 1; } else if (self->spi->Instance == SPI2) { spi_num = 2; } else { spi_num = 3; } if (self->spi->State == HAL_SPI_STATE_RESET) { print(env, "SPI(%u)", spi_num); } else { if (self->spi->Init.Mode == SPI_MODE_MASTER) { // compute baudrate uint spi_clock; if (self->spi->Instance == SPI1) { // SPI1 is on APB2 spi_clock = HAL_RCC_GetPCLK2Freq(); } else { // SPI2 and SPI3 are on APB1 spi_clock = HAL_RCC_GetPCLK1Freq(); } uint baudrate = spi_clock >> ((self->spi->Init.BaudRatePrescaler >> 3) + 1); print(env, "SPI(%u, SPI.MASTER, baudrate=%u", spi_num, baudrate); } else { print(env, "SPI(%u, SPI.SLAVE", spi_num); } print(env, ", polarity=%u, phase=%u, bits=%u", self->spi->Init.CLKPolarity == SPI_POLARITY_LOW ? 0 : 1, self->spi->Init.CLKPhase == SPI_PHASE_1EDGE ? 0 : 1, self->spi->Init.DataSize == SPI_DATASIZE_8BIT ? 8 : 16); if (self->spi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED) { print(env, ", crc=0x%x", self->spi->Init.CRCPolynomial); } print(env, ")"); } } /// \method init(mode, baudrate=328125, *, polarity=1, phase=0, bits=8, firstbit=SPI.MSB, ti=False, crc=None) /// /// Initialise the SPI bus with the given parameters: /// /// - `mode` must be either `SPI.MASTER` or `SPI.SLAVE`. /// - `baudrate` is the SCK clock rate (only sensible for a master). STATIC mp_obj_t pyb_spi_init_helper(const pyb_spi_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 328125} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_dir, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_DIRECTION_2LINES} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_nss, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_NSS_SOFT} }, { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_FIRSTBIT_MSB} }, { MP_QSTR_ti, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_crc, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // set the SPI configuration values SPI_InitTypeDef *init = &self->spi->Init; init->Mode = args[0].u_int; // compute the baudrate prescaler from the requested baudrate // select a prescaler that yields at most the requested baudrate uint spi_clock; if (self->spi->Instance == SPI1) { // SPI1 is on APB2 spi_clock = HAL_RCC_GetPCLK2Freq(); } else { // SPI2 and SPI3 are on APB1 spi_clock = HAL_RCC_GetPCLK1Freq(); } uint br_prescale = spi_clock / args[1].u_int; if (br_prescale <= 2) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; } else if (br_prescale <= 4) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; } else if (br_prescale <= 8) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; } else if (br_prescale <= 16) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; } else if (br_prescale <= 32) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; } else if (br_prescale <= 64) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; } else if (br_prescale <= 128) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; } else { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; } init->CLKPolarity = args[2].u_int == 0 ? SPI_POLARITY_LOW : SPI_POLARITY_HIGH; init->CLKPhase = args[3].u_int == 0 ? SPI_PHASE_1EDGE : SPI_PHASE_2EDGE; init->Direction = args[4].u_int; init->DataSize = (args[5].u_int == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT; init->NSS = args[6].u_int; init->FirstBit = args[7].u_int; init->TIMode = args[8].u_bool ? SPI_TIMODE_ENABLED : SPI_TIMODE_DISABLED; if (args[9].u_obj == mp_const_none) { init->CRCCalculation = SPI_CRCCALCULATION_DISABLED; init->CRCPolynomial = 0; } else { init->CRCCalculation = SPI_CRCCALCULATION_ENABLED; init->CRCPolynomial = mp_obj_get_int(args[9].u_obj); } // init the SPI bus spi_init(self->spi, init->NSS != SPI_NSS_SOFT); return mp_const_none; } /// \classmethod \constructor(bus, ...) /// /// Construct an SPI object on the given bus. `bus` can be 1 or 2. /// With no additional parameters, the SPI object is created but not /// initialised (it has the settings from the last initialisation of /// the bus, if any). If extra arguments are given, the bus is initialised. /// See `init` for parameters of initialisation. /// /// The physical pins of the SPI busses are: /// /// - `SPI(1)` is on the X position: `(NSS, SCK, MISO, MOSI) = (X5, X6, X7, X8) = (PA4, PA5, PA6, PA7)` /// - `SPI(2)` is on the Y position: `(NSS, SCK, MISO, MOSI) = (Y5, Y6, Y7, Y8) = (PB12, PB13, PB14, PB15)` /// /// At the moment, the NSS pin is not used by the SPI driver and is free /// for other use. STATIC mp_obj_t pyb_spi_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // get SPI number mp_int_t spi_id = mp_obj_get_int(args[0]) - 1; // check SPI number if (!(0 <= spi_id && spi_id < PYB_NUM_SPI && pyb_spi_obj[spi_id].spi != NULL)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "SPI bus %d does not exist", spi_id + 1)); } // get SPI object const pyb_spi_obj_t *spi_obj = &pyb_spi_obj[spi_id]; if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_spi_init_helper(spi_obj, n_args - 1, args + 1, &kw_args); } return (mp_obj_t)spi_obj; } STATIC mp_obj_t pyb_spi_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_spi_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init); /// \method deinit() /// Turn off the SPI bus. STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) { pyb_spi_obj_t *self = self_in; spi_deinit(self->spi); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit); /// \method send(send, *, timeout=5000) /// Send data on the bus: /// /// - `send` is the data to send (an integer to send, or a buffer object). /// - `timeout` is the timeout in milliseconds to wait for the send. /// /// Return value: `None`. STATIC mp_obj_t pyb_spi_send(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // TODO assumes transmission size is 8-bits wide static const mp_arg_t allowed_args[] = { { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_spi_obj_t *self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the buffer to send from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data); // send the data HAL_StatusTypeDef status; if (query_irq() == IRQ_STATE_DISABLED) { status = HAL_SPI_Transmit(self->spi, bufinfo.buf, bufinfo.len, args[1].u_int); } else { status = HAL_SPI_Transmit_DMA(self->spi, bufinfo.buf, bufinfo.len); if (status == HAL_OK) { status = spi_wait_dma_finished(self->spi, args[1].u_int); } } if (status != HAL_OK) { mp_hal_raise(status); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_obj, 1, pyb_spi_send); /// \method recv(recv, *, timeout=5000) /// /// Receive data on the bus: /// /// - `recv` can be an integer, which is the number of bytes to receive, /// or a mutable buffer, which will be filled with received bytes. /// - `timeout` is the timeout in milliseconds to wait for the receive. /// /// Return value: if `recv` is an integer then a new buffer of the bytes received, /// otherwise the same buffer that was passed in to `recv`. STATIC mp_obj_t pyb_spi_recv(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // TODO assumes transmission size is 8-bits wide static const mp_arg_t allowed_args[] = { { MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_spi_obj_t *self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the buffer to receive into mp_buffer_info_t bufinfo; mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &bufinfo); // receive the data HAL_StatusTypeDef status; if (query_irq() == IRQ_STATE_DISABLED) { status = HAL_SPI_Receive(self->spi, bufinfo.buf, bufinfo.len, args[1].u_int); } else { status = HAL_SPI_Receive_DMA(self->spi, bufinfo.buf, bufinfo.len); if (status == HAL_OK) { status = spi_wait_dma_finished(self->spi, args[1].u_int); } } if (status != HAL_OK) { mp_hal_raise(status); } // return the received data if (o_ret == MP_OBJ_NULL) { return args[0].u_obj; } else { return mp_obj_str_builder_end(o_ret); } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_recv_obj, 1, pyb_spi_recv); /// \method send_recv(send, recv=None, *, timeout=5000) /// /// Send and receive data on the bus at the same time: /// /// - `send` is the data to send (an integer to send, or a buffer object). /// - `recv` is a mutable buffer which will be filled with received bytes. /// It can be the same as `send`, or omitted. If omitted, a new buffer will /// be created. /// - `timeout` is the timeout in milliseconds to wait for the receive. /// /// Return value: the buffer with the received bytes. STATIC mp_obj_t pyb_spi_send_recv(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // TODO assumes transmission size is 8-bits wide static const mp_arg_t allowed_args[] = { { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_recv, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_spi_obj_t *self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get buffers to send from/receive to mp_buffer_info_t bufinfo_send; uint8_t data_send[1]; mp_buffer_info_t bufinfo_recv; mp_obj_t o_ret; if (args[0].u_obj == args[1].u_obj) { // same object for send and receive, it must be a r/w buffer mp_get_buffer_raise(args[0].u_obj, &bufinfo_send, MP_BUFFER_RW); bufinfo_recv = bufinfo_send; o_ret = MP_OBJ_NULL; } else { // get the buffer to send from pyb_buf_get_for_send(args[0].u_obj, &bufinfo_send, data_send); // get the buffer to receive into if (args[1].u_obj == MP_OBJ_NULL) { // only send argument given, so create a fresh buffer of the send length bufinfo_recv.len = bufinfo_send.len; bufinfo_recv.typecode = 'B'; o_ret = mp_obj_str_builder_start(&mp_type_bytes, bufinfo_recv.len, (byte**)&bufinfo_recv.buf); } else { // recv argument given mp_get_buffer_raise(args[1].u_obj, &bufinfo_recv, MP_BUFFER_WRITE); if (bufinfo_recv.len != bufinfo_send.len) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "recv must be same length as send")); } o_ret = MP_OBJ_NULL; } } // send and receive the data HAL_StatusTypeDef status; if (query_irq() == IRQ_STATE_DISABLED) { status = HAL_SPI_TransmitReceive(self->spi, bufinfo_send.buf, bufinfo_recv.buf, bufinfo_send.len, args[2].u_int); } else { status = HAL_SPI_TransmitReceive_DMA(self->spi, bufinfo_send.buf, bufinfo_recv.buf, bufinfo_send.len); if (status == HAL_OK) { status = spi_wait_dma_finished(self->spi, args[2].u_int); } } if (status != HAL_OK) { mp_hal_raise(status); } // return the received data if (o_ret == MP_OBJ_NULL) { return args[1].u_obj; } else { return mp_obj_str_builder_end(o_ret); } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_recv_obj, 1, pyb_spi_send_recv); STATIC const mp_map_elem_t pyb_spi_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_spi_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_spi_deinit_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_spi_send_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_spi_recv_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_send_recv), (mp_obj_t)&pyb_spi_send_recv_obj }, // class constants /// \constant MASTER - for initialising the bus to master mode /// \constant SLAVE - for initialising the bus to slave mode /// \constant MSB - set the first bit to MSB /// \constant LSB - set the first bit to LSB { MP_OBJ_NEW_QSTR(MP_QSTR_MASTER), MP_OBJ_NEW_SMALL_INT(SPI_MODE_MASTER) }, { MP_OBJ_NEW_QSTR(MP_QSTR_SLAVE), MP_OBJ_NEW_SMALL_INT(SPI_MODE_SLAVE) }, { MP_OBJ_NEW_QSTR(MP_QSTR_MSB), MP_OBJ_NEW_SMALL_INT(SPI_FIRSTBIT_MSB) }, { MP_OBJ_NEW_QSTR(MP_QSTR_LSB), MP_OBJ_NEW_SMALL_INT(SPI_FIRSTBIT_LSB) }, /* TODO { MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_2LINES ((uint32_t)0x00000000) { MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_2LINES_RXONLY SPI_CR1_RXONLY { MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_1LINE SPI_CR1_BIDIMODE { MP_OBJ_NEW_QSTR(MP_QSTR_NSS_SOFT SPI_CR1_SSM { MP_OBJ_NEW_QSTR(MP_QSTR_NSS_HARD_INPUT ((uint32_t)0x00000000) { MP_OBJ_NEW_QSTR(MP_QSTR_NSS_HARD_OUTPUT ((uint32_t)0x00040000) */ }; STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table); const mp_obj_type_t pyb_spi_type = { { &mp_type_type }, .name = MP_QSTR_SPI, .print = pyb_spi_print, .make_new = pyb_spi_make_new, .locals_dict = (mp_obj_t)&pyb_spi_locals_dict, };