1
0
Fork 0
alistair23-linux/drivers/hwmon/ibmpex.c

601 lines
14 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* A hwmon driver for the IBM PowerExecutive temperature/power sensors
* Copyright (C) 2007 IBM
*
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include <linux/ipmi.h>
#include <linux/module.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/jiffies.h>
#include <linux/mutex.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <linux/err.h>
#define REFRESH_INTERVAL (2 * HZ)
#define DRVNAME "ibmpex"
#define PEX_GET_VERSION 1
#define PEX_GET_SENSOR_COUNT 2
#define PEX_GET_SENSOR_NAME 3
#define PEX_RESET_HIGH_LOW 4
#define PEX_GET_SENSOR_DATA 6
#define PEX_NET_FUNCTION 0x3A
#define PEX_COMMAND 0x3C
static inline u16 extract_value(const char *data, int offset)
{
return be16_to_cpup((__be16 *)&data[offset]);
}
#define TEMP_SENSOR 1
#define POWER_SENSOR 2
#define PEX_SENSOR_TYPE_LEN 3
static u8 const power_sensor_sig[] = {0x70, 0x77, 0x72};
static u8 const temp_sensor_sig[] = {0x74, 0x65, 0x6D};
#define PEX_MULT_LEN 2
static u8 const watt_sensor_sig[] = {0x41, 0x43};
#define PEX_NUM_SENSOR_FUNCS 3
static const char * const sensor_name_suffixes[] = {
"",
"_lowest",
"_highest"
};
static void ibmpex_msg_handler(struct ipmi_recv_msg *msg, void *user_msg_data);
static void ibmpex_register_bmc(int iface, struct device *dev);
static void ibmpex_bmc_gone(int iface);
struct ibmpex_sensor_data {
int in_use;
s16 values[PEX_NUM_SENSOR_FUNCS];
int multiplier;
struct sensor_device_attribute_2 attr[PEX_NUM_SENSOR_FUNCS];
};
struct ibmpex_bmc_data {
struct list_head list;
struct device *hwmon_dev;
struct device *bmc_device;
struct mutex lock;
char valid;
unsigned long last_updated; /* In jiffies */
struct ipmi_addr address;
struct completion read_complete;
struct ipmi_user *user;
int interface;
struct kernel_ipmi_msg tx_message;
unsigned char tx_msg_data[IPMI_MAX_MSG_LENGTH];
long tx_msgid;
unsigned char rx_msg_data[IPMI_MAX_MSG_LENGTH];
unsigned long rx_msg_len;
unsigned char rx_result;
int rx_recv_type;
unsigned char sensor_major;
unsigned char sensor_minor;
unsigned char num_sensors;
struct ibmpex_sensor_data *sensors;
};
struct ibmpex_driver_data {
struct list_head bmc_data;
struct ipmi_smi_watcher bmc_events;
struct ipmi_user_hndl ipmi_hndlrs;
};
static struct ibmpex_driver_data driver_data = {
.bmc_data = LIST_HEAD_INIT(driver_data.bmc_data),
.bmc_events = {
.owner = THIS_MODULE,
.new_smi = ibmpex_register_bmc,
.smi_gone = ibmpex_bmc_gone,
},
.ipmi_hndlrs = {
.ipmi_recv_hndl = ibmpex_msg_handler,
},
};
static int ibmpex_send_message(struct ibmpex_bmc_data *data)
{
int err;
err = ipmi_validate_addr(&data->address, sizeof(data->address));
if (err)
goto out;
data->tx_msgid++;
err = ipmi_request_settime(data->user, &data->address, data->tx_msgid,
&data->tx_message, data, 0, 0, 0);
if (err)
goto out1;
return 0;
out1:
dev_err(data->bmc_device, "request_settime=%x\n", err);
return err;
out:
dev_err(data->bmc_device, "validate_addr=%x\n", err);
return err;
}
static int ibmpex_ver_check(struct ibmpex_bmc_data *data)
{
data->tx_msg_data[0] = PEX_GET_VERSION;
data->tx_message.data_len = 1;
ibmpex_send_message(data);
wait_for_completion(&data->read_complete);
if (data->rx_result || data->rx_msg_len != 6)
return -ENOENT;
data->sensor_major = data->rx_msg_data[0];
data->sensor_minor = data->rx_msg_data[1];
dev_info(data->bmc_device,
"Found BMC with sensor interface v%d.%d %d-%02d-%02d on interface %d\n",
data->sensor_major,
data->sensor_minor,
extract_value(data->rx_msg_data, 2),
data->rx_msg_data[4],
data->rx_msg_data[5],
data->interface);
return 0;
}
static int ibmpex_query_sensor_count(struct ibmpex_bmc_data *data)
{
data->tx_msg_data[0] = PEX_GET_SENSOR_COUNT;
data->tx_message.data_len = 1;
ibmpex_send_message(data);
wait_for_completion(&data->read_complete);
if (data->rx_result || data->rx_msg_len != 1)
return -ENOENT;
return data->rx_msg_data[0];
}
static int ibmpex_query_sensor_name(struct ibmpex_bmc_data *data, int sensor)
{
data->tx_msg_data[0] = PEX_GET_SENSOR_NAME;
data->tx_msg_data[1] = sensor;
data->tx_message.data_len = 2;
ibmpex_send_message(data);
wait_for_completion(&data->read_complete);
if (data->rx_result || data->rx_msg_len < 1)
return -ENOENT;
return 0;
}
static int ibmpex_query_sensor_data(struct ibmpex_bmc_data *data, int sensor)
{
data->tx_msg_data[0] = PEX_GET_SENSOR_DATA;
data->tx_msg_data[1] = sensor;
data->tx_message.data_len = 2;
ibmpex_send_message(data);
wait_for_completion(&data->read_complete);
if (data->rx_result || data->rx_msg_len < 26) {
dev_err(data->bmc_device, "Error reading sensor %d.\n",
sensor);
return -ENOENT;
}
return 0;
}
static int ibmpex_reset_high_low_data(struct ibmpex_bmc_data *data)
{
data->tx_msg_data[0] = PEX_RESET_HIGH_LOW;
data->tx_message.data_len = 1;
ibmpex_send_message(data);
wait_for_completion(&data->read_complete);
return 0;
}
static void ibmpex_update_device(struct ibmpex_bmc_data *data)
{
int i, err;
mutex_lock(&data->lock);
if (time_before(jiffies, data->last_updated + REFRESH_INTERVAL) &&
data->valid)
goto out;
for (i = 0; i < data->num_sensors; i++) {
if (!data->sensors[i].in_use)
continue;
err = ibmpex_query_sensor_data(data, i);
if (err)
continue;
data->sensors[i].values[0] =
extract_value(data->rx_msg_data, 16);
data->sensors[i].values[1] =
extract_value(data->rx_msg_data, 18);
data->sensors[i].values[2] =
extract_value(data->rx_msg_data, 20);
}
data->last_updated = jiffies;
data->valid = 1;
out:
mutex_unlock(&data->lock);
}
static struct ibmpex_bmc_data *get_bmc_data(int iface)
{
struct ibmpex_bmc_data *p, *next;
list_for_each_entry_safe(p, next, &driver_data.bmc_data, list)
if (p->interface == iface)
return p;
return NULL;
}
static ssize_t name_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
return sprintf(buf, "%s\n", DRVNAME);
}
static SENSOR_DEVICE_ATTR_RO(name, name, 0);
static ssize_t ibmpex_show_sensor(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct ibmpex_bmc_data *data = dev_get_drvdata(dev);
int mult = data->sensors[attr->index].multiplier;
ibmpex_update_device(data);
return sprintf(buf, "%d\n",
data->sensors[attr->index].values[attr->nr] * mult);
}
static ssize_t ibmpex_high_low_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct ibmpex_bmc_data *data = dev_get_drvdata(dev);
ibmpex_reset_high_low_data(data);
return count;
}
static SENSOR_DEVICE_ATTR_WO(reset_high_low, ibmpex_high_low, 0);
static int is_power_sensor(const char *sensor_id, int len)
{
if (len < PEX_SENSOR_TYPE_LEN)
return 0;
if (!memcmp(sensor_id, power_sensor_sig, PEX_SENSOR_TYPE_LEN))
return 1;
return 0;
}
static int is_temp_sensor(const char *sensor_id, int len)
{
if (len < PEX_SENSOR_TYPE_LEN)
return 0;
if (!memcmp(sensor_id, temp_sensor_sig, PEX_SENSOR_TYPE_LEN))
return 1;
return 0;
}
static int power_sensor_multiplier(struct ibmpex_bmc_data *data,
const char *sensor_id, int len)
{
int i;
if (data->sensor_major == 2)
return 1000000;
for (i = PEX_SENSOR_TYPE_LEN; i < len - 1; i++)
if (!memcmp(&sensor_id[i], watt_sensor_sig, PEX_MULT_LEN))
return 1000000;
return 100000;
}
static int create_sensor(struct ibmpex_bmc_data *data, int type,
int counter, int sensor, int func)
{
int err;
char *n;
n = kmalloc(32, GFP_KERNEL);
if (!n)
return -ENOMEM;
if (type == TEMP_SENSOR)
sprintf(n, "temp%d_input%s",
counter, sensor_name_suffixes[func]);
else if (type == POWER_SENSOR)
sprintf(n, "power%d_average%s",
counter, sensor_name_suffixes[func]);
sysfs_attr_init(&data->sensors[sensor].attr[func].dev_attr.attr);
data->sensors[sensor].attr[func].dev_attr.attr.name = n;
data->sensors[sensor].attr[func].dev_attr.attr.mode = 0444;
data->sensors[sensor].attr[func].dev_attr.show = ibmpex_show_sensor;
data->sensors[sensor].attr[func].index = sensor;
data->sensors[sensor].attr[func].nr = func;
err = device_create_file(data->bmc_device,
&data->sensors[sensor].attr[func].dev_attr);
if (err) {
data->sensors[sensor].attr[func].dev_attr.attr.name = NULL;
kfree(n);
return err;
}
return 0;
}
static int ibmpex_find_sensors(struct ibmpex_bmc_data *data)
{
int i, j, err;
int sensor_type;
int sensor_counter;
int num_power = 0;
int num_temp = 0;
err = ibmpex_query_sensor_count(data);
if (err <= 0)
return -ENOENT;
data->num_sensors = err;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 15:03:40 -06:00
data->sensors = kcalloc(data->num_sensors, sizeof(*data->sensors),
GFP_KERNEL);
if (!data->sensors)
return -ENOMEM;
for (i = 0; i < data->num_sensors; i++) {
err = ibmpex_query_sensor_name(data, i);
if (err)
continue;
if (is_power_sensor(data->rx_msg_data, data->rx_msg_len)) {
sensor_type = POWER_SENSOR;
num_power++;
sensor_counter = num_power;
data->sensors[i].multiplier =
power_sensor_multiplier(data,
data->rx_msg_data,
data->rx_msg_len);
} else if (is_temp_sensor(data->rx_msg_data,
data->rx_msg_len)) {
sensor_type = TEMP_SENSOR;
num_temp++;
sensor_counter = num_temp;
data->sensors[i].multiplier = 1000;
} else
continue;
data->sensors[i].in_use = 1;
/* Create attributes */
for (j = 0; j < PEX_NUM_SENSOR_FUNCS; j++) {
err = create_sensor(data, sensor_type, sensor_counter,
i, j);
if (err)
goto exit_remove;
}
}
err = device_create_file(data->bmc_device,
&sensor_dev_attr_reset_high_low.dev_attr);
if (err)
goto exit_remove;
err = device_create_file(data->bmc_device,
&sensor_dev_attr_name.dev_attr);
if (err)
goto exit_remove;
return 0;
exit_remove:
device_remove_file(data->bmc_device,
&sensor_dev_attr_reset_high_low.dev_attr);
device_remove_file(data->bmc_device, &sensor_dev_attr_name.dev_attr);
for (i = 0; i < data->num_sensors; i++)
for (j = 0; j < PEX_NUM_SENSOR_FUNCS; j++) {
if (!data->sensors[i].attr[j].dev_attr.attr.name)
continue;
device_remove_file(data->bmc_device,
&data->sensors[i].attr[j].dev_attr);
kfree(data->sensors[i].attr[j].dev_attr.attr.name);
}
kfree(data->sensors);
return err;
}
static void ibmpex_register_bmc(int iface, struct device *dev)
{
struct ibmpex_bmc_data *data;
int err;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return;
data->address.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
data->address.channel = IPMI_BMC_CHANNEL;
data->address.data[0] = 0;
data->interface = iface;
data->bmc_device = dev;
/* Create IPMI messaging interface user */
err = ipmi_create_user(data->interface, &driver_data.ipmi_hndlrs,
data, &data->user);
if (err < 0) {
dev_err(dev,
"Unable to register user with IPMI interface %d\n",
data->interface);
goto out;
}
mutex_init(&data->lock);
/* Initialize message */
data->tx_msgid = 0;
init_completion(&data->read_complete);
data->tx_message.netfn = PEX_NET_FUNCTION;
data->tx_message.cmd = PEX_COMMAND;
data->tx_message.data = data->tx_msg_data;
/* Does this BMC support PowerExecutive? */
err = ibmpex_ver_check(data);
if (err)
goto out_user;
/* Register the BMC as a HWMON class device */
data->hwmon_dev = hwmon_device_register(data->bmc_device);
if (IS_ERR(data->hwmon_dev)) {
dev_err(data->bmc_device,
"Unable to register hwmon device for IPMI interface %d\n",
data->interface);
goto out_user;
}
/* finally add the new bmc data to the bmc data list */
dev_set_drvdata(dev, data);
list_add_tail(&data->list, &driver_data.bmc_data);
/* Now go find all the sensors */
err = ibmpex_find_sensors(data);
if (err) {
dev_err(data->bmc_device, "Error %d finding sensors\n", err);
goto out_register;
}
return;
out_register:
hwmon_device_unregister(data->hwmon_dev);
out_user:
ipmi_destroy_user(data->user);
out:
kfree(data);
}
static void ibmpex_bmc_delete(struct ibmpex_bmc_data *data)
{
int i, j;
device_remove_file(data->bmc_device,
&sensor_dev_attr_reset_high_low.dev_attr);
device_remove_file(data->bmc_device, &sensor_dev_attr_name.dev_attr);
for (i = 0; i < data->num_sensors; i++)
for (j = 0; j < PEX_NUM_SENSOR_FUNCS; j++) {
if (!data->sensors[i].attr[j].dev_attr.attr.name)
continue;
device_remove_file(data->bmc_device,
&data->sensors[i].attr[j].dev_attr);
kfree(data->sensors[i].attr[j].dev_attr.attr.name);
}
list_del(&data->list);
dev_set_drvdata(data->bmc_device, NULL);
hwmon_device_unregister(data->hwmon_dev);
ipmi_destroy_user(data->user);
kfree(data->sensors);
kfree(data);
}
static void ibmpex_bmc_gone(int iface)
{
struct ibmpex_bmc_data *data = get_bmc_data(iface);
if (!data)
return;
ibmpex_bmc_delete(data);
}
static void ibmpex_msg_handler(struct ipmi_recv_msg *msg, void *user_msg_data)
{
struct ibmpex_bmc_data *data = (struct ibmpex_bmc_data *)user_msg_data;
if (msg->msgid != data->tx_msgid) {
dev_err(data->bmc_device,
"Mismatch between received msgid (%02x) and transmitted msgid (%02x)!\n",
(int)msg->msgid,
(int)data->tx_msgid);
ipmi_free_recv_msg(msg);
return;
}
data->rx_recv_type = msg->recv_type;
if (msg->msg.data_len > 0)
data->rx_result = msg->msg.data[0];
else
data->rx_result = IPMI_UNKNOWN_ERR_COMPLETION_CODE;
if (msg->msg.data_len > 1) {
data->rx_msg_len = msg->msg.data_len - 1;
memcpy(data->rx_msg_data, msg->msg.data + 1, data->rx_msg_len);
} else
data->rx_msg_len = 0;
ipmi_free_recv_msg(msg);
complete(&data->read_complete);
}
static int __init ibmpex_init(void)
{
return ipmi_smi_watcher_register(&driver_data.bmc_events);
}
static void __exit ibmpex_exit(void)
{
struct ibmpex_bmc_data *p, *next;
ipmi_smi_watcher_unregister(&driver_data.bmc_events);
list_for_each_entry_safe(p, next, &driver_data.bmc_data, list)
ibmpex_bmc_delete(p);
}
MODULE_AUTHOR("Darrick J. Wong <darrick.wong@oracle.com>");
MODULE_DESCRIPTION("IBM PowerExecutive power/temperature sensor driver");
MODULE_LICENSE("GPL");
module_init(ibmpex_init);
module_exit(ibmpex_exit);
MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3350-*");
MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3550-*");
MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3650-*");
MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3655-*");
MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3755-*");