/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2015 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include STM32_HAL_H #include "dma.h" #include "py/obj.h" #include "irq.h" typedef enum { dma_id_not_defined=-1, dma_id_0, dma_id_1, dma_id_2, dma_id_3, dma_id_4, dma_id_5, dma_id_6, dma_id_7, dma_id_8, dma_id_9, dma_id_10, dma_id_11, dma_id_12, dma_id_13, dma_id_14, dma_id_15, } dma_id_t; typedef struct _dma_descr_t { #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) DMA_Stream_TypeDef *instance; #elif defined(MCU_SERIES_L4) DMA_Channel_TypeDef *instance; #else #error "Unsupported Processor" #endif uint32_t sub_instance; uint32_t transfer_direction; // periph to memory or vice-versa dma_id_t id; const DMA_InitTypeDef *init; } dma_descr_t; // Default parameters to dma_init() shared by spi and i2c; Channel and Direction // vary depending on the peripheral instance so they get passed separately static const DMA_InitTypeDef dma_init_struct_spi_i2c = { #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) .Channel = 0, #elif defined(MCU_SERIES_L4) .Request = 0, #endif .Direction = 0, .PeriphInc = DMA_PINC_DISABLE, .MemInc = DMA_MINC_ENABLE, .PeriphDataAlignment = DMA_PDATAALIGN_BYTE, .MemDataAlignment = DMA_MDATAALIGN_BYTE, .Mode = DMA_NORMAL, .Priority = DMA_PRIORITY_LOW, #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) .FIFOMode = DMA_FIFOMODE_DISABLE, .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL, .MemBurst = DMA_MBURST_INC4, .PeriphBurst = DMA_PBURST_INC4 #endif }; #if defined(MICROPY_HW_HAS_SDCARD) && MICROPY_HW_HAS_SDCARD // Parameters to dma_init() for SDIO tx and rx. static const DMA_InitTypeDef dma_init_struct_sdio = { #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) .Channel = 0, #elif defined(MCU_SERIES_L4) .Request = 0, #endif .Direction = 0, .PeriphInc = DMA_PINC_DISABLE, .MemInc = DMA_MINC_ENABLE, .PeriphDataAlignment = DMA_PDATAALIGN_WORD, .MemDataAlignment = DMA_MDATAALIGN_WORD, #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) .Mode = DMA_PFCTRL, #elif defined(MCU_SERIES_L4) .Mode = DMA_NORMAL, #endif .Priority = DMA_PRIORITY_VERY_HIGH, #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) .FIFOMode = DMA_FIFOMODE_ENABLE, .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL, .MemBurst = DMA_MBURST_INC4, .PeriphBurst = DMA_PBURST_INC4, #endif }; #endif #if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC // Default parameters to dma_init() for DAC tx static const DMA_InitTypeDef dma_init_struct_dac = { #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) .Channel = 0, #elif defined(MCU_SERIES_L4) .Request = 0, #endif .Direction = 0, .PeriphInc = DMA_PINC_DISABLE, .MemInc = DMA_MINC_ENABLE, .PeriphDataAlignment = DMA_PDATAALIGN_BYTE, .MemDataAlignment = DMA_MDATAALIGN_BYTE, .Mode = DMA_NORMAL, .Priority = DMA_PRIORITY_HIGH, #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) .FIFOMode = DMA_FIFOMODE_DISABLE, .FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL, .MemBurst = DMA_MBURST_SINGLE, .PeriphBurst = DMA_PBURST_SINGLE, #endif }; #endif #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) #define NCONTROLLERS (2) #define NSTREAMS_PER_CONTROLLER (8) #define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER) #define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (((dma_channel) & DMA_SxCR_CHSEL) >> 25) #define DMA1_ENABLE_MASK (0x00ff) // Bits in dma_enable_mask corresponding to DMA1 #define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to DMA2 // These descriptors are ordered by DMAx_Stream number, and within a stream by channel // number. The duplicate streams are ok as long as they aren't used at the same time. // // Currently I2C and SPI are synchronous and they call dma_init/dma_deinit // around each transfer. // DMA1 streams const dma_descr_t dma_I2C_1_RX = { DMA1_Stream0, DMA_CHANNEL_1, DMA_PERIPH_TO_MEMORY, dma_id_0, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_3_RX = { DMA1_Stream2, DMA_CHANNEL_0, DMA_PERIPH_TO_MEMORY, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_3_RX = { DMA1_Stream2, DMA_CHANNEL_3, DMA_PERIPH_TO_MEMORY, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_RX = { DMA1_Stream2, DMA_CHANNEL_7, DMA_PERIPH_TO_MEMORY, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_2_RX = { DMA1_Stream3, DMA_CHANNEL_0, DMA_PERIPH_TO_MEMORY, dma_id_3, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_2_TX = { DMA1_Stream4, DMA_CHANNEL_0, DMA_MEMORY_TO_PERIPH, dma_id_4, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_3_TX = { DMA1_Stream4, DMA_CHANNEL_3, DMA_MEMORY_TO_PERIPH, dma_id_4, &dma_init_struct_spi_i2c }; #if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC const dma_descr_t dma_DAC_1_TX = { DMA1_Stream5, DMA_CHANNEL_7, DMA_MEMORY_TO_PERIPH, dma_id_5, &dma_init_struct_dac }; const dma_descr_t dma_DAC_2_TX = { DMA1_Stream6, DMA_CHANNEL_7, DMA_MEMORY_TO_PERIPH, dma_id_6, &dma_init_struct_dac }; #endif const dma_descr_t dma_SPI_3_TX = { DMA1_Stream7, DMA_CHANNEL_0, DMA_MEMORY_TO_PERIPH, dma_id_7, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_TX = { DMA1_Stream7, DMA_CHANNEL_1, DMA_MEMORY_TO_PERIPH, dma_id_7, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_TX = { DMA1_Stream7, DMA_CHANNEL_7, DMA_MEMORY_TO_PERIPH, dma_id_7, &dma_init_struct_spi_i2c }; /* not preferred streams const dma_descr_t dma_SPI_3_RX = { DMA1_Stream0, DMA_CHANNEL_0, DMA_PERIPH_TO_MEMORY, dma_id_0, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_TX = { DMA1_Stream6, DMA_CHANNEL_1, DMA_MEMORY_TO_PERIPH, dma_id_6, &dma_init_struct_spi_i2c }; */ // DMA2 streams const dma_descr_t dma_SPI_1_RX = { DMA2_Stream2, DMA_CHANNEL_3, DMA_PERIPH_TO_MEMORY, dma_id_10, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_5_RX = { DMA2_Stream3, DMA_CHANNEL_2, DMA_PERIPH_TO_MEMORY, dma_id_11, &dma_init_struct_spi_i2c }; #if defined(MICROPY_HW_HAS_SDCARD) && MICROPY_HW_HAS_SDCARD const dma_descr_t dma_SDIO_0_RX= { DMA2_Stream3, DMA_CHANNEL_4, DMA_PERIPH_TO_MEMORY, dma_id_11, &dma_init_struct_sdio }; #endif const dma_descr_t dma_SPI_4_RX = { DMA2_Stream3, DMA_CHANNEL_5, DMA_PERIPH_TO_MEMORY, dma_id_11, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_5_TX = { DMA2_Stream4, DMA_CHANNEL_2, DMA_MEMORY_TO_PERIPH, dma_id_12, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_4_TX = { DMA2_Stream4, DMA_CHANNEL_5, DMA_MEMORY_TO_PERIPH, dma_id_12, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_6_TX = { DMA2_Stream5, DMA_CHANNEL_1, DMA_MEMORY_TO_PERIPH, dma_id_13, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_1_TX = { DMA2_Stream5, DMA_CHANNEL_3, DMA_MEMORY_TO_PERIPH, dma_id_13, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_6_RX = { DMA2_Stream6, DMA_CHANNEL_1, DMA_PERIPH_TO_MEMORY, dma_id_14, &dma_init_struct_spi_i2c }; #if defined(MICROPY_HW_HAS_SDCARD) && MICROPY_HW_HAS_SDCARD const dma_descr_t dma_SDIO_0_TX= { DMA2_Stream6, DMA_CHANNEL_4, DMA_MEMORY_TO_PERIPH, dma_id_14, &dma_init_struct_sdio }; #endif /* not preferred streams const dma_descr_t dma_SPI_1_TX = { DMA2_Stream3, DMA_CHANNEL_3, DMA_MEMORY_TO_PERIPH, dma_id_11, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_1_RX = { DMA2_Stream0, DMA_CHANNEL_3, DMA_PERIPH_TO_MEMORY, dma_id_8, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_4_RX = { DMA2_Stream0, DMA_CHANNEL_4, DMA_PERIPH_TO_MEMORY, dma_id_8, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_4_TX = { DMA2_Stream1, DMA_CHANNEL_4, DMA_MEMORY_TO_PERIPH, dma_id_9, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_5_RX = { DMA2_Stream5, DMA_CHANNEL_7, DMA_PERIPH_TO_MEMORY, dma_id_13, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_5_TX = { DMA2_Stream6, DMA_CHANNEL_7, DMA_MEMORY_TO_PERIPH, dma_id_14, &dma_init_struct_spi_i2c }; */ static const uint8_t dma_irqn[NSTREAM] = { DMA1_Stream0_IRQn, DMA1_Stream1_IRQn, DMA1_Stream2_IRQn, DMA1_Stream3_IRQn, DMA1_Stream4_IRQn, DMA1_Stream5_IRQn, DMA1_Stream6_IRQn, DMA1_Stream7_IRQn, DMA2_Stream0_IRQn, DMA2_Stream1_IRQn, DMA2_Stream2_IRQn, DMA2_Stream3_IRQn, DMA2_Stream4_IRQn, DMA2_Stream5_IRQn, DMA2_Stream6_IRQn, DMA2_Stream7_IRQn, }; #elif defined(MCU_SERIES_L4) #define NCONTROLLERS (2) #define NSTREAMS_PER_CONTROLLER (7) #define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER) #define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request) #define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponfing to DMA1 #define DMA2_ENABLE_MASK (0x3f80) // Bits in dma_enable_mask corresponding to DMA2 // These descriptors are ordered by DMAx_Channel number, and within a channel by request // number. The duplicate streams are ok as long as they aren't used at the same time. // DMA1 streams //const dma_descr_t dma_ADC_1_RX = { DMA1_Channel1, DMA_REQUEST_0, DMA_PERIPH_TO_MEMORY, dma_id_0, NULL }; // unused //const dma_descr_t dma_ADC_2_RX = { DMA1_Channel2, DMA_REQUEST_0, DMA_PERIPH_TO_MEMORY, dma_id_1, NULL }; // unused const dma_descr_t dma_SPI_1_RX = { DMA1_Channel2, DMA_REQUEST_1, DMA_PERIPH_TO_MEMORY, dma_id_1, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_3_TX = { DMA1_Channel2, DMA_REQUEST_3, DMA_MEMORY_TO_PERIPH, dma_id_1, &dma_init_struct_spi_i2c }; //const dma_descr_t dma_ADC_3_RX = { DMA1_Channel3, DMA_REQUEST_0, DMA_PERIPH_TO_MEMORY, dma_id_2, NULL }; // unused const dma_descr_t dma_SPI_1_TX = { DMA1_Channel3, DMA_REQUEST_1, DMA_MEMORY_TO_PERIPH, dma_id_2, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_3_RX = { DMA1_Channel3, DMA_REQUEST_3, DMA_PERIPH_TO_MEMORY, dma_id_2, &dma_init_struct_spi_i2c }; #if MICROPY_HW_ENABLE_DAC const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, DMA_REQUEST_6, DMA_MEMORY_TO_PERIPH, dma_id_2, &dma_init_struct_dac }; #endif const dma_descr_t dma_SPI_2_RX = { DMA1_Channel4, DMA_REQUEST_1, DMA_PERIPH_TO_MEMORY, dma_id_3, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, DMA_REQUEST_3, DMA_MEMORY_TO_PERIPH, dma_id_3, &dma_init_struct_spi_i2c }; #if MICROPY_HW_ENABLE_DAC const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, DMA_REQUEST_5, DMA_MEMORY_TO_PERIPH, dma_id_3, &dma_init_struct_dac }; #endif const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, DMA_REQUEST_1, DMA_MEMORY_TO_PERIPH, dma_id_4, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_2_RX = { DMA1_Channel5, DMA_REQUEST_3, DMA_PERIPH_TO_MEMORY, dma_id_4, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_TX = { DMA1_Channel6, DMA_REQUEST_3, DMA_MEMORY_TO_PERIPH, dma_id_5, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_RX = { DMA1_Channel7, DMA_REQUEST_3, DMA_PERIPH_TO_MEMORY, dma_id_6, &dma_init_struct_spi_i2c }; // DMA2 streams const dma_descr_t dma_SPI_3_RX = { DMA2_Channel1, DMA_REQUEST_3, DMA_PERIPH_TO_MEMORY, dma_id_7, &dma_init_struct_spi_i2c }; const dma_descr_t dma_SPI_3_TX = { DMA2_Channel2, DMA_REQUEST_3, DMA_MEMORY_TO_PERIPH, dma_id_8, &dma_init_struct_spi_i2c }; /* not preferred streams const dma_descr_t dma_ADC_1_RX = { DMA2_Channel3, DMA_REQUEST_0, DMA_PERIPH_TO_MEMORY, dma_id_9, NULL }; const dma_descr_t dma_SPI_1_RX = { DMA2_Channel3, DMA_REQUEST_4, DMA_PERIPH_TO_MEMORY, dma_id_9, &dma_init_struct_spi_i2c }; const dma_descr_t dma_ADC_2_RX = { DMA2_Channel4, DMA_REQUEST_0, DMA_PERIPH_TO_MEMORY, dma_id_10, NULL }; const dma_descr_t dma_DAC_1_TX = { DMA2_Channel4, DMA_REQUEST_3, DMA_MEMORY_TO_PERIPH, dma_id_10, &dma_init_struct_dac }; const dma_descr_t dma_SPI_1_TX = { DMA2_Channel4, DMA_REQUEST_4, DMA_MEMORY_TO_PERIPH, dma_id_10, &dma_init_struct_spi_i2c }; */ #if defined(MICROPY_HW_HAS_SDCARD) && MICROPY_HW_HAS_SDCARD // defined twice as L4 HAL only needs one channel and can correctly switch direction but sdcard.c needs two channels const dma_descr_t dma_SDIO_0_TX= { DMA2_Channel4, DMA_REQUEST_7, DMA_MEMORY_TO_PERIPH, dma_id_10, &dma_init_struct_sdio }; const dma_descr_t dma_SDIO_0_RX= { DMA2_Channel4, DMA_REQUEST_7, DMA_PERIPH_TO_MEMORY, dma_id_10, &dma_init_struct_sdio }; #endif /* not preferred streams const dma_descr_t dma_ADC_3_RX = { DMA2_Channel5, DMA_REQUEST_0, DMA_PERIPH_TO_MEMORY, dma_id_11, NULL }; const dma_descr_t dma_DAC_2_TX = { DMA2_Channel5, DMA_REQUEST_3, DMA_MEMORY_TO_PERIPH, dma_id_11, &dma_init_struct_dac }; const dma_descr_t dma_SDIO_0_TX= { DMA2_Channel5, DMA_REQUEST_7, DMA_MEMORY_TO_PERIPH, dma_id_11, &dma_init_struct_sdio }; const dma_descr_t dma_I2C_1_RX = { DMA2_Channel6, DMA_REQUEST_5, DMA_PERIPH_TO_MEMORY, dma_id_12, &dma_init_struct_spi_i2c }; const dma_descr_t dma_I2C_1_TX = { DMA2_Channel7, DMA_REQUEST_5, DMA_MEMORY_TO_PERIPH, dma_id_13, &dma_init_struct_spi_i2c }; */ static const uint8_t dma_irqn[NSTREAM] = { DMA1_Channel1_IRQn, DMA1_Channel2_IRQn, DMA1_Channel3_IRQn, DMA1_Channel4_IRQn, DMA1_Channel5_IRQn, DMA1_Channel6_IRQn, DMA1_Channel7_IRQn, DMA2_Channel1_IRQn, DMA2_Channel2_IRQn, DMA2_Channel3_IRQn, DMA2_Channel4_IRQn, DMA2_Channel5_IRQn, DMA2_Channel6_IRQn, DMA2_Channel7_IRQn, }; #endif static DMA_HandleTypeDef *dma_handle[NSTREAM] = {NULL}; static uint8_t dma_last_sub_instance[NSTREAM]; static volatile uint32_t dma_enable_mask = 0; volatile dma_idle_count_t dma_idle; #define DMA_INVALID_CHANNEL 0xff // Value stored in dma_last_channel which means invalid #define DMA1_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA1EN) != 0) #define DMA2_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA2EN) != 0) #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) void DMA1_Stream0_IRQHandler(void) { IRQ_ENTER(DMA1_Stream0_IRQn); if (dma_handle[dma_id_0] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_0]); } IRQ_EXIT(DMA1_Stream0_IRQn); } void DMA1_Stream1_IRQHandler(void) { IRQ_ENTER(DMA1_Stream1_IRQn); if (dma_handle[dma_id_1] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_1]); } IRQ_EXIT(DMA1_Stream1_IRQn); } void DMA1_Stream2_IRQHandler(void) { IRQ_ENTER(DMA1_Stream2_IRQn); if (dma_handle[dma_id_2] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_2]); } IRQ_EXIT(DMA1_Stream2_IRQn); } void DMA1_Stream3_IRQHandler(void) { IRQ_ENTER(DMA1_Stream3_IRQn); if (dma_handle[dma_id_3] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_3]); } IRQ_EXIT(DMA1_Stream3_IRQn); } void DMA1_Stream4_IRQHandler(void) { IRQ_ENTER(DMA1_Stream4_IRQn); if (dma_handle[dma_id_4] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_4]); } IRQ_EXIT(DMA1_Stream4_IRQn); } void DMA1_Stream5_IRQHandler(void) { IRQ_ENTER(DMA1_Stream5_IRQn); if (dma_handle[dma_id_5] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_5]); } IRQ_EXIT(DMA1_Stream5_IRQn); } void DMA1_Stream6_IRQHandler(void) { IRQ_ENTER(DMA1_Stream6_IRQn); if (dma_handle[dma_id_6] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_6]); } IRQ_EXIT(DMA1_Stream6_IRQn); } void DMA1_Stream7_IRQHandler(void) { IRQ_ENTER(DMA1_Stream7_IRQn); if (dma_handle[dma_id_7] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_7]); } IRQ_EXIT(DMA1_Stream7_IRQn); } void DMA2_Stream0_IRQHandler(void) { IRQ_ENTER(DMA2_Stream0_IRQn); if (dma_handle[dma_id_8] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_8]); } IRQ_EXIT(DMA2_Stream0_IRQn); } void DMA2_Stream1_IRQHandler(void) { IRQ_ENTER(DMA2_Stream1_IRQn); if (dma_handle[dma_id_9] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_9]); } IRQ_EXIT(DMA2_Stream1_IRQn); } void DMA2_Stream2_IRQHandler(void) { IRQ_ENTER(DMA2_Stream2_IRQn); if (dma_handle[dma_id_10] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_10]); } IRQ_EXIT(DMA2_Stream2_IRQn); } void DMA2_Stream3_IRQHandler(void) { IRQ_ENTER(DMA2_Stream3_IRQn); if (dma_handle[dma_id_11] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_11]); } IRQ_EXIT(DMA2_Stream3_IRQn); } void DMA2_Stream4_IRQHandler(void) { IRQ_ENTER(DMA2_Stream4_IRQn); if (dma_handle[dma_id_12] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_12]); } IRQ_EXIT(DMA2_Stream4_IRQn); } void DMA2_Stream5_IRQHandler(void) { IRQ_ENTER(DMA2_Stream5_IRQn); if (dma_handle[dma_id_13] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_13]); } IRQ_EXIT(DMA2_Stream5_IRQn); } void DMA2_Stream6_IRQHandler(void) { IRQ_ENTER(DMA2_Stream6_IRQn); if (dma_handle[dma_id_14] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_14]); } IRQ_EXIT(DMA2_Stream6_IRQn); } void DMA2_Stream7_IRQHandler(void) { IRQ_ENTER(DMA2_Stream7_IRQn); if (dma_handle[dma_id_15] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_15]); } IRQ_EXIT(DMA2_Stream7_IRQn); } #elif defined(MCU_SERIES_L4) void DMA1_Channel1_IRQHandler(void) { IRQ_ENTER(DMA1_Channel1_IRQn); if (dma_handle[dma_id_0] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_0]); } IRQ_EXIT(DMA1_Channel1_IRQn); } void DMA1_Channel2_IRQHandler(void) { IRQ_ENTER(DMA1_Channel2_IRQn); if (dma_handle[dma_id_1] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_1]); } IRQ_EXIT(DMA1_Channel2_IRQn); } void DMA1_Channel3_IRQHandler(void) { IRQ_ENTER(DMA1_Channel3_IRQn); if (dma_handle[dma_id_2] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_2]); } IRQ_EXIT(DMA1_Channel3_IRQn); } void DMA1_Channel4_IRQHandler(void) { IRQ_ENTER(DMA1_Channel4_IRQn); if (dma_handle[dma_id_3] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_3]); } IRQ_EXIT(DMA1_Channel4_IRQn); } void DMA1_Channel5_IRQHandler(void) { IRQ_ENTER(DMA1_Channel5_IRQn); if (dma_handle[dma_id_4] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_4]); } IRQ_EXIT(DMA1_Channel5_IRQn); } void DMA1_Channel6_IRQHandler(void) { IRQ_ENTER(DMA1_Channel6_IRQn); if (dma_handle[dma_id_5] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_5]); } IRQ_EXIT(DMA1_Channel6_IRQn); } void DMA1_Channel7_IRQHandler(void) { IRQ_ENTER(DMA1_Channel7_IRQn); if (dma_handle[dma_id_6] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_6]); } IRQ_EXIT(DMA1_Channel7_IRQn); } void DMA2_Channel1_IRQHandler(void) { IRQ_ENTER(DMA2_Channel1_IRQn); if (dma_handle[dma_id_7] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_7]); } IRQ_EXIT(DMA2_Channel1_IRQn); } void DMA2_Channel2_IRQHandler(void) { IRQ_ENTER(DMA2_Channel2_IRQn); if (dma_handle[dma_id_8] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_8]); } IRQ_EXIT(DMA2_Channel2_IRQn); } void DMA2_Channel3_IRQHandler(void) { IRQ_ENTER(DMA2_Channel3_IRQn); if (dma_handle[dma_id_9] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_9]); } IRQ_EXIT(DMA2_Channel3_IRQn); } void DMA2_Channel4_IRQHandler(void) { IRQ_ENTER(DMA2_Channel4_IRQn); if (dma_handle[dma_id_10] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_10]);} IRQ_EXIT(DMA2_Channel4_IRQn); } void DMA2_Channel5_IRQHandler(void) { IRQ_ENTER(DMA2_Channel5_IRQn); if (dma_handle[dma_id_11] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_11]);} IRQ_EXIT(DMA2_Channel5_IRQn); } void DMA2_Channel6_IRQHandler(void) { IRQ_ENTER(DMA2_Channel6_IRQn); if (dma_handle[dma_id_12] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_12]);} IRQ_EXIT(DMA2_Channel6_IRQn); } void DMA2_Channel7_IRQHandler(void) { IRQ_ENTER(DMA2_Channel7_IRQn); if (dma_handle[dma_id_13] != NULL) { HAL_DMA_IRQHandler(dma_handle[dma_id_13]);} IRQ_EXIT(DMA2_Channel7_IRQn); } #endif // Resets the idle counter for the DMA controller associated with dma_id. static void dma_tickle(dma_id_t dma_id) { dma_idle.counter[(dma_id < NSTREAMS_PER_CONTROLLER) ? 0 : 1] = 1; } static void dma_enable_clock(dma_id_t dma_id) { // We don't want dma_tick_handler() to turn off the clock right after we // enable it, so we need to mark the channel in use in an atomic fashion. mp_uint_t irq_state = MICROPY_BEGIN_ATOMIC_SECTION(); uint32_t old_enable_mask = dma_enable_mask; dma_enable_mask |= (1 << dma_id); MICROPY_END_ATOMIC_SECTION(irq_state); if (dma_id < NSTREAMS_PER_CONTROLLER) { if (((old_enable_mask & DMA1_ENABLE_MASK) == 0) && !DMA1_IS_CLK_ENABLED()) { __DMA1_CLK_ENABLE(); // We just turned on the clock. This means that anything stored // in dma_last_channel (for DMA1) needs to be invalidated. for (int channel = 0; channel < NSTREAMS_PER_CONTROLLER; channel++) { dma_last_sub_instance[channel] = DMA_INVALID_CHANNEL; } } } else { if (((old_enable_mask & DMA2_ENABLE_MASK) == 0) && !DMA2_IS_CLK_ENABLED()) { __DMA2_CLK_ENABLE(); // We just turned on the clock. This means that anything stored // in dma_last_channel (for DMA1) needs to be invalidated. for (int channel = NSTREAMS_PER_CONTROLLER; channel < NSTREAM; channel++) { dma_last_sub_instance[channel] = DMA_INVALID_CHANNEL; } } } } static void dma_disable_clock(dma_id_t dma_id) { // We just mark the clock as disabled here, but we don't actually disable it. // We wait for the timer to expire first, which means that back-to-back // transfers don't have to initialize as much. dma_tickle(dma_id); dma_enable_mask &= ~(1 << dma_id); } void dma_init_handle(DMA_HandleTypeDef *dma, const dma_descr_t *dma_descr, void *data) { // initialise parameters dma->Instance = dma_descr->instance; dma->Init = *dma_descr->init; dma->Init.Direction = dma_descr->transfer_direction; #if defined(MCU_SERIES_L4) dma->Init.Request = dma_descr->sub_instance; #else dma->Init.Channel = dma_descr->sub_instance; #endif // half of __HAL_LINKDMA(data, xxx, *dma) // caller must implement other half by doing: data->xxx = dma dma->Parent = data; } void dma_init(DMA_HandleTypeDef *dma, const dma_descr_t *dma_descr, void *data){ // Some drivers allocate the DMA_HandleTypeDef from the stack // (i.e. dac, i2c, spi) and for those cases we need to clear the // structure so we don't get random values from the stack) memset(dma, 0, sizeof(*dma)); if (dma_descr != NULL) { dma_id_t dma_id = dma_descr->id; dma_init_handle(dma, dma_descr, data); // set global pointer for IRQ handler dma_handle[dma_id] = dma; dma_enable_clock(dma_id); // if this stream was previously configured for this channel/request then we // can skip most of the initialisation uint8_t sub_inst = DMA_SUB_INSTANCE_AS_UINT8(dma_descr->sub_instance); if (dma_last_sub_instance[dma_id] != sub_inst) { dma_last_sub_instance[dma_id] = sub_inst; // reset and configure DMA peripheral if (HAL_DMA_GetState(dma) != HAL_DMA_STATE_RESET) { HAL_DMA_DeInit(dma); } HAL_DMA_Init(dma); HAL_NVIC_SetPriority(dma_irqn[dma_id], IRQ_PRI_DMA, IRQ_SUBPRI_DMA); } HAL_NVIC_EnableIRQ(dma_irqn[dma_id]); } } void dma_deinit(const dma_descr_t *dma_descr) { if (dma_descr != NULL) { HAL_NVIC_DisableIRQ(dma_irqn[dma_descr->id]); dma_handle[dma_descr->id] = NULL; dma_disable_clock(dma_descr->id); } } void dma_invalidate_channel(const dma_descr_t *dma_descr) { if (dma_descr != NULL) { dma_id_t dma_id = dma_descr->id; if (dma_last_sub_instance[dma_id] == DMA_SUB_INSTANCE_AS_UINT8(dma_descr->sub_instance) ) { dma_last_sub_instance[dma_id] = DMA_INVALID_CHANNEL; } } } // Called from the SysTick handler // We use LSB of tick to select which controller to process void dma_idle_handler(int tick) { static const uint32_t controller_mask[] = { DMA1_ENABLE_MASK, DMA2_ENABLE_MASK }; { int controller = tick & 1; if (dma_idle.counter[controller] == 0) { return; } if (++dma_idle.counter[controller] > DMA_IDLE_TICK_MAX) { if ((dma_enable_mask & controller_mask[controller]) == 0) { // Nothing is active and we've reached our idle timeout, // Now we'll really disable the clock. dma_idle.counter[controller] = 0; if (controller == 0) { __DMA1_CLK_DISABLE(); } else { __DMA2_CLK_DISABLE(); } } else { // Something is still active, but the counter never got // reset, so we'll reset the counter here. dma_idle.counter[controller] = 1; } } } }