micropython/ports/teensy/modpyb.c
Yonatan Goldschmidt 61d2b40ad5 lib/utils/pyexec: Introduce MICROPY_REPL_INFO, wrap debug prints in it.
For the 3 ports that already make use of this feature (stm32, nrf and
teensy) this doesn't make any difference, it just allows to disable it from
now on.

For other ports that use pyexec, this decreases code size because the debug
printing code is dead (it can't be enabled) but the compiler can't deduce
that, so code is still emitted.
2019-12-28 00:05:39 +11:00

361 lines
13 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <mk20dx128.h>
#include "Arduino.h"
#include "py/obj.h"
#include "py/gc.h"
#include "py/mphal.h"
#include "lib/utils/pyexec.h"
#include "gccollect.h"
#include "irq.h"
#include "systick.h"
#include "led.h"
#include "pin.h"
#include "timer.h"
#include "extint.h"
#include "usrsw.h"
#include "rng.h"
//#include "rtc.h"
//#include "i2c.h"
//#include "spi.h"
#include "uart.h"
#include "adc.h"
#include "storage.h"
#include "sdcard.h"
#include "accel.h"
#include "servo.h"
#include "dac.h"
#include "usb.h"
#include "portmodules.h"
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
STATIC mp_obj_t pyb_bootloader(void) {
printf("bootloader command not current supported\n");
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
STATIC mp_obj_t pyb_info(uint n_args, const mp_obj_t *args) {
// get and print unique id; 96 bits
{
byte *id = (byte*)0x40048058;
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
}
// get and print clock speeds
printf("CPU=%u\nBUS=%u\nMEM=%u\n", F_CPU, F_BUS, F_MEM);
// to print info about memory
{
printf("_etext=%p\n", &_etext);
printf("_sidata=%p\n", &_sidata);
printf("_sdata=%p\n", &_sdata);
printf("_edata=%p\n", &_edata);
printf("_sbss=%p\n", &_sbss);
printf("_ebss=%p\n", &_ebss);
printf("_estack=%p\n", &_estack);
printf("_ram_start=%p\n", &_ram_start);
printf("_heap_start=%p\n", &_heap_start);
printf("_heap_end=%p\n", &_heap_end);
printf("_ram_end=%p\n", &_ram_end);
}
// qstr info
{
uint n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
printf("qstr:\n n_pool=%u\n n_qstr=%u\n n_str_data_bytes=%u\n n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
}
// GC info
{
gc_info_t info;
gc_info(&info);
printf("GC:\n");
printf(" " UINT_FMT " total\n", info.total);
printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
}
if (n_args == 1) {
// arg given means dump gc allocation table
gc_dump_alloc_table();
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
STATIC mp_obj_t pyb_unique_id(void) {
byte *id = (byte*)0x40048058;
return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);
/// \function freq()
/// Return a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2).
// TODO should also be able to set frequency via this function
STATIC mp_obj_t pyb_freq(void) {
mp_obj_t tuple[3] = {
mp_obj_new_int(F_CPU),
mp_obj_new_int(F_BUS),
mp_obj_new_int(F_MEM),
};
return mp_obj_new_tuple(3, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_freq_obj, pyb_freq);
/// \function sync()
/// Sync all file systems.
STATIC mp_obj_t pyb_sync(void) {
printf("sync not currently implemented\n");
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
///
/// The result is always a MicroPython smallint (31-bit signed number), so
/// after 2^30 milliseconds (about 12.4 days) this will start to return
/// negative numbers.
STATIC mp_obj_t pyb_millis(void) {
// We want to "cast" the 32 bit unsigned into a small-int. This means
// copying the MSB down 1 bit (extending the sign down), which is
// equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
return MP_OBJ_NEW_SMALL_INT(mp_hal_ticks_ms());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);
/// \function elapsed_millis(start)
/// Returns the number of milliseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 12.4 days.
///
/// Example:
/// start = pyb.millis()
/// while pyb.elapsed_millis(start) < 1000:
/// # Perform some operation
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
uint32_t startMillis = mp_obj_get_int(start);
uint32_t currMillis = mp_hal_ticks_ms();
return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
/// The result is always a MicroPython smallint (31-bit signed number), so
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
/// negative numbers.
STATIC mp_obj_t pyb_micros(void) {
// We want to "cast" the 32 bit unsigned into a small-int. This means
// copying the MSB down 1 bit (extending the sign down), which is
// equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
return MP_OBJ_NEW_SMALL_INT(micros());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);
/// \function elapsed_micros(start)
/// Returns the number of microseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 17.8 minutes.
///
/// Example:
/// start = pyb.micros()
/// while pyb.elapsed_micros(start) < 1000:
/// # Perform some operation
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
uint32_t startMicros = mp_obj_get_int(start);
uint32_t currMicros = micros();
return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);
/// \function delay(ms)
/// Delay for the given number of milliseconds.
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
mp_int_t ms = mp_obj_get_int(ms_in);
if (ms >= 0) {
mp_hal_delay_ms(ms);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);
/// \function udelay(us)
/// Delay for the given number of microseconds.
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
mp_int_t usec = mp_obj_get_int(usec_in);
delayMicroseconds(usec);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);
STATIC mp_obj_t pyb_stop(void) {
printf("stop not currently implemented\n");
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);
STATIC mp_obj_t pyb_standby(void) {
printf("standby not currently implemented\n");
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
STATIC mp_obj_t pyb_have_cdc(void ) {
return mp_obj_new_bool(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
#if 1
printf("hid_send_report not currently implemented\n");
#else
mp_obj_t *items;
mp_obj_get_array_fixed_n(arg, 4, &items);
uint8_t data[4];
data[0] = mp_obj_get_int(items[0]);
data[1] = mp_obj_get_int(items[1]);
data[2] = mp_obj_get_int(items[2]);
data[3] = mp_obj_get_int(items[3]);
usb_hid_send_report(data);
#endif
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
MP_DECLARE_CONST_FUN_OBJ_1(pyb_source_dir_obj); // defined in main.c
MP_DECLARE_CONST_FUN_OBJ_1(pyb_main_obj); // defined in main.c
MP_DECLARE_CONST_FUN_OBJ_1(pyb_usb_mode_obj); // defined in main.c
STATIC const mp_rom_map_elem_t pyb_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_pyb) },
{ MP_ROM_QSTR(MP_QSTR_bootloader), MP_ROM_PTR(&pyb_bootloader_obj) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&pyb_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&pyb_unique_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&pyb_freq_obj) },
#if MICROPY_REPL_INFO
{ MP_ROM_QSTR(MP_QSTR_repl_info), MP_ROM_PTR(&pyb_set_repl_info_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_wfi), MP_ROM_PTR(&pyb_wfi_obj) },
{ MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&pyb_disable_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&pyb_enable_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&pyb_stop_obj) },
{ MP_ROM_QSTR(MP_QSTR_standby), MP_ROM_PTR(&pyb_standby_obj) },
{ MP_ROM_QSTR(MP_QSTR_source_dir), MP_ROM_PTR(&pyb_source_dir_obj) },
{ MP_ROM_QSTR(MP_QSTR_main), MP_ROM_PTR(&pyb_main_obj) },
{ MP_ROM_QSTR(MP_QSTR_usb_mode), MP_ROM_PTR(&pyb_usb_mode_obj) },
{ MP_ROM_QSTR(MP_QSTR_have_cdc), MP_ROM_PTR(&pyb_have_cdc_obj) },
{ MP_ROM_QSTR(MP_QSTR_hid), MP_ROM_PTR(&pyb_hid_send_report_obj) },
{ MP_ROM_QSTR(MP_QSTR_millis), MP_ROM_PTR(&pyb_millis_obj) },
{ MP_ROM_QSTR(MP_QSTR_elapsed_millis), MP_ROM_PTR(&pyb_elapsed_millis_obj) },
{ MP_ROM_QSTR(MP_QSTR_micros), MP_ROM_PTR(&pyb_micros_obj) },
{ MP_ROM_QSTR(MP_QSTR_elapsed_micros), MP_ROM_PTR(&pyb_elapsed_micros_obj) },
{ MP_ROM_QSTR(MP_QSTR_delay), MP_ROM_PTR(&pyb_delay_obj) },
{ MP_ROM_QSTR(MP_QSTR_udelay), MP_ROM_PTR(&pyb_udelay_obj) },
{ MP_ROM_QSTR(MP_QSTR_sync), MP_ROM_PTR(&pyb_sync_obj) },
{ MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&pyb_timer_type) },
//#if MICROPY_HW_ENABLE_RNG
// { MP_ROM_QSTR(MP_QSTR_rng), MP_ROM_PTR(&pyb_rng_get_obj) },
//#endif
//#if MICROPY_HW_ENABLE_RTC
// { MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&pyb_rtc_type) },
//#endif
{ MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pin_type) },
// { MP_ROM_QSTR(MP_QSTR_ExtInt), MP_ROM_PTR(&extint_type) },
#if MICROPY_HW_ENABLE_SERVO
{ MP_ROM_QSTR(MP_QSTR_pwm), MP_ROM_PTR(&pyb_pwm_set_obj) },
{ MP_ROM_QSTR(MP_QSTR_servo), MP_ROM_PTR(&pyb_servo_set_obj) },
{ MP_ROM_QSTR(MP_QSTR_Servo), MP_ROM_PTR(&pyb_servo_type) },
#endif
#if MICROPY_HW_HAS_SWITCH
{ MP_ROM_QSTR(MP_QSTR_Switch), MP_ROM_PTR(&pyb_switch_type) },
#endif
//#if MICROPY_HW_HAS_SDCARD
// { MP_ROM_QSTR(MP_QSTR_SD), MP_ROM_PTR(&pyb_sdcard_obj) },
//#endif
{ MP_ROM_QSTR(MP_QSTR_LED), MP_ROM_PTR(&pyb_led_type) },
// { MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&pyb_i2c_type) },
// { MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&pyb_spi_type) },
{ MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&pyb_uart_type) },
// { MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&pyb_adc_type) },
// { MP_ROM_QSTR(MP_QSTR_ADCAll), MP_ROM_PTR(&pyb_adc_all_type) },
//#if MICROPY_HW_ENABLE_DAC
// { MP_ROM_QSTR(MP_QSTR_DAC), MP_ROM_PTR(&pyb_dac_type) },
//#endif
//#if MICROPY_HW_HAS_MMA7660
// { MP_ROM_QSTR(MP_QSTR_Accel), MP_ROM_PTR(&pyb_accel_type) },
//#endif
};
STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table);
const mp_obj_module_t pyb_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&pyb_module_globals,
};