1
0
Fork 0
alistair23-linux/arch/arm64/kvm/reset.c

442 lines
11 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/kvm/reset.c
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/hw_breakpoint.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/types.h>
#include <kvm/arm_arch_timer.h>
#include <asm/cpufeature.h>
#include <asm/cputype.h>
#include <asm/fpsimd.h>
#include <asm/ptrace.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_mmu.h>
#include <asm/virt.h>
kvm: arm64: Set a limit on the IPA size So far we have restricted the IPA size of the VM to the default value (40bits). Now that we can manage the IPA size per VM and support dynamic stage2 page tables, we can allow VMs to have larger IPA. This patch introduces a the maximum IPA size supported on the host. This is decided by the following factors : 1) Maximum PARange supported by the CPUs - This can be inferred from the system wide safe value. 2) Maximum PA size supported by the host kernel (48 vs 52) 3) Number of levels in the host page table (as we base our stage2 tables on the host table helpers). Since the stage2 page table code is dependent on the stage1 page table, we always ensure that : Number of Levels at Stage1 >= Number of Levels at Stage2 So we limit the IPA to make sure that the above condition is satisfied. This will affect the following combinations of VA_BITS and IPA for different page sizes. Host configuration | Unsupported IPA ranges 39bit VA, 4K | [44, 48] 36bit VA, 16K | [41, 48] 42bit VA, 64K | [47, 52] Supporting the above combinations need independent stage2 page table manipulation code, which would need substantial changes. We could purse the solution independently and switch the page table code once we have it ready. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Christoffer Dall <cdall@kernel.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-09-26 10:32:52 -06:00
/* Maximum phys_shift supported for any VM on this host */
static u32 kvm_ipa_limit;
/*
* ARMv8 Reset Values
*/
static const struct kvm_regs default_regs_reset = {
.regs.pstate = (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT |
PSR_F_BIT | PSR_D_BIT),
};
static const struct kvm_regs default_regs_reset32 = {
.regs.pstate = (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT |
PSR_AA32_I_BIT | PSR_AA32_F_BIT),
};
static bool cpu_has_32bit_el1(void)
{
u64 pfr0;
pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
return !!(pfr0 & 0x20);
}
/**
* kvm_arch_vm_ioctl_check_extension
*
* We currently assume that the number of HW registers is uniform
* across all CPUs (see cpuinfo_sanity_check).
*/
int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
int r;
switch (ext) {
case KVM_CAP_ARM_EL1_32BIT:
r = cpu_has_32bit_el1();
break;
case KVM_CAP_GUEST_DEBUG_HW_BPS:
r = get_num_brps();
break;
case KVM_CAP_GUEST_DEBUG_HW_WPS:
r = get_num_wrps();
break;
case KVM_CAP_ARM_PMU_V3:
r = kvm_arm_support_pmu_v3();
break;
case KVM_CAP_ARM_INJECT_SERROR_ESR:
r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
break;
case KVM_CAP_SET_GUEST_DEBUG:
case KVM_CAP_VCPU_ATTRIBUTES:
r = 1;
break;
case KVM_CAP_ARM_VM_IPA_SIZE:
r = kvm_ipa_limit;
break;
case KVM_CAP_ARM_SVE:
r = system_supports_sve();
break;
case KVM_CAP_ARM_PTRAUTH_ADDRESS:
case KVM_CAP_ARM_PTRAUTH_GENERIC:
r = has_vhe() && system_supports_address_auth() &&
system_supports_generic_auth();
break;
default:
r = 0;
}
return r;
}
unsigned int kvm_sve_max_vl;
int kvm_arm_init_sve(void)
{
if (system_supports_sve()) {
kvm_sve_max_vl = sve_max_virtualisable_vl;
/*
* The get_sve_reg()/set_sve_reg() ioctl interface will need
* to be extended with multiple register slice support in
* order to support vector lengths greater than
* SVE_VL_ARCH_MAX:
*/
if (WARN_ON(kvm_sve_max_vl > SVE_VL_ARCH_MAX))
kvm_sve_max_vl = SVE_VL_ARCH_MAX;
/*
* Don't even try to make use of vector lengths that
* aren't available on all CPUs, for now:
*/
if (kvm_sve_max_vl < sve_max_vl)
pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
kvm_sve_max_vl);
}
return 0;
}
static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
{
if (!system_supports_sve())
return -EINVAL;
/* Verify that KVM startup enforced this when SVE was detected: */
if (WARN_ON(!has_vhe()))
return -EINVAL;
vcpu->arch.sve_max_vl = kvm_sve_max_vl;
/*
* Userspace can still customize the vector lengths by writing
* KVM_REG_ARM64_SVE_VLS. Allocation is deferred until
* kvm_arm_vcpu_finalize(), which freezes the configuration.
*/
vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE;
return 0;
}
/*
* Finalize vcpu's maximum SVE vector length, allocating
* vcpu->arch.sve_state as necessary.
*/
static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
{
void *buf;
unsigned int vl;
vl = vcpu->arch.sve_max_vl;
/*
* Resposibility for these properties is shared between
* kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and
* set_sve_vls(). Double-check here just to be sure:
*/
if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl ||
vl > SVE_VL_ARCH_MAX))
return -EIO;
buf = kzalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)), GFP_KERNEL);
if (!buf)
return -ENOMEM;
vcpu->arch.sve_state = buf;
vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED;
return 0;
}
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
{
switch (feature) {
case KVM_ARM_VCPU_SVE:
if (!vcpu_has_sve(vcpu))
return -EINVAL;
if (kvm_arm_vcpu_sve_finalized(vcpu))
return -EPERM;
return kvm_vcpu_finalize_sve(vcpu);
}
return -EINVAL;
}
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
{
if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
return false;
return true;
}
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
kfree(vcpu->arch.sve_state);
}
static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
{
if (vcpu_has_sve(vcpu))
memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
}
static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
{
/* Support ptrauth only if the system supports these capabilities. */
if (!has_vhe())
return -EINVAL;
if (!system_supports_address_auth() ||
!system_supports_generic_auth())
return -EINVAL;
/*
* For now make sure that both address/generic pointer authentication
* features are requested by the userspace together.
*/
if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
!test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features))
return -EINVAL;
vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH;
return 0;
}
/**
* kvm_reset_vcpu - sets core registers and sys_regs to reset value
* @vcpu: The VCPU pointer
*
* This function finds the right table above and sets the registers on
* the virtual CPU struct to their architecturally defined reset
* values, except for registers whose reset is deferred until
* kvm_arm_vcpu_finalize().
*
* Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
* ioctl or as part of handling a request issued by another VCPU in the PSCI
* handling code. In the first case, the VCPU will not be loaded, and in the
* second case the VCPU will be loaded. Because this function operates purely
* on the memory-backed valus of system registers, we want to do a full put if
* we were loaded (handling a request) and load the values back at the end of
* the function. Otherwise we leave the state alone. In both cases, we
* disable preemption around the vcpu reset as we would otherwise race with
* preempt notifiers which also call put/load.
*/
int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
{
const struct kvm_regs *cpu_reset;
int ret;
bool loaded;
/* Reset PMU outside of the non-preemptible section */
kvm_pmu_vcpu_reset(vcpu);
preempt_disable();
loaded = (vcpu->cpu != -1);
if (loaded)
kvm_arch_vcpu_put(vcpu);
if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
ret = kvm_vcpu_enable_sve(vcpu);
if (ret)
goto out;
}
} else {
kvm_vcpu_reset_sve(vcpu);
}
if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
if (kvm_vcpu_enable_ptrauth(vcpu)) {
ret = -EINVAL;
goto out;
}
}
switch (vcpu->arch.target) {
default:
if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) {
if (!cpu_has_32bit_el1()) {
ret = -EINVAL;
goto out;
}
cpu_reset = &default_regs_reset32;
} else {
cpu_reset = &default_regs_reset;
}
break;
}
/* Reset core registers */
memcpy(vcpu_gp_regs(vcpu), cpu_reset, sizeof(*cpu_reset));
/* Reset system registers */
kvm_reset_sys_regs(vcpu);
/*
* Additional reset state handling that PSCI may have imposed on us.
* Must be done after all the sys_reg reset.
*/
if (vcpu->arch.reset_state.reset) {
unsigned long target_pc = vcpu->arch.reset_state.pc;
/* Gracefully handle Thumb2 entry point */
if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
target_pc &= ~1UL;
vcpu_set_thumb(vcpu);
}
/* Propagate caller endianness */
if (vcpu->arch.reset_state.be)
kvm_vcpu_set_be(vcpu);
*vcpu_pc(vcpu) = target_pc;
vcpu_set_reg(vcpu, 0, vcpu->arch.reset_state.r0);
vcpu->arch.reset_state.reset = false;
}
/* Default workaround setup is enabled (if supported) */
if (kvm_arm_have_ssbd() == KVM_SSBD_KERNEL)
vcpu->arch.workaround_flags |= VCPU_WORKAROUND_2_FLAG;
/* Reset timer */
ret = kvm_timer_vcpu_reset(vcpu);
out:
if (loaded)
kvm_arch_vcpu_load(vcpu, smp_processor_id());
preempt_enable();
return ret;
}
kvm: arm64: Set a limit on the IPA size So far we have restricted the IPA size of the VM to the default value (40bits). Now that we can manage the IPA size per VM and support dynamic stage2 page tables, we can allow VMs to have larger IPA. This patch introduces a the maximum IPA size supported on the host. This is decided by the following factors : 1) Maximum PARange supported by the CPUs - This can be inferred from the system wide safe value. 2) Maximum PA size supported by the host kernel (48 vs 52) 3) Number of levels in the host page table (as we base our stage2 tables on the host table helpers). Since the stage2 page table code is dependent on the stage1 page table, we always ensure that : Number of Levels at Stage1 >= Number of Levels at Stage2 So we limit the IPA to make sure that the above condition is satisfied. This will affect the following combinations of VA_BITS and IPA for different page sizes. Host configuration | Unsupported IPA ranges 39bit VA, 4K | [44, 48] 36bit VA, 16K | [41, 48] 42bit VA, 64K | [47, 52] Supporting the above combinations need independent stage2 page table manipulation code, which would need substantial changes. We could purse the solution independently and switch the page table code once we have it ready. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Christoffer Dall <cdall@kernel.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-09-26 10:32:52 -06:00
void kvm_set_ipa_limit(void)
{
unsigned int ipa_max, pa_max, va_max, parange;
parange = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1) & 0x7;
pa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
/* Clamp the IPA limit to the PA size supported by the kernel */
ipa_max = (pa_max > PHYS_MASK_SHIFT) ? PHYS_MASK_SHIFT : pa_max;
/*
* Since our stage2 table is dependent on the stage1 page table code,
* we must always honor the following condition:
*
* Number of levels in Stage1 >= Number of levels in Stage2.
*
* So clamp the ipa limit further down to limit the number of levels.
* Since we can concatenate upto 16 tables at entry level, we could
* go upto 4bits above the maximum VA addressible with the current
* number of levels.
*/
va_max = PGDIR_SHIFT + PAGE_SHIFT - 3;
va_max += 4;
if (va_max < ipa_max)
ipa_max = va_max;
/*
* If the final limit is lower than the real physical address
* limit of the CPUs, report the reason.
*/
if (ipa_max < pa_max)
pr_info("kvm: Limiting the IPA size due to kernel %s Address limit\n",
(va_max < pa_max) ? "Virtual" : "Physical");
WARN(ipa_max < KVM_PHYS_SHIFT,
"KVM IPA limit (%d bit) is smaller than default size\n", ipa_max);
kvm_ipa_limit = ipa_max;
kvm_info("IPA Size Limit: %dbits\n", kvm_ipa_limit);
}
/*
* Configure the VTCR_EL2 for this VM. The VTCR value is common
* across all the physical CPUs on the system. We use system wide
* sanitised values to fill in different fields, except for Hardware
* Management of Access Flags. HA Flag is set unconditionally on
* all CPUs, as it is safe to run with or without the feature and
* the bit is RES0 on CPUs that don't support it.
*/
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
{
u64 vtcr = VTCR_EL2_FLAGS;
u32 parange, phys_shift;
u8 lvls;
if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
return -EINVAL;
phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
if (phys_shift) {
if (phys_shift > kvm_ipa_limit ||
phys_shift < 32)
return -EINVAL;
} else {
phys_shift = KVM_PHYS_SHIFT;
}
parange = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1) & 7;
if (parange > ID_AA64MMFR0_PARANGE_MAX)
parange = ID_AA64MMFR0_PARANGE_MAX;
vtcr |= parange << VTCR_EL2_PS_SHIFT;
vtcr |= VTCR_EL2_T0SZ(phys_shift);
/*
* Use a minimum 2 level page table to prevent splitting
* host PMD huge pages at stage2.
*/
lvls = stage2_pgtable_levels(phys_shift);
if (lvls < 2)
lvls = 2;
vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
/*
* Enable the Hardware Access Flag management, unconditionally
* on all CPUs. The features is RES0 on CPUs without the support
* and must be ignored by the CPUs.
*/
vtcr |= VTCR_EL2_HA;
/* Set the vmid bits */
vtcr |= (kvm_get_vmid_bits() == 16) ?
VTCR_EL2_VS_16BIT :
VTCR_EL2_VS_8BIT;
kvm->arch.vtcr = vtcr;
return 0;
}