1
0
Fork 0
alistair23-linux/drivers/net/wan/hdlc_fr.c

1304 lines
29 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Generic HDLC support routines for Linux
* Frame Relay support
*
* Copyright (C) 1999 - 2006 Krzysztof Halasa <khc@pm.waw.pl>
*
Theory of PVC state
DCE mode:
(exist,new) -> 0,0 when "PVC create" or if "link unreliable"
0,x -> 1,1 if "link reliable" when sending FULL STATUS
1,1 -> 1,0 if received FULL STATUS ACK
(active) -> 0 when "ifconfig PVC down" or "link unreliable" or "PVC create"
-> 1 when "PVC up" and (exist,new) = 1,0
DTE mode:
(exist,new,active) = FULL STATUS if "link reliable"
= 0, 0, 0 if "link unreliable"
No LMI:
active = open and "link reliable"
exist = new = not used
CCITT LMI: ITU-T Q.933 Annex A
ANSI LMI: ANSI T1.617 Annex D
CISCO LMI: the original, aka "Gang of Four" LMI
*/
#include <linux/errno.h>
#include <linux/etherdevice.h>
#include <linux/hdlc.h>
#include <linux/if_arp.h>
#include <linux/inetdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pkt_sched.h>
#include <linux/poll.h>
#include <linux/rtnetlink.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#undef DEBUG_PKT
#undef DEBUG_ECN
#undef DEBUG_LINK
#undef DEBUG_PROTO
#undef DEBUG_PVC
#define FR_UI 0x03
#define FR_PAD 0x00
#define NLPID_IP 0xCC
#define NLPID_IPV6 0x8E
#define NLPID_SNAP 0x80
#define NLPID_PAD 0x00
#define NLPID_CCITT_ANSI_LMI 0x08
#define NLPID_CISCO_LMI 0x09
#define LMI_CCITT_ANSI_DLCI 0 /* LMI DLCI */
#define LMI_CISCO_DLCI 1023
#define LMI_CALLREF 0x00 /* Call Reference */
#define LMI_ANSI_LOCKSHIFT 0x95 /* ANSI locking shift */
#define LMI_ANSI_CISCO_REPTYPE 0x01 /* report type */
#define LMI_CCITT_REPTYPE 0x51
#define LMI_ANSI_CISCO_ALIVE 0x03 /* keep alive */
#define LMI_CCITT_ALIVE 0x53
#define LMI_ANSI_CISCO_PVCSTAT 0x07 /* PVC status */
#define LMI_CCITT_PVCSTAT 0x57
#define LMI_FULLREP 0x00 /* full report */
#define LMI_INTEGRITY 0x01 /* link integrity report */
#define LMI_SINGLE 0x02 /* single PVC report */
#define LMI_STATUS_ENQUIRY 0x75
#define LMI_STATUS 0x7D /* reply */
#define LMI_REPT_LEN 1 /* report type element length */
#define LMI_INTEG_LEN 2 /* link integrity element length */
#define LMI_CCITT_CISCO_LENGTH 13 /* LMI frame lengths */
#define LMI_ANSI_LENGTH 14
struct fr_hdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
unsigned ea1: 1;
unsigned cr: 1;
unsigned dlcih: 6;
unsigned ea2: 1;
unsigned de: 1;
unsigned becn: 1;
unsigned fecn: 1;
unsigned dlcil: 4;
#else
unsigned dlcih: 6;
unsigned cr: 1;
unsigned ea1: 1;
unsigned dlcil: 4;
unsigned fecn: 1;
unsigned becn: 1;
unsigned de: 1;
unsigned ea2: 1;
#endif
} __packed;
struct pvc_device {
struct net_device *frad;
struct net_device *main;
struct net_device *ether; /* bridged Ethernet interface */
struct pvc_device *next; /* Sorted in ascending DLCI order */
int dlci;
int open_count;
struct {
unsigned int new: 1;
unsigned int active: 1;
unsigned int exist: 1;
unsigned int deleted: 1;
unsigned int fecn: 1;
unsigned int becn: 1;
unsigned int bandwidth; /* Cisco LMI reporting only */
}state;
};
struct frad_state {
fr_proto settings;
struct pvc_device *first_pvc;
int dce_pvc_count;
struct timer_list timer;
struct net_device *dev;
unsigned long last_poll;
int reliable;
int dce_changed;
int request;
int fullrep_sent;
u32 last_errors; /* last errors bit list */
u8 n391cnt;
u8 txseq; /* TX sequence number */
u8 rxseq; /* RX sequence number */
};
static int fr_ioctl(struct net_device *dev, struct ifreq *ifr);
static inline u16 q922_to_dlci(u8 *hdr)
{
return ((hdr[0] & 0xFC) << 2) | ((hdr[1] & 0xF0) >> 4);
}
static inline void dlci_to_q922(u8 *hdr, u16 dlci)
{
hdr[0] = (dlci >> 2) & 0xFC;
hdr[1] = ((dlci << 4) & 0xF0) | 0x01;
}
static inline struct frad_state* state(hdlc_device *hdlc)
{
return(struct frad_state *)(hdlc->state);
}
static inline struct pvc_device *find_pvc(hdlc_device *hdlc, u16 dlci)
{
struct pvc_device *pvc = state(hdlc)->first_pvc;
while (pvc) {
if (pvc->dlci == dlci)
return pvc;
if (pvc->dlci > dlci)
return NULL; /* the list is sorted */
pvc = pvc->next;
}
return NULL;
}
static struct pvc_device *add_pvc(struct net_device *dev, u16 dlci)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
struct pvc_device *pvc, **pvc_p = &state(hdlc)->first_pvc;
while (*pvc_p) {
if ((*pvc_p)->dlci == dlci)
return *pvc_p;
if ((*pvc_p)->dlci > dlci)
break; /* the list is sorted */
pvc_p = &(*pvc_p)->next;
}
pvc = kzalloc(sizeof(*pvc), GFP_ATOMIC);
#ifdef DEBUG_PVC
printk(KERN_DEBUG "add_pvc: allocated pvc %p, frad %p\n", pvc, dev);
#endif
if (!pvc)
return NULL;
pvc->dlci = dlci;
pvc->frad = dev;
pvc->next = *pvc_p; /* Put it in the chain */
*pvc_p = pvc;
return pvc;
}
static inline int pvc_is_used(struct pvc_device *pvc)
{
return pvc->main || pvc->ether;
}
static inline void pvc_carrier(int on, struct pvc_device *pvc)
{
if (on) {
if (pvc->main)
if (!netif_carrier_ok(pvc->main))
netif_carrier_on(pvc->main);
if (pvc->ether)
if (!netif_carrier_ok(pvc->ether))
netif_carrier_on(pvc->ether);
} else {
if (pvc->main)
if (netif_carrier_ok(pvc->main))
netif_carrier_off(pvc->main);
if (pvc->ether)
if (netif_carrier_ok(pvc->ether))
netif_carrier_off(pvc->ether);
}
}
static inline void delete_unused_pvcs(hdlc_device *hdlc)
{
struct pvc_device **pvc_p = &state(hdlc)->first_pvc;
while (*pvc_p) {
if (!pvc_is_used(*pvc_p)) {
struct pvc_device *pvc = *pvc_p;
#ifdef DEBUG_PVC
printk(KERN_DEBUG "freeing unused pvc: %p\n", pvc);
#endif
*pvc_p = pvc->next;
kfree(pvc);
continue;
}
pvc_p = &(*pvc_p)->next;
}
}
static inline struct net_device **get_dev_p(struct pvc_device *pvc,
int type)
{
if (type == ARPHRD_ETHER)
return &pvc->ether;
else
return &pvc->main;
}
static int fr_hard_header(struct sk_buff **skb_p, u16 dlci)
{
struct sk_buff *skb = *skb_p;
drivers/net/wan/hdlc_fr: Correctly handle special skb->protocol values [ Upstream commit 8306266c1d51aac9aa7aa907fe99032a58c6382c ] The fr_hard_header function is used to prepend the header to skbs before transmission. It is used in 3 situations: 1) When a control packet is generated internally in this driver; 2) When a user sends an skb on an Ethernet-emulating PVC device; 3) When a user sends an skb on a normal PVC device. These 3 situations need to be handled differently by fr_hard_header. Different headers should be prepended to the skb in different situations. Currently fr_hard_header distinguishes these 3 situations using skb->protocol. For situation 1 and 2, a special skb->protocol value will be assigned before calling fr_hard_header, so that it can recognize these 2 situations. All skb->protocol values other than these special ones are treated by fr_hard_header as situation 3. However, it is possible that in situation 3, the user sends an skb with one of the special skb->protocol values. In this case, fr_hard_header would incorrectly treat it as situation 1 or 2. This patch tries to solve this issue by using skb->dev instead of skb->protocol to distinguish between these 3 situations. For situation 1, skb->dev would be NULL; for situation 2, skb->dev->type would be ARPHRD_ETHER; and for situation 3, skb->dev->type would be ARPHRD_DLCI. This way fr_hard_header would be able to distinguish these 3 situations correctly regardless what skb->protocol value the user tries to use in situation 3. Cc: Krzysztof Halasa <khc@pm.waw.pl> Signed-off-by: Xie He <xie.he.0141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-28 06:56:43 -06:00
if (!skb->dev) { /* Control packets */
switch (dlci) {
case LMI_CCITT_ANSI_DLCI:
skb_push(skb, 4);
skb->data[3] = NLPID_CCITT_ANSI_LMI;
break;
case LMI_CISCO_DLCI:
skb_push(skb, 4);
skb->data[3] = NLPID_CISCO_LMI;
break;
default:
return -EINVAL;
}
} else if (skb->dev->type == ARPHRD_DLCI) {
switch (skb->protocol) {
case htons(ETH_P_IP):
skb_push(skb, 4);
skb->data[3] = NLPID_IP;
break;
case htons(ETH_P_IPV6):
skb_push(skb, 4);
skb->data[3] = NLPID_IPV6;
break;
default:
skb_push(skb, 10);
skb->data[3] = FR_PAD;
skb->data[4] = NLPID_SNAP;
/* OUI 00-00-00 indicates an Ethertype follows */
skb->data[5] = 0x00;
skb->data[6] = 0x00;
skb->data[7] = 0x00;
/* This should be an Ethertype: */
*(__be16 *)(skb->data + 8) = skb->protocol;
}
} else if (skb->dev->type == ARPHRD_ETHER) {
if (skb_headroom(skb) < 10) {
struct sk_buff *skb2 = skb_realloc_headroom(skb, 10);
if (!skb2)
return -ENOBUFS;
dev_kfree_skb(skb);
skb = *skb_p = skb2;
}
drivers/net/wan/hdlc_fr: Correctly handle special skb->protocol values [ Upstream commit 8306266c1d51aac9aa7aa907fe99032a58c6382c ] The fr_hard_header function is used to prepend the header to skbs before transmission. It is used in 3 situations: 1) When a control packet is generated internally in this driver; 2) When a user sends an skb on an Ethernet-emulating PVC device; 3) When a user sends an skb on a normal PVC device. These 3 situations need to be handled differently by fr_hard_header. Different headers should be prepended to the skb in different situations. Currently fr_hard_header distinguishes these 3 situations using skb->protocol. For situation 1 and 2, a special skb->protocol value will be assigned before calling fr_hard_header, so that it can recognize these 2 situations. All skb->protocol values other than these special ones are treated by fr_hard_header as situation 3. However, it is possible that in situation 3, the user sends an skb with one of the special skb->protocol values. In this case, fr_hard_header would incorrectly treat it as situation 1 or 2. This patch tries to solve this issue by using skb->dev instead of skb->protocol to distinguish between these 3 situations. For situation 1, skb->dev would be NULL; for situation 2, skb->dev->type would be ARPHRD_ETHER; and for situation 3, skb->dev->type would be ARPHRD_DLCI. This way fr_hard_header would be able to distinguish these 3 situations correctly regardless what skb->protocol value the user tries to use in situation 3. Cc: Krzysztof Halasa <khc@pm.waw.pl> Signed-off-by: Xie He <xie.he.0141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-28 06:56:43 -06:00
skb_push(skb, 10);
skb->data[3] = FR_PAD;
skb->data[4] = NLPID_SNAP;
drivers/net/wan/hdlc_fr: Correctly handle special skb->protocol values [ Upstream commit 8306266c1d51aac9aa7aa907fe99032a58c6382c ] The fr_hard_header function is used to prepend the header to skbs before transmission. It is used in 3 situations: 1) When a control packet is generated internally in this driver; 2) When a user sends an skb on an Ethernet-emulating PVC device; 3) When a user sends an skb on a normal PVC device. These 3 situations need to be handled differently by fr_hard_header. Different headers should be prepended to the skb in different situations. Currently fr_hard_header distinguishes these 3 situations using skb->protocol. For situation 1 and 2, a special skb->protocol value will be assigned before calling fr_hard_header, so that it can recognize these 2 situations. All skb->protocol values other than these special ones are treated by fr_hard_header as situation 3. However, it is possible that in situation 3, the user sends an skb with one of the special skb->protocol values. In this case, fr_hard_header would incorrectly treat it as situation 1 or 2. This patch tries to solve this issue by using skb->dev instead of skb->protocol to distinguish between these 3 situations. For situation 1, skb->dev would be NULL; for situation 2, skb->dev->type would be ARPHRD_ETHER; and for situation 3, skb->dev->type would be ARPHRD_DLCI. This way fr_hard_header would be able to distinguish these 3 situations correctly regardless what skb->protocol value the user tries to use in situation 3. Cc: Krzysztof Halasa <khc@pm.waw.pl> Signed-off-by: Xie He <xie.he.0141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-28 06:56:43 -06:00
/* OUI 00-80-C2 stands for the 802.1 organization */
skb->data[5] = 0x00;
skb->data[6] = 0x80;
skb->data[7] = 0xC2;
drivers/net/wan/hdlc_fr: Correctly handle special skb->protocol values [ Upstream commit 8306266c1d51aac9aa7aa907fe99032a58c6382c ] The fr_hard_header function is used to prepend the header to skbs before transmission. It is used in 3 situations: 1) When a control packet is generated internally in this driver; 2) When a user sends an skb on an Ethernet-emulating PVC device; 3) When a user sends an skb on a normal PVC device. These 3 situations need to be handled differently by fr_hard_header. Different headers should be prepended to the skb in different situations. Currently fr_hard_header distinguishes these 3 situations using skb->protocol. For situation 1 and 2, a special skb->protocol value will be assigned before calling fr_hard_header, so that it can recognize these 2 situations. All skb->protocol values other than these special ones are treated by fr_hard_header as situation 3. However, it is possible that in situation 3, the user sends an skb with one of the special skb->protocol values. In this case, fr_hard_header would incorrectly treat it as situation 1 or 2. This patch tries to solve this issue by using skb->dev instead of skb->protocol to distinguish between these 3 situations. For situation 1, skb->dev would be NULL; for situation 2, skb->dev->type would be ARPHRD_ETHER; and for situation 3, skb->dev->type would be ARPHRD_DLCI. This way fr_hard_header would be able to distinguish these 3 situations correctly regardless what skb->protocol value the user tries to use in situation 3. Cc: Krzysztof Halasa <khc@pm.waw.pl> Signed-off-by: Xie He <xie.he.0141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-28 06:56:43 -06:00
/* PID 00-07 stands for Ethernet frames without FCS */
skb->data[8] = 0x00;
drivers/net/wan/hdlc_fr: Correctly handle special skb->protocol values [ Upstream commit 8306266c1d51aac9aa7aa907fe99032a58c6382c ] The fr_hard_header function is used to prepend the header to skbs before transmission. It is used in 3 situations: 1) When a control packet is generated internally in this driver; 2) When a user sends an skb on an Ethernet-emulating PVC device; 3) When a user sends an skb on a normal PVC device. These 3 situations need to be handled differently by fr_hard_header. Different headers should be prepended to the skb in different situations. Currently fr_hard_header distinguishes these 3 situations using skb->protocol. For situation 1 and 2, a special skb->protocol value will be assigned before calling fr_hard_header, so that it can recognize these 2 situations. All skb->protocol values other than these special ones are treated by fr_hard_header as situation 3. However, it is possible that in situation 3, the user sends an skb with one of the special skb->protocol values. In this case, fr_hard_header would incorrectly treat it as situation 1 or 2. This patch tries to solve this issue by using skb->dev instead of skb->protocol to distinguish between these 3 situations. For situation 1, skb->dev would be NULL; for situation 2, skb->dev->type would be ARPHRD_ETHER; and for situation 3, skb->dev->type would be ARPHRD_DLCI. This way fr_hard_header would be able to distinguish these 3 situations correctly regardless what skb->protocol value the user tries to use in situation 3. Cc: Krzysztof Halasa <khc@pm.waw.pl> Signed-off-by: Xie He <xie.he.0141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-28 06:56:43 -06:00
skb->data[9] = 0x07;
drivers/net/wan/hdlc_fr: Correctly handle special skb->protocol values [ Upstream commit 8306266c1d51aac9aa7aa907fe99032a58c6382c ] The fr_hard_header function is used to prepend the header to skbs before transmission. It is used in 3 situations: 1) When a control packet is generated internally in this driver; 2) When a user sends an skb on an Ethernet-emulating PVC device; 3) When a user sends an skb on a normal PVC device. These 3 situations need to be handled differently by fr_hard_header. Different headers should be prepended to the skb in different situations. Currently fr_hard_header distinguishes these 3 situations using skb->protocol. For situation 1 and 2, a special skb->protocol value will be assigned before calling fr_hard_header, so that it can recognize these 2 situations. All skb->protocol values other than these special ones are treated by fr_hard_header as situation 3. However, it is possible that in situation 3, the user sends an skb with one of the special skb->protocol values. In this case, fr_hard_header would incorrectly treat it as situation 1 or 2. This patch tries to solve this issue by using skb->dev instead of skb->protocol to distinguish between these 3 situations. For situation 1, skb->dev would be NULL; for situation 2, skb->dev->type would be ARPHRD_ETHER; and for situation 3, skb->dev->type would be ARPHRD_DLCI. This way fr_hard_header would be able to distinguish these 3 situations correctly regardless what skb->protocol value the user tries to use in situation 3. Cc: Krzysztof Halasa <khc@pm.waw.pl> Signed-off-by: Xie He <xie.he.0141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-28 06:56:43 -06:00
} else {
return -EINVAL;
}
dlci_to_q922(skb->data, dlci);
skb->data[2] = FR_UI;
return 0;
}
static int pvc_open(struct net_device *dev)
{
struct pvc_device *pvc = dev->ml_priv;
if ((pvc->frad->flags & IFF_UP) == 0)
return -EIO; /* Frad must be UP in order to activate PVC */
if (pvc->open_count++ == 0) {
hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
if (state(hdlc)->settings.lmi == LMI_NONE)
pvc->state.active = netif_carrier_ok(pvc->frad);
pvc_carrier(pvc->state.active, pvc);
state(hdlc)->dce_changed = 1;
}
return 0;
}
static int pvc_close(struct net_device *dev)
{
struct pvc_device *pvc = dev->ml_priv;
if (--pvc->open_count == 0) {
hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
if (state(hdlc)->settings.lmi == LMI_NONE)
pvc->state.active = 0;
if (state(hdlc)->settings.dce) {
state(hdlc)->dce_changed = 1;
pvc->state.active = 0;
}
}
return 0;
}
static int pvc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct pvc_device *pvc = dev->ml_priv;
fr_proto_pvc_info info;
if (ifr->ifr_settings.type == IF_GET_PROTO) {
if (dev->type == ARPHRD_ETHER)
ifr->ifr_settings.type = IF_PROTO_FR_ETH_PVC;
else
ifr->ifr_settings.type = IF_PROTO_FR_PVC;
if (ifr->ifr_settings.size < sizeof(info)) {
/* data size wanted */
ifr->ifr_settings.size = sizeof(info);
return -ENOBUFS;
}
info.dlci = pvc->dlci;
memcpy(info.master, pvc->frad->name, IFNAMSIZ);
if (copy_to_user(ifr->ifr_settings.ifs_ifsu.fr_pvc_info,
&info, sizeof(info)))
return -EFAULT;
return 0;
}
return -EINVAL;
}
static netdev_tx_t pvc_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct pvc_device *pvc = dev->ml_priv;
if (pvc->state.active) {
if (dev->type == ARPHRD_ETHER) {
int pad = ETH_ZLEN - skb->len;
if (pad > 0) { /* Pad the frame with zeros */
int len = skb->len;
if (skb_tailroom(skb) < pad)
if (pskb_expand_head(skb, 0, pad,
GFP_ATOMIC)) {
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
skb_put(skb, pad);
memset(skb->data + len, 0, pad);
}
}
drivers/net/wan/hdlc_fr: Correctly handle special skb->protocol values [ Upstream commit 8306266c1d51aac9aa7aa907fe99032a58c6382c ] The fr_hard_header function is used to prepend the header to skbs before transmission. It is used in 3 situations: 1) When a control packet is generated internally in this driver; 2) When a user sends an skb on an Ethernet-emulating PVC device; 3) When a user sends an skb on a normal PVC device. These 3 situations need to be handled differently by fr_hard_header. Different headers should be prepended to the skb in different situations. Currently fr_hard_header distinguishes these 3 situations using skb->protocol. For situation 1 and 2, a special skb->protocol value will be assigned before calling fr_hard_header, so that it can recognize these 2 situations. All skb->protocol values other than these special ones are treated by fr_hard_header as situation 3. However, it is possible that in situation 3, the user sends an skb with one of the special skb->protocol values. In this case, fr_hard_header would incorrectly treat it as situation 1 or 2. This patch tries to solve this issue by using skb->dev instead of skb->protocol to distinguish between these 3 situations. For situation 1, skb->dev would be NULL; for situation 2, skb->dev->type would be ARPHRD_ETHER; and for situation 3, skb->dev->type would be ARPHRD_DLCI. This way fr_hard_header would be able to distinguish these 3 situations correctly regardless what skb->protocol value the user tries to use in situation 3. Cc: Krzysztof Halasa <khc@pm.waw.pl> Signed-off-by: Xie He <xie.he.0141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-28 06:56:43 -06:00
skb->dev = dev;
if (!fr_hard_header(&skb, pvc->dlci)) {
dev->stats.tx_bytes += skb->len;
dev->stats.tx_packets++;
if (pvc->state.fecn) /* TX Congestion counter */
dev->stats.tx_compressed++;
skb->dev = pvc->frad;
drivers/net/wan/hdlc: Set skb->protocol before transmitting [ Upstream commit 9fb030a70431a2a2a1b292dbf0b2f399cc072c16 ] This patch sets skb->protocol before transmitting frames on the HDLC device, so that a user listening on the HDLC device with an AF_PACKET socket will see outgoing frames' sll_protocol field correctly set and consistent with that of incoming frames. 1. Control frames in hdlc_cisco and hdlc_ppp When these drivers send control frames, skb->protocol is not set. This value should be set to htons(ETH_P_HDLC), because when receiving control frames, their skb->protocol is set to htons(ETH_P_HDLC). When receiving, hdlc_type_trans in hdlc.h is called, which then calls cisco_type_trans or ppp_type_trans. The skb->protocol of control frames is set to htons(ETH_P_HDLC) so that the control frames can be received by hdlc_rcv in hdlc.c, which calls cisco_rx or ppp_rx to process the control frames. 2. hdlc_fr When this driver sends control frames, skb->protocol is set to internal values used in this driver. When this driver sends data frames (from upper stacked PVC devices), skb->protocol is the same as that of the user data packet being sent on the upper PVC device (for normal PVC devices), or is htons(ETH_P_802_3) (for Ethernet-emulating PVC devices). However, skb->protocol for both control frames and data frames should be set to htons(ETH_P_HDLC), because when receiving, all frames received on the HDLC device will have their skb->protocol set to htons(ETH_P_HDLC). When receiving, hdlc_type_trans in hdlc.h is called, and because this driver doesn't provide a type_trans function in struct hdlc_proto, all frames will have their skb->protocol set to htons(ETH_P_HDLC). The frames are then received by hdlc_rcv in hdlc.c, which calls fr_rx to process the frames (control frames are consumed and data frames are re-received on upper PVC devices). Cc: Krzysztof Halasa <khc@pm.waw.pl> Signed-off-by: Xie He <xie.he.0141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-16 15:25:07 -06:00
skb->protocol = htons(ETH_P_HDLC);
skb_reset_network_header(skb);
dev_queue_xmit(skb);
return NETDEV_TX_OK;
}
}
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static inline void fr_log_dlci_active(struct pvc_device *pvc)
{
netdev_info(pvc->frad, "DLCI %d [%s%s%s]%s %s\n",
pvc->dlci,
pvc->main ? pvc->main->name : "",
pvc->main && pvc->ether ? " " : "",
pvc->ether ? pvc->ether->name : "",
pvc->state.new ? " new" : "",
!pvc->state.exist ? "deleted" :
pvc->state.active ? "active" : "inactive");
}
static inline u8 fr_lmi_nextseq(u8 x)
{
x++;
return x ? x : 1;
}
static void fr_lmi_send(struct net_device *dev, int fullrep)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
struct sk_buff *skb;
struct pvc_device *pvc = state(hdlc)->first_pvc;
int lmi = state(hdlc)->settings.lmi;
int dce = state(hdlc)->settings.dce;
int len = lmi == LMI_ANSI ? LMI_ANSI_LENGTH : LMI_CCITT_CISCO_LENGTH;
int stat_len = (lmi == LMI_CISCO) ? 6 : 3;
u8 *data;
int i = 0;
if (dce && fullrep) {
len += state(hdlc)->dce_pvc_count * (2 + stat_len);
if (len > HDLC_MAX_MRU) {
netdev_warn(dev, "Too many PVCs while sending LMI full report\n");
return;
}
}
skb = dev_alloc_skb(len);
if (!skb) {
netdev_warn(dev, "Memory squeeze on fr_lmi_send()\n");
return;
}
memset(skb->data, 0, len);
skb_reserve(skb, 4);
if (lmi == LMI_CISCO) {
fr_hard_header(&skb, LMI_CISCO_DLCI);
} else {
fr_hard_header(&skb, LMI_CCITT_ANSI_DLCI);
}
data = skb_tail_pointer(skb);
data[i++] = LMI_CALLREF;
data[i++] = dce ? LMI_STATUS : LMI_STATUS_ENQUIRY;
if (lmi == LMI_ANSI)
data[i++] = LMI_ANSI_LOCKSHIFT;
data[i++] = lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
LMI_ANSI_CISCO_REPTYPE;
data[i++] = LMI_REPT_LEN;
data[i++] = fullrep ? LMI_FULLREP : LMI_INTEGRITY;
data[i++] = lmi == LMI_CCITT ? LMI_CCITT_ALIVE : LMI_ANSI_CISCO_ALIVE;
data[i++] = LMI_INTEG_LEN;
data[i++] = state(hdlc)->txseq =
fr_lmi_nextseq(state(hdlc)->txseq);
data[i++] = state(hdlc)->rxseq;
if (dce && fullrep) {
while (pvc) {
data[i++] = lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
LMI_ANSI_CISCO_PVCSTAT;
data[i++] = stat_len;
/* LMI start/restart */
if (state(hdlc)->reliable && !pvc->state.exist) {
pvc->state.exist = pvc->state.new = 1;
fr_log_dlci_active(pvc);
}
/* ifconfig PVC up */
if (pvc->open_count && !pvc->state.active &&
pvc->state.exist && !pvc->state.new) {
pvc_carrier(1, pvc);
pvc->state.active = 1;
fr_log_dlci_active(pvc);
}
if (lmi == LMI_CISCO) {
data[i] = pvc->dlci >> 8;
data[i + 1] = pvc->dlci & 0xFF;
} else {
data[i] = (pvc->dlci >> 4) & 0x3F;
data[i + 1] = ((pvc->dlci << 3) & 0x78) | 0x80;
data[i + 2] = 0x80;
}
if (pvc->state.new)
data[i + 2] |= 0x08;
else if (pvc->state.active)
data[i + 2] |= 0x02;
i += stat_len;
pvc = pvc->next;
}
}
skb_put(skb, i);
skb->priority = TC_PRIO_CONTROL;
skb->dev = dev;
drivers/net/wan/hdlc: Set skb->protocol before transmitting [ Upstream commit 9fb030a70431a2a2a1b292dbf0b2f399cc072c16 ] This patch sets skb->protocol before transmitting frames on the HDLC device, so that a user listening on the HDLC device with an AF_PACKET socket will see outgoing frames' sll_protocol field correctly set and consistent with that of incoming frames. 1. Control frames in hdlc_cisco and hdlc_ppp When these drivers send control frames, skb->protocol is not set. This value should be set to htons(ETH_P_HDLC), because when receiving control frames, their skb->protocol is set to htons(ETH_P_HDLC). When receiving, hdlc_type_trans in hdlc.h is called, which then calls cisco_type_trans or ppp_type_trans. The skb->protocol of control frames is set to htons(ETH_P_HDLC) so that the control frames can be received by hdlc_rcv in hdlc.c, which calls cisco_rx or ppp_rx to process the control frames. 2. hdlc_fr When this driver sends control frames, skb->protocol is set to internal values used in this driver. When this driver sends data frames (from upper stacked PVC devices), skb->protocol is the same as that of the user data packet being sent on the upper PVC device (for normal PVC devices), or is htons(ETH_P_802_3) (for Ethernet-emulating PVC devices). However, skb->protocol for both control frames and data frames should be set to htons(ETH_P_HDLC), because when receiving, all frames received on the HDLC device will have their skb->protocol set to htons(ETH_P_HDLC). When receiving, hdlc_type_trans in hdlc.h is called, and because this driver doesn't provide a type_trans function in struct hdlc_proto, all frames will have their skb->protocol set to htons(ETH_P_HDLC). The frames are then received by hdlc_rcv in hdlc.c, which calls fr_rx to process the frames (control frames are consumed and data frames are re-received on upper PVC devices). Cc: Krzysztof Halasa <khc@pm.waw.pl> Signed-off-by: Xie He <xie.he.0141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-16 15:25:07 -06:00
skb->protocol = htons(ETH_P_HDLC);
skb_reset_network_header(skb);
dev_queue_xmit(skb);
}
static void fr_set_link_state(int reliable, struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
struct pvc_device *pvc = state(hdlc)->first_pvc;
state(hdlc)->reliable = reliable;
if (reliable) {
netif_dormant_off(dev);
state(hdlc)->n391cnt = 0; /* Request full status */
state(hdlc)->dce_changed = 1;
if (state(hdlc)->settings.lmi == LMI_NONE) {
while (pvc) { /* Activate all PVCs */
pvc_carrier(1, pvc);
pvc->state.exist = pvc->state.active = 1;
pvc->state.new = 0;
pvc = pvc->next;
}
}
} else {
netif_dormant_on(dev);
while (pvc) { /* Deactivate all PVCs */
pvc_carrier(0, pvc);
pvc->state.exist = pvc->state.active = 0;
pvc->state.new = 0;
if (!state(hdlc)->settings.dce)
pvc->state.bandwidth = 0;
pvc = pvc->next;
}
}
}
static void fr_timer(struct timer_list *t)
{
struct frad_state *st = from_timer(st, t, timer);
struct net_device *dev = st->dev;
hdlc_device *hdlc = dev_to_hdlc(dev);
int i, cnt = 0, reliable;
u32 list;
if (state(hdlc)->settings.dce) {
reliable = state(hdlc)->request &&
time_before(jiffies, state(hdlc)->last_poll +
state(hdlc)->settings.t392 * HZ);
state(hdlc)->request = 0;
} else {
state(hdlc)->last_errors <<= 1; /* Shift the list */
if (state(hdlc)->request) {
if (state(hdlc)->reliable)
netdev_info(dev, "No LMI status reply received\n");
state(hdlc)->last_errors |= 1;
}
list = state(hdlc)->last_errors;
for (i = 0; i < state(hdlc)->settings.n393; i++, list >>= 1)
cnt += (list & 1); /* errors count */
reliable = (cnt < state(hdlc)->settings.n392);
}
if (state(hdlc)->reliable != reliable) {
netdev_info(dev, "Link %sreliable\n", reliable ? "" : "un");
fr_set_link_state(reliable, dev);
}
if (state(hdlc)->settings.dce)
state(hdlc)->timer.expires = jiffies +
state(hdlc)->settings.t392 * HZ;
else {
if (state(hdlc)->n391cnt)
state(hdlc)->n391cnt--;
fr_lmi_send(dev, state(hdlc)->n391cnt == 0);
state(hdlc)->last_poll = jiffies;
state(hdlc)->request = 1;
state(hdlc)->timer.expires = jiffies +
state(hdlc)->settings.t391 * HZ;
}
add_timer(&state(hdlc)->timer);
}
static int fr_lmi_recv(struct net_device *dev, struct sk_buff *skb)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
struct pvc_device *pvc;
u8 rxseq, txseq;
int lmi = state(hdlc)->settings.lmi;
int dce = state(hdlc)->settings.dce;
int stat_len = (lmi == LMI_CISCO) ? 6 : 3, reptype, error, no_ram, i;
if (skb->len < (lmi == LMI_ANSI ? LMI_ANSI_LENGTH :
LMI_CCITT_CISCO_LENGTH)) {
netdev_info(dev, "Short LMI frame\n");
return 1;
}
if (skb->data[3] != (lmi == LMI_CISCO ? NLPID_CISCO_LMI :
NLPID_CCITT_ANSI_LMI)) {
netdev_info(dev, "Received non-LMI frame with LMI DLCI\n");
return 1;
}
if (skb->data[4] != LMI_CALLREF) {
netdev_info(dev, "Invalid LMI Call reference (0x%02X)\n",
skb->data[4]);
return 1;
}
if (skb->data[5] != (dce ? LMI_STATUS_ENQUIRY : LMI_STATUS)) {
netdev_info(dev, "Invalid LMI Message type (0x%02X)\n",
skb->data[5]);
return 1;
}
if (lmi == LMI_ANSI) {
if (skb->data[6] != LMI_ANSI_LOCKSHIFT) {
netdev_info(dev, "Not ANSI locking shift in LMI message (0x%02X)\n",
skb->data[6]);
return 1;
}
i = 7;
} else
i = 6;
if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
LMI_ANSI_CISCO_REPTYPE)) {
netdev_info(dev, "Not an LMI Report type IE (0x%02X)\n",
skb->data[i]);
return 1;
}
if (skb->data[++i] != LMI_REPT_LEN) {
netdev_info(dev, "Invalid LMI Report type IE length (%u)\n",
skb->data[i]);
return 1;
}
reptype = skb->data[++i];
if (reptype != LMI_INTEGRITY && reptype != LMI_FULLREP) {
netdev_info(dev, "Unsupported LMI Report type (0x%02X)\n",
reptype);
return 1;
}
if (skb->data[++i] != (lmi == LMI_CCITT ? LMI_CCITT_ALIVE :
LMI_ANSI_CISCO_ALIVE)) {
netdev_info(dev, "Not an LMI Link integrity verification IE (0x%02X)\n",
skb->data[i]);
return 1;
}
if (skb->data[++i] != LMI_INTEG_LEN) {
netdev_info(dev, "Invalid LMI Link integrity verification IE length (%u)\n",
skb->data[i]);
return 1;
}
i++;
state(hdlc)->rxseq = skb->data[i++]; /* TX sequence from peer */
rxseq = skb->data[i++]; /* Should confirm our sequence */
txseq = state(hdlc)->txseq;
if (dce)
state(hdlc)->last_poll = jiffies;
error = 0;
if (!state(hdlc)->reliable)
error = 1;
if (rxseq == 0 || rxseq != txseq) { /* Ask for full report next time */
state(hdlc)->n391cnt = 0;
error = 1;
}
if (dce) {
if (state(hdlc)->fullrep_sent && !error) {
/* Stop sending full report - the last one has been confirmed by DTE */
state(hdlc)->fullrep_sent = 0;
pvc = state(hdlc)->first_pvc;
while (pvc) {
if (pvc->state.new) {
pvc->state.new = 0;
/* Tell DTE that new PVC is now active */
state(hdlc)->dce_changed = 1;
}
pvc = pvc->next;
}
}
if (state(hdlc)->dce_changed) {
reptype = LMI_FULLREP;
state(hdlc)->fullrep_sent = 1;
state(hdlc)->dce_changed = 0;
}
state(hdlc)->request = 1; /* got request */
fr_lmi_send(dev, reptype == LMI_FULLREP ? 1 : 0);
return 0;
}
/* DTE */
state(hdlc)->request = 0; /* got response, no request pending */
if (error)
return 0;
if (reptype != LMI_FULLREP)
return 0;
pvc = state(hdlc)->first_pvc;
while (pvc) {
pvc->state.deleted = 1;
pvc = pvc->next;
}
no_ram = 0;
while (skb->len >= i + 2 + stat_len) {
u16 dlci;
u32 bw;
unsigned int active, new;
if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
LMI_ANSI_CISCO_PVCSTAT)) {
netdev_info(dev, "Not an LMI PVC status IE (0x%02X)\n",
skb->data[i]);
return 1;
}
if (skb->data[++i] != stat_len) {
netdev_info(dev, "Invalid LMI PVC status IE length (%u)\n",
skb->data[i]);
return 1;
}
i++;
new = !! (skb->data[i + 2] & 0x08);
active = !! (skb->data[i + 2] & 0x02);
if (lmi == LMI_CISCO) {
dlci = (skb->data[i] << 8) | skb->data[i + 1];
bw = (skb->data[i + 3] << 16) |
(skb->data[i + 4] << 8) |
(skb->data[i + 5]);
} else {
dlci = ((skb->data[i] & 0x3F) << 4) |
((skb->data[i + 1] & 0x78) >> 3);
bw = 0;
}
pvc = add_pvc(dev, dlci);
if (!pvc && !no_ram) {
netdev_warn(dev, "Memory squeeze on fr_lmi_recv()\n");
no_ram = 1;
}
if (pvc) {
pvc->state.exist = 1;
pvc->state.deleted = 0;
if (active != pvc->state.active ||
new != pvc->state.new ||
bw != pvc->state.bandwidth ||
!pvc->state.exist) {
pvc->state.new = new;
pvc->state.active = active;
pvc->state.bandwidth = bw;
pvc_carrier(active, pvc);
fr_log_dlci_active(pvc);
}
}
i += stat_len;
}
pvc = state(hdlc)->first_pvc;
while (pvc) {
if (pvc->state.deleted && pvc->state.exist) {
pvc_carrier(0, pvc);
pvc->state.active = pvc->state.new = 0;
pvc->state.exist = 0;
pvc->state.bandwidth = 0;
fr_log_dlci_active(pvc);
}
pvc = pvc->next;
}
/* Next full report after N391 polls */
state(hdlc)->n391cnt = state(hdlc)->settings.n391;
return 0;
}
static int fr_rx(struct sk_buff *skb)
{
struct net_device *frad = skb->dev;
hdlc_device *hdlc = dev_to_hdlc(frad);
struct fr_hdr *fh = (struct fr_hdr *)skb->data;
u8 *data = skb->data;
u16 dlci;
struct pvc_device *pvc;
struct net_device *dev = NULL;
if (skb->len <= 4 || fh->ea1 || data[2] != FR_UI)
goto rx_error;
dlci = q922_to_dlci(skb->data);
if ((dlci == LMI_CCITT_ANSI_DLCI &&
(state(hdlc)->settings.lmi == LMI_ANSI ||
state(hdlc)->settings.lmi == LMI_CCITT)) ||
(dlci == LMI_CISCO_DLCI &&
state(hdlc)->settings.lmi == LMI_CISCO)) {
if (fr_lmi_recv(frad, skb))
goto rx_error;
dev_kfree_skb_any(skb);
return NET_RX_SUCCESS;
}
pvc = find_pvc(hdlc, dlci);
if (!pvc) {
#ifdef DEBUG_PKT
netdev_info(frad, "No PVC for received frame's DLCI %d\n",
dlci);
#endif
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}
if (pvc->state.fecn != fh->fecn) {
#ifdef DEBUG_ECN
printk(KERN_DEBUG "%s: DLCI %d FECN O%s\n", frad->name,
dlci, fh->fecn ? "N" : "FF");
#endif
pvc->state.fecn ^= 1;
}
if (pvc->state.becn != fh->becn) {
#ifdef DEBUG_ECN
printk(KERN_DEBUG "%s: DLCI %d BECN O%s\n", frad->name,
dlci, fh->becn ? "N" : "FF");
#endif
pvc->state.becn ^= 1;
}
if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {
frad->stats.rx_dropped++;
return NET_RX_DROP;
}
if (data[3] == NLPID_IP) {
skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
dev = pvc->main;
skb->protocol = htons(ETH_P_IP);
} else if (data[3] == NLPID_IPV6) {
skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
dev = pvc->main;
skb->protocol = htons(ETH_P_IPV6);
} else if (skb->len > 10 && data[3] == FR_PAD &&
data[4] == NLPID_SNAP && data[5] == FR_PAD) {
u16 oui = ntohs(*(__be16*)(data + 6));
u16 pid = ntohs(*(__be16*)(data + 8));
skb_pull(skb, 10);
switch ((((u32)oui) << 16) | pid) {
case ETH_P_ARP: /* routed frame with SNAP */
case ETH_P_IPX:
case ETH_P_IP: /* a long variant */
case ETH_P_IPV6:
dev = pvc->main;
skb->protocol = htons(pid);
break;
case 0x80C20007: /* bridged Ethernet frame */
if ((dev = pvc->ether) != NULL)
skb->protocol = eth_type_trans(skb, dev);
break;
default:
netdev_info(frad, "Unsupported protocol, OUI=%x PID=%x\n",
oui, pid);
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}
} else {
netdev_info(frad, "Unsupported protocol, NLPID=%x length=%i\n",
data[3], skb->len);
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}
if (dev) {
dev->stats.rx_packets++; /* PVC traffic */
dev->stats.rx_bytes += skb->len;
if (pvc->state.becn)
dev->stats.rx_compressed++;
skb->dev = dev;
netif_rx(skb);
return NET_RX_SUCCESS;
} else {
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}
rx_error:
frad->stats.rx_errors++; /* Mark error */
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}
static void fr_start(struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
#ifdef DEBUG_LINK
printk(KERN_DEBUG "fr_start\n");
#endif
if (state(hdlc)->settings.lmi != LMI_NONE) {
state(hdlc)->reliable = 0;
state(hdlc)->dce_changed = 1;
state(hdlc)->request = 0;
state(hdlc)->fullrep_sent = 0;
state(hdlc)->last_errors = 0xFFFFFFFF;
state(hdlc)->n391cnt = 0;
state(hdlc)->txseq = state(hdlc)->rxseq = 0;
state(hdlc)->dev = dev;
timer_setup(&state(hdlc)->timer, fr_timer, 0);
/* First poll after 1 s */
state(hdlc)->timer.expires = jiffies + HZ;
add_timer(&state(hdlc)->timer);
} else
fr_set_link_state(1, dev);
}
static void fr_stop(struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
#ifdef DEBUG_LINK
printk(KERN_DEBUG "fr_stop\n");
#endif
if (state(hdlc)->settings.lmi != LMI_NONE)
del_timer_sync(&state(hdlc)->timer);
fr_set_link_state(0, dev);
}
static void fr_close(struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
struct pvc_device *pvc = state(hdlc)->first_pvc;
while (pvc) { /* Shutdown all PVCs for this FRAD */
if (pvc->main)
dev_close(pvc->main);
if (pvc->ether)
dev_close(pvc->ether);
pvc = pvc->next;
}
}
static void pvc_setup(struct net_device *dev)
{
dev->type = ARPHRD_DLCI;
dev->flags = IFF_POINTOPOINT;
dev->hard_header_len = 0;
dev->addr_len = 2;
netif_keep_dst(dev);
}
static const struct net_device_ops pvc_ops = {
.ndo_open = pvc_open,
.ndo_stop = pvc_close,
.ndo_start_xmit = pvc_xmit,
.ndo_do_ioctl = pvc_ioctl,
};
static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type)
{
hdlc_device *hdlc = dev_to_hdlc(frad);
struct pvc_device *pvc;
struct net_device *dev;
int used;
if ((pvc = add_pvc(frad, dlci)) == NULL) {
netdev_warn(frad, "Memory squeeze on fr_add_pvc()\n");
return -ENOBUFS;
}
if (*get_dev_p(pvc, type))
return -EEXIST;
used = pvc_is_used(pvc);
if (type == ARPHRD_ETHER)
dev = alloc_netdev(0, "pvceth%d", NET_NAME_UNKNOWN,
ether_setup);
else
dev = alloc_netdev(0, "pvc%d", NET_NAME_UNKNOWN, pvc_setup);
if (!dev) {
netdev_warn(frad, "Memory squeeze on fr_pvc()\n");
delete_unused_pvcs(hdlc);
return -ENOBUFS;
}
if (type == ARPHRD_ETHER) {
dev->priv_flags &= ~IFF_TX_SKB_SHARING;
eth_hw_addr_random(dev);
} else {
*(__be16*)dev->dev_addr = htons(dlci);
dlci_to_q922(dev->broadcast, dlci);
}
dev->netdev_ops = &pvc_ops;
dev->mtu = HDLC_MAX_MTU;
dev->min_mtu = 68;
dev->max_mtu = HDLC_MAX_MTU;
dev->needed_headroom = 10;
dev->priv_flags |= IFF_NO_QUEUE;
dev->ml_priv = pvc;
if (register_netdevice(dev) != 0) {
free_netdev(dev);
delete_unused_pvcs(hdlc);
return -EIO;
}
net: Fix inconsistent teardown and release of private netdev state. Network devices can allocate reasources and private memory using netdev_ops->ndo_init(). However, the release of these resources can occur in one of two different places. Either netdev_ops->ndo_uninit() or netdev->destructor(). The decision of which operation frees the resources depends upon whether it is necessary for all netdev refs to be released before it is safe to perform the freeing. netdev_ops->ndo_uninit() presumably can occur right after the NETDEV_UNREGISTER notifier completes and the unicast and multicast address lists are flushed. netdev->destructor(), on the other hand, does not run until the netdev references all go away. Further complicating the situation is that netdev->destructor() almost universally does also a free_netdev(). This creates a problem for the logic in register_netdevice(). Because all callers of register_netdevice() manage the freeing of the netdev, and invoke free_netdev(dev) if register_netdevice() fails. If netdev_ops->ndo_init() succeeds, but something else fails inside of register_netdevice(), it does call ndo_ops->ndo_uninit(). But it is not able to invoke netdev->destructor(). This is because netdev->destructor() will do a free_netdev() and then the caller of register_netdevice() will do the same. However, this means that the resources that would normally be released by netdev->destructor() will not be. Over the years drivers have added local hacks to deal with this, by invoking their destructor parts by hand when register_netdevice() fails. Many drivers do not try to deal with this, and instead we have leaks. Let's close this hole by formalizing the distinction between what private things need to be freed up by netdev->destructor() and whether the driver needs unregister_netdevice() to perform the free_netdev(). netdev->priv_destructor() performs all actions to free up the private resources that used to be freed by netdev->destructor(), except for free_netdev(). netdev->needs_free_netdev is a boolean that indicates whether free_netdev() should be done at the end of unregister_netdevice(). Now, register_netdevice() can sanely release all resources after ndo_ops->ndo_init() succeeds, by invoking both ndo_ops->ndo_uninit() and netdev->priv_destructor(). And at the end of unregister_netdevice(), we invoke netdev->priv_destructor() and optionally call free_netdev(). Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-08 10:52:56 -06:00
dev->needs_free_netdev = true;
*get_dev_p(pvc, type) = dev;
if (!used) {
state(hdlc)->dce_changed = 1;
state(hdlc)->dce_pvc_count++;
}
return 0;
}
static int fr_del_pvc(hdlc_device *hdlc, unsigned int dlci, int type)
{
struct pvc_device *pvc;
struct net_device *dev;
if ((pvc = find_pvc(hdlc, dlci)) == NULL)
return -ENOENT;
if ((dev = *get_dev_p(pvc, type)) == NULL)
return -ENOENT;
if (dev->flags & IFF_UP)
return -EBUSY; /* PVC in use */
unregister_netdevice(dev); /* the destructor will free_netdev(dev) */
*get_dev_p(pvc, type) = NULL;
if (!pvc_is_used(pvc)) {
state(hdlc)->dce_pvc_count--;
state(hdlc)->dce_changed = 1;
}
delete_unused_pvcs(hdlc);
return 0;
}
static void fr_destroy(struct net_device *frad)
{
hdlc_device *hdlc = dev_to_hdlc(frad);
struct pvc_device *pvc = state(hdlc)->first_pvc;
state(hdlc)->first_pvc = NULL; /* All PVCs destroyed */
state(hdlc)->dce_pvc_count = 0;
state(hdlc)->dce_changed = 1;
while (pvc) {
struct pvc_device *next = pvc->next;
/* destructors will free_netdev() main and ether */
if (pvc->main)
unregister_netdevice(pvc->main);
if (pvc->ether)
unregister_netdevice(pvc->ether);
kfree(pvc);
pvc = next;
}
}
static struct hdlc_proto proto = {
.close = fr_close,
.start = fr_start,
.stop = fr_stop,
.detach = fr_destroy,
.ioctl = fr_ioctl,
.netif_rx = fr_rx,
.module = THIS_MODULE,
};
static int fr_ioctl(struct net_device *dev, struct ifreq *ifr)
{
fr_proto __user *fr_s = ifr->ifr_settings.ifs_ifsu.fr;
const size_t size = sizeof(fr_proto);
fr_proto new_settings;
hdlc_device *hdlc = dev_to_hdlc(dev);
fr_proto_pvc pvc;
int result;
switch (ifr->ifr_settings.type) {
case IF_GET_PROTO:
if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
return -EINVAL;
ifr->ifr_settings.type = IF_PROTO_FR;
if (ifr->ifr_settings.size < size) {
ifr->ifr_settings.size = size; /* data size wanted */
return -ENOBUFS;
}
if (copy_to_user(fr_s, &state(hdlc)->settings, size))
return -EFAULT;
return 0;
case IF_PROTO_FR:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (dev->flags & IFF_UP)
return -EBUSY;
if (copy_from_user(&new_settings, fr_s, size))
return -EFAULT;
if (new_settings.lmi == LMI_DEFAULT)
new_settings.lmi = LMI_ANSI;
if ((new_settings.lmi != LMI_NONE &&
new_settings.lmi != LMI_ANSI &&
new_settings.lmi != LMI_CCITT &&
new_settings.lmi != LMI_CISCO) ||
new_settings.t391 < 1 ||
new_settings.t392 < 2 ||
new_settings.n391 < 1 ||
new_settings.n392 < 1 ||
new_settings.n393 < new_settings.n392 ||
new_settings.n393 > 32 ||
(new_settings.dce != 0 &&
new_settings.dce != 1))
return -EINVAL;
result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT);
if (result)
return result;
if (dev_to_hdlc(dev)->proto != &proto) { /* Different proto */
result = attach_hdlc_protocol(dev, &proto,
sizeof(struct frad_state));
if (result)
return result;
state(hdlc)->first_pvc = NULL;
state(hdlc)->dce_pvc_count = 0;
}
memcpy(&state(hdlc)->settings, &new_settings, size);
dev->type = ARPHRD_FRAD;
call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE, dev);
return 0;
case IF_PROTO_FR_ADD_PVC:
case IF_PROTO_FR_DEL_PVC:
case IF_PROTO_FR_ADD_ETH_PVC:
case IF_PROTO_FR_DEL_ETH_PVC:
if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
return -EINVAL;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&pvc, ifr->ifr_settings.ifs_ifsu.fr_pvc,
sizeof(fr_proto_pvc)))
return -EFAULT;
if (pvc.dlci <= 0 || pvc.dlci >= 1024)
return -EINVAL; /* Only 10 bits, DLCI 0 reserved */
if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC ||
ifr->ifr_settings.type == IF_PROTO_FR_DEL_ETH_PVC)
result = ARPHRD_ETHER; /* bridged Ethernet device */
else
result = ARPHRD_DLCI;
if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_PVC ||
ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC)
return fr_add_pvc(dev, pvc.dlci, result);
else
return fr_del_pvc(hdlc, pvc.dlci, result);
}
return -EINVAL;
}
static int __init mod_init(void)
{
register_hdlc_protocol(&proto);
return 0;
}
static void __exit mod_exit(void)
{
unregister_hdlc_protocol(&proto);
}
module_init(mod_init);
module_exit(mod_exit);
MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>");
MODULE_DESCRIPTION("Frame-Relay protocol support for generic HDLC");
MODULE_LICENSE("GPL v2");