/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mpconfig.h" #if 1 // MICROPY_PY_ #include #include #include #include "py/nlr.h" #include "py/obj.h" #include "py/runtime.h" #include "py/stream.h" #include "lib/netutils/netutils.h" // Zephyr includes #include #include #include #include #define PACK_ALIAS_STRUCT __attribute__((__packed__,__may_alias__)) #include #if 1 // print debugging info #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif #define IPADDR {{192, 0, 2, 2}} #define MY_IPADDR {IPADDR} #define WAIT_TICKS TICKS_UNLIMITED // These are uIP public interface variables wich specify this host address/netmask. uip_ipaddr_t uip_hostaddr = IPADDR; uip_ipaddr_t uip_netmask = { { 255, 255, 255, 0 } }; uip_ipaddr_t uip_draddr = {{192, 0, 2, 1}}; static struct net_addr my_addr = { .family = AF_INET, { .in_addr = MY_IPADDR }, }; typedef struct _socket_obj_t { mp_obj_base_t base; struct net_context *sock; struct net_addr peer_addr; struct net_buf *incoming; mp_uint_t recv_offset; #define STATE_NEW 0 #define STATE_CONNECTING 1 #define STATE_CONNECTED 2 #define STATE_PEER_CLOSED 3 #define STATE_CLOSED 4 byte state; } socket_obj_t; static inline void poll_sockets(void) { if (MP_STATE_VM(mp_pending_exception) != NULL) { mp_obj_t obj = MP_STATE_VM(mp_pending_exception); MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL; nlr_raise(obj); } task_sleep(sys_clock_ticks_per_sec / 10); } STATIC void socket_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; socket_obj_t *self = self_in; if (self->sock != NULL) { struct uip_conn *uip_connr = net_context_get_internal_connection(self->sock); mp_printf(print, "sock, self->state, net_context_get_connection_status(self->sock), self->incoming, self->recv_offset, uip_connr); if (uip_connr != NULL) { mp_printf(print, " uip_flags=%x uip_oustand=%d", uip_connr->tcpstateflags, uip_outstanding(uip_connr)); } mp_printf(print, ">"); } else { mp_printf(print, "", self->sock, self->state); } } STATIC mp_obj_t socket_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { assert(n_args == 0); #if 0 // Net initialization on demand. Has been moved to main(), to let // the app respond to pings imemdiately after startup. if (net_init() < 0) { printf("Error in net_init()\n"); return mp_const_none; } #endif socket_obj_t *o = m_new_obj(socket_obj_t); o->base.type = type; // We don't know if this will be client or server socket, so it's // instantiated lazily o->sock = NULL; o->incoming = NULL; o->recv_offset = 0; o->state = STATE_NEW; return o; } STATIC mp_obj_t socket_connect(mp_obj_t self_in, mp_obj_t addr_in) { socket_obj_t *self = self_in; // Get address uint8_t ip[NETUTILS_IPV4ADDR_BUFSIZE]; mp_uint_t port = netutils_parse_inet_addr(addr_in, ip, NETUTILS_BIG); DEBUG_printf("resolved: %d.%d.%d.%d\n", ip[0], ip[1], ip[2], ip[3]); struct in_addr in4addr_peer = {{{ip[0], ip[1], ip[2], ip[3]}}}; self->peer_addr.in_addr = in4addr_peer; self->peer_addr.family = AF_INET; int proto = IPPROTO_TCP; self->sock = net_context_get(proto, &self->peer_addr, port, &my_addr, 0); int ret = net_context_tcp_init(self->sock, /*NULL,*/ NET_TCP_TYPE_CLIENT); DEBUG_printf("net_context_tcp_init()=%d\n", ret); // Blocking wait until actually connected while (net_context_get_connection_status(self->sock) == -EINPROGRESS) { DEBUG_printf("waiting to connect: %d\n", net_context_get_connection_status(self->sock)); poll_sockets(); } if (net_context_get_connection_status(self->sock) == -ECONNRESET) { self->state = STATE_PEER_CLOSED; nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(MP_ECONNRESET))); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_connect_obj, socket_connect); STATIC mp_obj_t socket_send(mp_obj_t self_in, mp_obj_t buf_in) { socket_obj_t *self = self_in; mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ); struct net_buf *netbuf = ip_buf_get_tx(self->sock); uint8_t *ptr = net_buf_add(netbuf, bufinfo.len); memcpy(ptr, bufinfo.buf, bufinfo.len); ip_buf_appdatalen(netbuf) = bufinfo.len; int ret = net_send(netbuf); return mp_obj_new_int(ret); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_send_obj, socket_send); STATIC mp_uint_t socket_write(mp_obj_t self_in, const void *buf, mp_uint_t len, int *errcode) { DEBUG_printf("socket_write(%p, %p, %d)\n", self_in, buf, len); socket_obj_t *self = self_in; struct uip_conn *uip_connr = net_context_get_internal_connection(self->sock); while (uip_outstanding(uip_connr)) { DEBUG_printf("wait outstanding flush of %d bytes (connflags: %x)\n", uip_outstanding(uip_connr), uip_connr->tcpstateflags); poll_sockets(); } struct net_buf *netbuf = ip_buf_get_tx(self->sock); if (len > net_buf_tailroom(netbuf)) { len = net_buf_tailroom(netbuf); } uint8_t *ptr = net_buf_add(netbuf, len); memcpy(ptr, buf, len); ip_buf_appdatalen(netbuf) = len; int ret = net_send(netbuf); if (ret >= 0) { return len; } *errcode = ret; return MP_STREAM_ERROR; } STATIC mp_uint_t socket_read(mp_obj_t self_in, void *buf, mp_uint_t len, int *errcode) { socket_obj_t *self = self_in; struct uip_conn *uip_connr = net_context_get_internal_connection(self->sock); DEBUG_printf("socket_read(%p, %p, %d) conn_flags: %x\n", self_in, buf, len, uip_connr->tcpstateflags); while (self->incoming == NULL) { if (self->state == STATE_PEER_CLOSED /*|| uip_connr->tcpstateflags == UIP_CLOSED*/) { DEBUG_printf("socket_read: Returning EOF\n"); return 0; } DEBUG_printf("socket_read: calling net_receive\n"); self->incoming = net_receive(self->sock, WAIT_TICKS); if (uip_closed(self->incoming)) { DEBUG_printf("uip_closed() == true\n"); self->state = STATE_PEER_CLOSED; } if (ip_buf_appdatalen(self->incoming) == 0) { // We may be passed 0-length packet to indicate peer closed // condition (or by any other reason). self->incoming = NULL; } } mp_uint_t remaining = ip_buf_appdatalen(self->incoming) - self->recv_offset; if (len > remaining) { len = remaining; } memcpy(buf, ip_buf_appdata(self->incoming) + self->recv_offset, len); remaining -= len; if (remaining == 0) { ip_buf_unref(self->incoming); self->incoming = NULL; self->recv_offset = 0; } else { self->recv_offset += len; } return len; } STATIC mp_obj_t socket_recv(mp_obj_t self_in, mp_obj_t len_in) { socket_obj_t *self = self_in; if (self->state == STATE_PEER_CLOSED) { return mp_const_empty_bytes; } struct net_buf *buf = net_receive(self->sock, WAIT_TICKS); mp_obj_t ret = mp_obj_new_bytes(ip_buf_appdata(buf), ip_buf_appdatalen(buf)); if (uip_closed(buf)) { //printf("uip_closed() == true\n"); self->state = STATE_PEER_CLOSED; } ip_buf_unref(buf); return ret; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_recv_obj, socket_recv); STATIC mp_obj_t socket_close(mp_obj_t self_in) { socket_obj_t *self = self_in; net_context_put(self->sock); self->sock = NULL; self->state = STATE_CLOSED; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(socket_close_obj, socket_close); STATIC const mp_map_elem_t socket_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&socket_connect_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&socket_send_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&socket_recv_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_close), (mp_obj_t)&socket_close_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&mp_stream_write_obj }, }; STATIC MP_DEFINE_CONST_DICT(socket_locals_dict, socket_locals_dict_table); STATIC const mp_stream_p_t socket_stream_p = { .read = socket_read, .write = socket_write, }; STATIC const mp_obj_type_t socket_type = { { &mp_type_type }, .name = MP_QSTR_socket, .print = socket_print, .make_new = socket_make_new, .protocol = &socket_stream_p, .locals_dict = (mp_obj_t)&socket_locals_dict, }; STATIC const mp_map_elem_t machine_module_globals_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_usocket) }, { MP_OBJ_NEW_QSTR(MP_QSTR_socket), (mp_obj_t)&socket_type }, }; STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table); const mp_obj_module_t mp_module_socket = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&machine_module_globals, }; #endif // MICROPY_PY_