/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Glenn Ruben Bakke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "mphalport.h" #include "hal_adc.h" #ifdef HAL_ADC_MODULE_ENABLED #define ADC_REF_VOLTAGE_IN_MILLIVOLTS (1200) // Reference voltage (in milli volts) used by ADC while doing conversion. #define ADC_PRE_SCALING_COMPENSATION (3) // The ADC is configured to use VDD with 1/3 prescaling as input. And hence the result of conversion is to be multiplied by 3 to get the actual value of the battery voltage. #define DIODE_FWD_VOLT_DROP_MILLIVOLTS (270) // Typical forward voltage drop of the diode (Part no: SD103ATW-7-F) that is connected in series with the voltage supply. This is the voltage drop when the forward current is 1mA. Source: Data sheet of 'SURFACE MOUNT SCHOTTKY BARRIER DIODE ARRAY' available at www.diodes.com. #define ADC_RESULT_IN_MILLI_VOLTS(ADC_VALUE)\ ((((ADC_VALUE) * ADC_REF_VOLTAGE_IN_MILLIVOLTS) / 255) * ADC_PRE_SCALING_COMPENSATION) static const uint32_t hal_adc_input_lookup[] = { ADC_CONFIG_PSEL_AnalogInput0 << ADC_CONFIG_PSEL_Pos, ADC_CONFIG_PSEL_AnalogInput1 << ADC_CONFIG_PSEL_Pos, ADC_CONFIG_PSEL_AnalogInput2 << ADC_CONFIG_PSEL_Pos, ADC_CONFIG_PSEL_AnalogInput3 << ADC_CONFIG_PSEL_Pos, ADC_CONFIG_PSEL_AnalogInput4 << ADC_CONFIG_PSEL_Pos, ADC_CONFIG_PSEL_AnalogInput5 << ADC_CONFIG_PSEL_Pos, ADC_CONFIG_PSEL_AnalogInput6 << ADC_CONFIG_PSEL_Pos, ADC_CONFIG_PSEL_AnalogInput7 << ADC_CONFIG_PSEL_Pos }; static uint8_t battery_level_in_percent(const uint16_t mvolts) { uint8_t battery_level; if (mvolts >= 3000) { battery_level = 100; } else if (mvolts > 2900) { battery_level = 100 - ((3000 - mvolts) * 58) / 100; } else if (mvolts > 2740) { battery_level = 42 - ((2900 - mvolts) * 24) / 160; } else if (mvolts > 2440) { battery_level = 18 - ((2740 - mvolts) * 12) / 300; } else if (mvolts > 2100) { battery_level = 6 - ((2440 - mvolts) * 6) / 340; } else { battery_level = 0; } return battery_level; } uint16_t hal_adc_channel_value(hal_adc_config_t const * p_adc_conf) { ADC_BASE->INTENSET = ADC_INTENSET_END_Msk; ADC_BASE->CONFIG = (ADC_CONFIG_RES_8bit << ADC_CONFIG_RES_Pos) | (ADC_CONFIG_INPSEL_AnalogInputTwoThirdsPrescaling << ADC_CONFIG_INPSEL_Pos) | (ADC_CONFIG_REFSEL_VBG << ADC_CONFIG_REFSEL_Pos) | (hal_adc_input_lookup[p_adc_conf->channel]) | (ADC_CONFIG_EXTREFSEL_None << ADC_CONFIG_EXTREFSEL_Pos); ADC_BASE->EVENTS_END = 0; ADC_BASE->ENABLE = ADC_ENABLE_ENABLE_Enabled; ADC_BASE->EVENTS_END = 0; ADC_BASE->TASKS_START = 1; while (!ADC_BASE->EVENTS_END) { ; } uint8_t adc_result; ADC_BASE->EVENTS_END = 0; adc_result = ADC_BASE->RESULT; ADC_BASE->TASKS_STOP = 1; return adc_result; } uint16_t hal_adc_battery_level(void) { ADC_BASE->INTENSET = ADC_INTENSET_END_Msk; ADC_BASE->CONFIG = (ADC_CONFIG_RES_8bit << ADC_CONFIG_RES_Pos) | (ADC_CONFIG_INPSEL_SupplyOneThirdPrescaling << ADC_CONFIG_INPSEL_Pos) | (ADC_CONFIG_REFSEL_VBG << ADC_CONFIG_REFSEL_Pos) | (ADC_CONFIG_PSEL_Disabled << ADC_CONFIG_PSEL_Pos) | (ADC_CONFIG_EXTREFSEL_None << ADC_CONFIG_EXTREFSEL_Pos); ADC_BASE->EVENTS_END = 0; ADC_BASE->ENABLE = ADC_ENABLE_ENABLE_Enabled; ADC_BASE->EVENTS_END = 0; ADC_BASE->TASKS_START = 1; while (!ADC_BASE->EVENTS_END) { ; } uint8_t adc_result; uint16_t batt_lvl_in_milli_volts; ADC_BASE->EVENTS_END = 0; adc_result = ADC_BASE->RESULT; ADC_BASE->TASKS_STOP = 1; batt_lvl_in_milli_volts = ADC_RESULT_IN_MILLI_VOLTS(adc_result) + DIODE_FWD_VOLT_DROP_MILLIVOLTS; return battery_level_in_percent(batt_lvl_in_milli_volts); } #endif // HAL_ADC_MODULE_ENABLED