1
0
Fork 0
alistair23-linux/drivers/platform/x86/asus-laptop.c

1980 lines
52 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* asus-laptop.c - Asus Laptop Support
*
* Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
* Copyright (C) 2006-2007 Corentin Chary
* Copyright (C) 2011 Wind River Systems
*
* The development page for this driver is located at
* http://sourceforge.net/projects/acpi4asus/
*
* Credits:
* Pontus Fuchs - Helper functions, cleanup
* Johann Wiesner - Small compile fixes
* John Belmonte - ACPI code for Toshiba laptop was a good starting point.
* Eric Burghard - LED display support for W1N
* Josh Green - Light Sens support
* Thomas Tuttle - His first patch for led support was very helpful
* Sam Lin - GPS support
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/err.h>
#include <linux/proc_fs.h>
#include <linux/backlight.h>
#include <linux/fb.h>
#include <linux/leds.h>
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/input.h>
#include <linux/input/sparse-keymap.h>
#include <linux/input-polldev.h>
#include <linux/rfkill.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <linux/dmi.h>
ACPI: Clean up inclusions of ACPI header files Replace direct inclusions of <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h>, which are incorrect, with <linux/acpi.h> inclusions and remove some inclusions of those files that aren't necessary. First of all, <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h> should not be included directly from any files that are built for CONFIG_ACPI unset, because that generally leads to build warnings about undefined symbols in !CONFIG_ACPI builds. For CONFIG_ACPI set, <linux/acpi.h> includes those files and for CONFIG_ACPI unset it provides stub ACPI symbols to be used in that case. Second, there are ordering dependencies between those files that always have to be met. Namely, it is required that <acpi/acpi_bus.h> be included prior to <acpi/acpi_drivers.h> so that the acpi_pci_root declarations the latter depends on are always there. And <acpi/acpi.h> which provides basic ACPICA type declarations should always be included prior to any other ACPI headers in CONFIG_ACPI builds. That also is taken care of including <linux/acpi.h> as appropriate. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> (drivers/pci stuff) Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> (Xen stuff) Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-12-02 17:49:16 -07:00
#include <linux/acpi.h>
#include <acpi/video.h>
#define ASUS_LAPTOP_VERSION "0.42"
#define ASUS_LAPTOP_NAME "Asus Laptop Support"
#define ASUS_LAPTOP_CLASS "hotkey"
#define ASUS_LAPTOP_DEVICE_NAME "Hotkey"
#define ASUS_LAPTOP_FILE KBUILD_MODNAME
#define ASUS_LAPTOP_PREFIX "\\_SB.ATKD."
MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
MODULE_LICENSE("GPL");
/*
* WAPF defines the behavior of the Fn+Fx wlan key
* The significance of values is yet to be found, but
* most of the time:
* Bit | Bluetooth | WLAN
* 0 | Hardware | Hardware
* 1 | Hardware | Software
* 4 | Software | Software
*/
static uint wapf = 1;
module_param(wapf, uint, 0444);
MODULE_PARM_DESC(wapf, "WAPF value");
static char *wled_type = "unknown";
static char *bled_type = "unknown";
module_param(wled_type, charp, 0444);
MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
"(unknown, led or rfkill). "
"default is unknown");
module_param(bled_type, charp, 0444);
MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
"(unknown, led or rfkill). "
"default is unknown");
static int wlan_status = 1;
static int bluetooth_status = 1;
static int wimax_status = -1;
static int wwan_status = -1;
static int als_status;
module_param(wlan_status, int, 0444);
MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
"(0 = disabled, 1 = enabled, -1 = don't do anything). "
"default is -1");
module_param(bluetooth_status, int, 0444);
MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
"(0 = disabled, 1 = enabled, -1 = don't do anything). "
"default is -1");
module_param(wimax_status, int, 0444);
MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
"(0 = disabled, 1 = enabled, -1 = don't do anything). "
"default is -1");
module_param(wwan_status, int, 0444);
MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
"(0 = disabled, 1 = enabled, -1 = don't do anything). "
"default is -1");
module_param(als_status, int, 0444);
MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
"(0 = disabled, 1 = enabled). "
"default is 0");
/*
* Some events we use, same for all Asus
*/
#define ATKD_BRNUP_MIN 0x10
#define ATKD_BRNUP_MAX 0x1f
#define ATKD_BRNDOWN_MIN 0x20
#define ATKD_BRNDOWN_MAX 0x2f
#define ATKD_BRNDOWN 0x20
#define ATKD_BRNUP 0x2f
#define ATKD_LCD_ON 0x33
#define ATKD_LCD_OFF 0x34
/*
* Known bits returned by \_SB.ATKD.HWRS
*/
#define WL_HWRS 0x80
#define BT_HWRS 0x100
/*
* Flags for hotk status
* WL_ON and BT_ON are also used for wireless_status()
*/
#define WL_RSTS 0x01 /* internal Wifi */
#define BT_RSTS 0x02 /* internal Bluetooth */
#define WM_RSTS 0x08 /* internal wimax */
#define WW_RSTS 0x20 /* internal wwan */
/* WLED and BLED type */
#define TYPE_UNKNOWN 0
#define TYPE_LED 1
#define TYPE_RFKILL 2
/* LED */
#define METHOD_MLED "MLED"
#define METHOD_TLED "TLED"
#define METHOD_RLED "RLED" /* W1JC */
#define METHOD_PLED "PLED" /* A7J */
#define METHOD_GLED "GLED" /* G1, G2 (probably) */
/* LEDD */
#define METHOD_LEDD "SLCM"
/*
* Bluetooth and WLAN
* WLED and BLED are not handled like other XLED, because in some dsdt
* they also control the WLAN/Bluetooth device.
*/
#define METHOD_WLAN "WLED"
#define METHOD_BLUETOOTH "BLED"
/* WWAN and WIMAX */
#define METHOD_WWAN "GSMC"
#define METHOD_WIMAX "WMXC"
#define METHOD_WL_STATUS "RSTS"
/* Brightness */
#define METHOD_BRIGHTNESS_SET "SPLV"
#define METHOD_BRIGHTNESS_GET "GPLV"
/* Display */
#define METHOD_SWITCH_DISPLAY "SDSP"
#define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */
#define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */
/* GPS */
/* R2H use different handle for GPS on/off */
#define METHOD_GPS_ON "SDON"
#define METHOD_GPS_OFF "SDOF"
#define METHOD_GPS_STATUS "GPST"
/* Keyboard light */
#define METHOD_KBD_LIGHT_SET "SLKB"
#define METHOD_KBD_LIGHT_GET "GLKB"
/* For Pegatron Lucid tablet */
#define DEVICE_NAME_PEGA "Lucid"
#define METHOD_PEGA_ENABLE "ENPR"
#define METHOD_PEGA_DISABLE "DAPR"
#define PEGA_WLAN 0x00
#define PEGA_BLUETOOTH 0x01
#define PEGA_WWAN 0x02
#define PEGA_ALS 0x04
#define PEGA_ALS_POWER 0x05
#define METHOD_PEGA_READ "RDLN"
#define PEGA_READ_ALS_H 0x02
#define PEGA_READ_ALS_L 0x03
#define PEGA_ACCEL_NAME "pega_accel"
#define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
#define METHOD_XLRX "XLRX"
#define METHOD_XLRY "XLRY"
#define METHOD_XLRZ "XLRZ"
#define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
#define PEGA_ACC_RETRIES 3
/*
* Define a specific led structure to keep the main structure clean
*/
struct asus_led {
int wk;
struct work_struct work;
struct led_classdev led;
struct asus_laptop *asus;
const char *method;
};
/*
* Same thing for rfkill
*/
struct asus_rfkill {
/* type of control. Maps to PEGA_* values or *_RSTS */
int control_id;
struct rfkill *rfkill;
struct asus_laptop *asus;
};
/*
* This is the main structure, we can use it to store anything interesting
* about the hotk device
*/
struct asus_laptop {
char *name; /* laptop name */
struct acpi_table_header *dsdt_info;
struct platform_device *platform_device;
struct acpi_device *device; /* the device we are in */
struct backlight_device *backlight_device;
struct input_dev *inputdev;
struct key_entry *keymap;
struct input_polled_dev *pega_accel_poll;
struct asus_led wled;
struct asus_led bled;
struct asus_led mled;
struct asus_led tled;
struct asus_led rled;
struct asus_led pled;
struct asus_led gled;
struct asus_led kled;
struct workqueue_struct *led_workqueue;
int wled_type;
int bled_type;
int wireless_status;
bool have_rsts;
bool is_pega_lucid;
bool pega_acc_live;
int pega_acc_x;
int pega_acc_y;
int pega_acc_z;
struct asus_rfkill wlan;
struct asus_rfkill bluetooth;
struct asus_rfkill wwan;
struct asus_rfkill wimax;
struct asus_rfkill gps;
acpi_handle handle; /* the handle of the hotk device */
u32 ledd_status; /* status of the LED display */
u8 light_level; /* light sensor level */
u8 light_switch; /* light sensor switch value */
u16 event_count[128]; /* count for each event TODO make this better */
};
static const struct key_entry asus_keymap[] = {
/* Lenovo SL Specific keycodes */
{KE_KEY, 0x02, { KEY_SCREENLOCK } },
{KE_KEY, 0x05, { KEY_WLAN } },
{KE_KEY, 0x08, { KEY_F13 } },
{KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
{KE_KEY, 0x17, { KEY_ZOOM } },
{KE_KEY, 0x1f, { KEY_BATTERY } },
/* End of Lenovo SL Specific keycodes */
{KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } },
{KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } },
{KE_KEY, 0x30, { KEY_VOLUMEUP } },
{KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
{KE_KEY, 0x32, { KEY_MUTE } },
{KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
{KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
{KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
{KE_KEY, 0x41, { KEY_NEXTSONG } },
{KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
{KE_KEY, 0x45, { KEY_PLAYPAUSE } },
{KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
{KE_KEY, 0x50, { KEY_EMAIL } },
{KE_KEY, 0x51, { KEY_WWW } },
{KE_KEY, 0x55, { KEY_CALC } },
{KE_IGNORE, 0x57, }, /* Battery mode */
{KE_IGNORE, 0x58, }, /* AC mode */
{KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */
{KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
{KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
{KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
{KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
{KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */
{KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */
{KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */
{KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */
{KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */
{KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */
{KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */
{KE_KEY, 0x6A, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad Fn + F9 */
{KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
{KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
{KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
{KE_IGNORE, 0x6E, }, /* Low Battery notification */
{KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
{KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
{KE_KEY, 0x82, { KEY_CAMERA } },
{KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */
{KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
{KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */
{KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */
{KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */
{KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */
{KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */
{KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */
{KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */
{KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */
{KE_KEY, 0x95, { KEY_MEDIA } },
{KE_KEY, 0x99, { KEY_PHONE } },
{KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */
{KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */
{KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */
{KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */
{KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */
{KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */
{KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */
{KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */
{KE_KEY, 0xB5, { KEY_CALC } },
{KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
{KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
{KE_END, 0},
};
/*
* This function evaluates an ACPI method, given an int as parameter, the
* method is searched within the scope of the handle, can be NULL. The output
* of the method is written is output, which can also be NULL
*
* returns 0 if write is successful, -1 else.
*/
static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
struct acpi_buffer *output)
{
struct acpi_object_list params; /* list of input parameters (an int) */
union acpi_object in_obj; /* the only param we use */
acpi_status status;
if (!handle)
return -1;
params.count = 1;
params.pointer = &in_obj;
in_obj.type = ACPI_TYPE_INTEGER;
in_obj.integer.value = val;
status = acpi_evaluate_object(handle, (char *)method, &params, output);
if (status == AE_OK)
return 0;
else
return -1;
}
static int write_acpi_int(acpi_handle handle, const char *method, int val)
{
return write_acpi_int_ret(handle, method, val, NULL);
}
static int acpi_check_handle(acpi_handle handle, const char *method,
acpi_handle *ret)
{
acpi_status status;
if (method == NULL)
return -ENODEV;
if (ret)
status = acpi_get_handle(handle, (char *)method,
ret);
else {
acpi_handle dummy;
status = acpi_get_handle(handle, (char *)method,
&dummy);
}
if (status != AE_OK) {
if (ret)
pr_warn("Error finding %s\n", method);
return -ENODEV;
}
return 0;
}
static bool asus_check_pega_lucid(struct asus_laptop *asus)
{
return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
!acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
!acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
!acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
}
static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
{
char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
return write_acpi_int(asus->handle, method, unit);
}
static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
{
int i, delta;
unsigned long long val;
for (i = 0; i < PEGA_ACC_RETRIES; i++) {
acpi_evaluate_integer(asus->handle, method, NULL, &val);
/* The output is noisy. From reading the ASL
* dissassembly, timeout errors are returned with 1's
* in the high word, and the lack of locking around
* thei hi/lo byte reads means that a transition
* between (for example) -1 and 0 could be read as
* 0xff00 or 0x00ff. */
delta = abs(curr - (short)val);
if (delta < 128 && !(val & ~0xffff))
break;
}
return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
}
static void pega_accel_poll(struct input_polled_dev *ipd)
{
struct device *parent = ipd->input->dev.parent;
struct asus_laptop *asus = dev_get_drvdata(parent);
/* In some cases, the very first call to poll causes a
* recursive fault under the polldev worker. This is
* apparently related to very early userspace access to the
* device, and perhaps a firmware bug. Fake the first report. */
if (!asus->pega_acc_live) {
asus->pega_acc_live = true;
input_report_abs(ipd->input, ABS_X, 0);
input_report_abs(ipd->input, ABS_Y, 0);
input_report_abs(ipd->input, ABS_Z, 0);
input_sync(ipd->input);
return;
}
asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
/* Note transform, convert to "right/up/out" in the native
* landscape orientation (i.e. the vector is the direction of
* "real up" in the device's cartiesian coordinates). */
input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x);
input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y);
input_report_abs(ipd->input, ABS_Z, asus->pega_acc_z);
input_sync(ipd->input);
}
static void pega_accel_exit(struct asus_laptop *asus)
{
if (asus->pega_accel_poll) {
input_unregister_polled_device(asus->pega_accel_poll);
input_free_polled_device(asus->pega_accel_poll);
}
asus->pega_accel_poll = NULL;
}
static int pega_accel_init(struct asus_laptop *asus)
{
int err;
struct input_polled_dev *ipd;
if (!asus->is_pega_lucid)
return -ENODEV;
if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
return -ENODEV;
ipd = input_allocate_polled_device();
if (!ipd)
return -ENOMEM;
ipd->poll = pega_accel_poll;
ipd->poll_interval = 125;
ipd->poll_interval_min = 50;
ipd->poll_interval_max = 2000;
ipd->input->name = PEGA_ACCEL_DESC;
ipd->input->phys = PEGA_ACCEL_NAME "/input0";
ipd->input->dev.parent = &asus->platform_device->dev;
ipd->input->id.bustype = BUS_HOST;
set_bit(EV_ABS, ipd->input->evbit);
input_set_abs_params(ipd->input, ABS_X,
-PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
input_set_abs_params(ipd->input, ABS_Y,
-PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
input_set_abs_params(ipd->input, ABS_Z,
-PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
err = input_register_polled_device(ipd);
if (err)
goto exit;
asus->pega_accel_poll = ipd;
return 0;
exit:
input_free_polled_device(ipd);
return err;
}
/* Generic LED function */
static int asus_led_set(struct asus_laptop *asus, const char *method,
int value)
{
if (!strcmp(method, METHOD_MLED))
value = !value;
else if (!strcmp(method, METHOD_GLED))
value = !value + 1;
else
value = !!value;
return write_acpi_int(asus->handle, method, value);
}
/*
* LEDs
*/
/* /sys/class/led handlers */
static void asus_led_cdev_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct asus_led *led = container_of(led_cdev, struct asus_led, led);
struct asus_laptop *asus = led->asus;
led->wk = !!value;
queue_work(asus->led_workqueue, &led->work);
}
static void asus_led_cdev_update(struct work_struct *work)
{
struct asus_led *led = container_of(work, struct asus_led, work);
struct asus_laptop *asus = led->asus;
asus_led_set(asus, led->method, led->wk);
}
static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
{
return led_cdev->brightness;
}
/*
* Keyboard backlight (also a LED)
*/
static int asus_kled_lvl(struct asus_laptop *asus)
{
unsigned long long kblv;
struct acpi_object_list params;
union acpi_object in_obj;
acpi_status rv;
params.count = 1;
params.pointer = &in_obj;
in_obj.type = ACPI_TYPE_INTEGER;
in_obj.integer.value = 2;
rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
&params, &kblv);
if (ACPI_FAILURE(rv)) {
pr_warn("Error reading kled level\n");
return -ENODEV;
}
return kblv;
}
static int asus_kled_set(struct asus_laptop *asus, int kblv)
{
if (kblv > 0)
kblv = (1 << 7) | (kblv & 0x7F);
else
kblv = 0;
if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
pr_warn("Keyboard LED display write failed\n");
return -EINVAL;
}
return 0;
}
static void asus_kled_cdev_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct asus_led *led = container_of(led_cdev, struct asus_led, led);
struct asus_laptop *asus = led->asus;
led->wk = value;
queue_work(asus->led_workqueue, &led->work);
}
static void asus_kled_cdev_update(struct work_struct *work)
{
struct asus_led *led = container_of(work, struct asus_led, work);
struct asus_laptop *asus = led->asus;
asus_kled_set(asus, led->wk);
}
static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
{
struct asus_led *led = container_of(led_cdev, struct asus_led, led);
struct asus_laptop *asus = led->asus;
return asus_kled_lvl(asus);
}
static void asus_led_exit(struct asus_laptop *asus)
{
if (!IS_ERR_OR_NULL(asus->wled.led.dev))
led_classdev_unregister(&asus->wled.led);
if (!IS_ERR_OR_NULL(asus->bled.led.dev))
led_classdev_unregister(&asus->bled.led);
if (!IS_ERR_OR_NULL(asus->mled.led.dev))
led_classdev_unregister(&asus->mled.led);
if (!IS_ERR_OR_NULL(asus->tled.led.dev))
led_classdev_unregister(&asus->tled.led);
if (!IS_ERR_OR_NULL(asus->pled.led.dev))
led_classdev_unregister(&asus->pled.led);
if (!IS_ERR_OR_NULL(asus->rled.led.dev))
led_classdev_unregister(&asus->rled.led);
if (!IS_ERR_OR_NULL(asus->gled.led.dev))
led_classdev_unregister(&asus->gled.led);
if (!IS_ERR_OR_NULL(asus->kled.led.dev))
led_classdev_unregister(&asus->kled.led);
if (asus->led_workqueue) {
destroy_workqueue(asus->led_workqueue);
asus->led_workqueue = NULL;
}
}
/* Ugly macro, need to fix that later */
static int asus_led_register(struct asus_laptop *asus,
struct asus_led *led,
const char *name, const char *method)
{
struct led_classdev *led_cdev = &led->led;
if (!method || acpi_check_handle(asus->handle, method, NULL))
return 0; /* Led not present */
led->asus = asus;
led->method = method;
INIT_WORK(&led->work, asus_led_cdev_update);
led_cdev->name = name;
led_cdev->brightness_set = asus_led_cdev_set;
led_cdev->brightness_get = asus_led_cdev_get;
led_cdev->max_brightness = 1;
return led_classdev_register(&asus->platform_device->dev, led_cdev);
}
static int asus_led_init(struct asus_laptop *asus)
{
int r = 0;
/*
* The Pegatron Lucid has no physical leds, but all methods are
* available in the DSDT...
*/
if (asus->is_pega_lucid)
return 0;
/*
* Functions that actually update the LED's are called from a
* workqueue. By doing this as separate work rather than when the LED
* subsystem asks, we avoid messing with the Asus ACPI stuff during a
* potentially bad time, such as a timer interrupt.
*/
asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
if (!asus->led_workqueue)
return -ENOMEM;
if (asus->wled_type == TYPE_LED)
r = asus_led_register(asus, &asus->wled, "asus::wlan",
METHOD_WLAN);
if (r)
goto error;
if (asus->bled_type == TYPE_LED)
r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
METHOD_BLUETOOTH);
if (r)
goto error;
r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
if (r)
goto error;
r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
if (r)
goto error;
r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
if (r)
goto error;
r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
if (r)
goto error;
r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
if (r)
goto error;
if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
struct asus_led *led = &asus->kled;
struct led_classdev *cdev = &led->led;
led->asus = asus;
INIT_WORK(&led->work, asus_kled_cdev_update);
cdev->name = "asus::kbd_backlight";
cdev->brightness_set = asus_kled_cdev_set;
cdev->brightness_get = asus_kled_cdev_get;
cdev->max_brightness = 3;
r = led_classdev_register(&asus->platform_device->dev, cdev);
}
error:
if (r)
asus_led_exit(asus);
return r;
}
/*
* Backlight device
*/
static int asus_read_brightness(struct backlight_device *bd)
{
struct asus_laptop *asus = bl_get_data(bd);
unsigned long long value;
acpi_status rv;
rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
NULL, &value);
if (ACPI_FAILURE(rv)) {
pr_warn("Error reading brightness\n");
return 0;
}
return value;
}
static int asus_set_brightness(struct backlight_device *bd, int value)
{
struct asus_laptop *asus = bl_get_data(bd);
if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
pr_warn("Error changing brightness\n");
return -EIO;
}
return 0;
}
static int update_bl_status(struct backlight_device *bd)
{
int value = bd->props.brightness;
return asus_set_brightness(bd, value);
}
static const struct backlight_ops asusbl_ops = {
.get_brightness = asus_read_brightness,
.update_status = update_bl_status,
};
static int asus_backlight_notify(struct asus_laptop *asus)
{
struct backlight_device *bd = asus->backlight_device;
int old = bd->props.brightness;
backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
return old;
}
static int asus_backlight_init(struct asus_laptop *asus)
{
struct backlight_device *bd;
struct backlight_properties props;
if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
return 0;
memset(&props, 0, sizeof(struct backlight_properties));
props.max_brightness = 15;
props.type = BACKLIGHT_PLATFORM;
bd = backlight_device_register(ASUS_LAPTOP_FILE,
&asus->platform_device->dev, asus,
&asusbl_ops, &props);
if (IS_ERR(bd)) {
pr_err("Could not register asus backlight device\n");
asus->backlight_device = NULL;
return PTR_ERR(bd);
}
asus->backlight_device = bd;
bd->props.brightness = asus_read_brightness(bd);
bd->props.power = FB_BLANK_UNBLANK;
backlight_update_status(bd);
return 0;
}
static void asus_backlight_exit(struct asus_laptop *asus)
{
backlight_device_unregister(asus->backlight_device);
asus->backlight_device = NULL;
}
/*
* Platform device handlers
*/
/*
* We write our info in page, we begin at offset off and cannot write more
* than count bytes. We set eof to 1 if we handle those 2 values. We return the
* number of bytes written in page
*/
static ssize_t infos_show(struct device *dev, struct device_attribute *attr,
char *page)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int len = 0;
unsigned long long temp;
char buf[16]; /* enough for all info */
acpi_status rv;
/*
* We use the easy way, we don't care of off and count,
* so we don't set eof to 1
*/
len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
len += sprintf(page + len, "Model reference : %s\n", asus->name);
/*
* The SFUN method probably allows the original driver to get the list
* of features supported by a given model. For now, 0x0100 or 0x0800
* bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
* The significance of others is yet to be found.
*/
rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
if (!ACPI_FAILURE(rv))
len += sprintf(page + len, "SFUN value : %#x\n",
(uint) temp);
/*
* The HWRS method return informations about the hardware.
* 0x80 bit is for WLAN, 0x100 for Bluetooth.
* 0x40 for WWAN, 0x10 for WIMAX.
* The significance of others is yet to be found.
* We don't currently use this for device detection, and it
* takes several seconds to run on some systems.
*/
rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
if (!ACPI_FAILURE(rv))
len += sprintf(page + len, "HWRS value : %#x\n",
(uint) temp);
/*
* Another value for userspace: the ASYM method returns 0x02 for
* battery low and 0x04 for battery critical, its readings tend to be
* more accurate than those provided by _BST.
* Note: since not all the laptops provide this method, errors are
* silently ignored.
*/
rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
if (!ACPI_FAILURE(rv))
len += sprintf(page + len, "ASYM value : %#x\n",
(uint) temp);
if (asus->dsdt_info) {
snprintf(buf, 16, "%d", asus->dsdt_info->length);
len += sprintf(page + len, "DSDT length : %s\n", buf);
snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
len += sprintf(page + len, "DSDT checksum : %s\n", buf);
snprintf(buf, 16, "%d", asus->dsdt_info->revision);
len += sprintf(page + len, "DSDT revision : %s\n", buf);
snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
len += sprintf(page + len, "OEM id : %s\n", buf);
snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
len += sprintf(page + len, "OEM table id : %s\n", buf);
snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
len += sprintf(page + len, "OEM revision : 0x%s\n", buf);
snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf);
}
return len;
}
static DEVICE_ATTR_RO(infos);
static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
const char *buf, size_t count,
const char *method)
{
int rv, value;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
if (write_acpi_int(asus->handle, method, value))
return -ENODEV;
return count;
}
/*
* LEDD display
*/
static ssize_t ledd_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "0x%08x\n", asus->ledd_status);
}
static ssize_t ledd_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int rv, value;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
pr_warn("LED display write failed\n");
return -ENODEV;
}
asus->ledd_status = (u32) value;
return count;
}
static DEVICE_ATTR_RW(ledd);
/*
* Wireless
*/
static int asus_wireless_status(struct asus_laptop *asus, int mask)
{
unsigned long long status;
acpi_status rv = AE_OK;
if (!asus->have_rsts)
return (asus->wireless_status & mask) ? 1 : 0;
rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
NULL, &status);
if (ACPI_FAILURE(rv)) {
pr_warn("Error reading Wireless status\n");
return -EINVAL;
}
return !!(status & mask);
}
/*
* WLAN
*/
static int asus_wlan_set(struct asus_laptop *asus, int status)
{
if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
pr_warn("Error setting wlan status to %d\n", status);
return -EIO;
}
return 0;
}
static ssize_t wlan_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
}
static ssize_t wlan_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
}
static DEVICE_ATTR_RW(wlan);
/*e
* Bluetooth
*/
static int asus_bluetooth_set(struct asus_laptop *asus, int status)
{
if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
pr_warn("Error setting bluetooth status to %d\n", status);
return -EIO;
}
return 0;
}
static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
}
static ssize_t bluetooth_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
}
static DEVICE_ATTR_RW(bluetooth);
/*
* Wimax
*/
static int asus_wimax_set(struct asus_laptop *asus, int status)
{
if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
pr_warn("Error setting wimax status to %d\n", status);
return -EIO;
}
return 0;
}
static ssize_t wimax_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
}
static ssize_t wimax_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
}
static DEVICE_ATTR_RW(wimax);
/*
* Wwan
*/
static int asus_wwan_set(struct asus_laptop *asus, int status)
{
if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
pr_warn("Error setting wwan status to %d\n", status);
return -EIO;
}
return 0;
}
static ssize_t wwan_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
}
static ssize_t wwan_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
}
static DEVICE_ATTR_RW(wwan);
/*
* Display
*/
static void asus_set_display(struct asus_laptop *asus, int value)
{
/* no sanity check needed for now */
if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
pr_warn("Error setting display\n");
return;
}
/*
* Experimental support for display switching. As of now: 1 should activate
* the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
* Any combination (bitwise) of these will suffice. I never actually tested 4
* displays hooked up simultaneously, so be warned. See the acpi4asus README
* for more info.
*/
static ssize_t display_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int rv, value;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
asus_set_display(asus, value);
return count;
}
static DEVICE_ATTR_WO(display);
/*
* Light Sens
*/
static void asus_als_switch(struct asus_laptop *asus, int value)
{
int ret;
if (asus->is_pega_lucid) {
ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
if (!ret)
ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
} else {
ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
}
if (ret)
pr_warning("Error setting light sensor switch\n");
asus->light_switch = value;
}
static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus->light_switch);
}
static ssize_t ls_switch_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int rv, value;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
asus_als_switch(asus, value ? 1 : 0);
return count;
}
static DEVICE_ATTR_RW(ls_switch);
static void asus_als_level(struct asus_laptop *asus, int value)
{
if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
pr_warn("Error setting light sensor level\n");
asus->light_level = value;
}
static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus->light_level);
}
static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int rv, value;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
/* 0 <= value <= 15 */
asus_als_level(asus, value);
return count;
}
static DEVICE_ATTR_RW(ls_level);
static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
&buffer);
if (!err) {
union acpi_object *obj = buffer.pointer;
if (obj && obj->type == ACPI_TYPE_INTEGER)
*result = obj->integer.value;
else
err = -EIO;
}
return err;
}
static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int err, hi, lo;
err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
if (!err)
err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
if (!err)
return sprintf(buf, "%d\n", 10 * hi + lo);
return err;
}
static DEVICE_ATTR_RO(ls_value);
/*
* GPS
*/
static int asus_gps_status(struct asus_laptop *asus)
{
unsigned long long status;
acpi_status rv;
rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
NULL, &status);
if (ACPI_FAILURE(rv)) {
pr_warn("Error reading GPS status\n");
return -ENODEV;
}
return !!status;
}
static int asus_gps_switch(struct asus_laptop *asus, int status)
{
const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
if (write_acpi_int(asus->handle, meth, 0x02))
return -ENODEV;
return 0;
}
static ssize_t gps_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", asus_gps_status(asus));
}
static ssize_t gps_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_laptop *asus = dev_get_drvdata(dev);
int rv, value;
int ret;
rv = kstrtoint(buf, 0, &value);
if (rv < 0)
return rv;
ret = asus_gps_switch(asus, !!value);
if (ret)
return ret;
rfkill_set_sw_state(asus->gps.rfkill, !value);
return count;
}
static DEVICE_ATTR_RW(gps);
/*
* rfkill
*/
static int asus_gps_rfkill_set(void *data, bool blocked)
{
struct asus_laptop *asus = data;
return asus_gps_switch(asus, !blocked);
}
static const struct rfkill_ops asus_gps_rfkill_ops = {
.set_block = asus_gps_rfkill_set,
};
static int asus_rfkill_set(void *data, bool blocked)
{
struct asus_rfkill *rfk = data;
struct asus_laptop *asus = rfk->asus;
if (rfk->control_id == WL_RSTS)
return asus_wlan_set(asus, !blocked);
else if (rfk->control_id == BT_RSTS)
return asus_bluetooth_set(asus, !blocked);
else if (rfk->control_id == WM_RSTS)
return asus_wimax_set(asus, !blocked);
else if (rfk->control_id == WW_RSTS)
return asus_wwan_set(asus, !blocked);
return -EINVAL;
}
static const struct rfkill_ops asus_rfkill_ops = {
.set_block = asus_rfkill_set,
};
static void asus_rfkill_terminate(struct asus_rfkill *rfk)
{
if (!rfk->rfkill)
return ;
rfkill_unregister(rfk->rfkill);
rfkill_destroy(rfk->rfkill);
rfk->rfkill = NULL;
}
static void asus_rfkill_exit(struct asus_laptop *asus)
{
asus_rfkill_terminate(&asus->wwan);
asus_rfkill_terminate(&asus->bluetooth);
asus_rfkill_terminate(&asus->wlan);
asus_rfkill_terminate(&asus->gps);
}
static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
const char *name, int control_id, int type,
const struct rfkill_ops *ops)
{
int result;
rfk->control_id = control_id;
rfk->asus = asus;
rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
type, ops, rfk);
if (!rfk->rfkill)
return -EINVAL;
result = rfkill_register(rfk->rfkill);
if (result) {
rfkill_destroy(rfk->rfkill);
rfk->rfkill = NULL;
}
return result;
}
static int asus_rfkill_init(struct asus_laptop *asus)
{
int result = 0;
if (asus->is_pega_lucid)
return -ENODEV;
if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
!acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
!acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
-1, RFKILL_TYPE_GPS,
&asus_gps_rfkill_ops);
if (result)
goto exit;
if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
asus->wled_type == TYPE_RFKILL)
result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
WL_RSTS, RFKILL_TYPE_WLAN,
&asus_rfkill_ops);
if (result)
goto exit;
if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
asus->bled_type == TYPE_RFKILL)
result = asus_rfkill_setup(asus, &asus->bluetooth,
"asus-bluetooth", BT_RSTS,
RFKILL_TYPE_BLUETOOTH,
&asus_rfkill_ops);
if (result)
goto exit;
if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
WW_RSTS, RFKILL_TYPE_WWAN,
&asus_rfkill_ops);
if (result)
goto exit;
if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
WM_RSTS, RFKILL_TYPE_WIMAX,
&asus_rfkill_ops);
if (result)
goto exit;
exit:
if (result)
asus_rfkill_exit(asus);
return result;
}
static int pega_rfkill_set(void *data, bool blocked)
{
struct asus_rfkill *rfk = data;
int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
return ret;
}
static const struct rfkill_ops pega_rfkill_ops = {
.set_block = pega_rfkill_set,
};
static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
const char *name, int controlid, int rfkill_type)
{
return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
&pega_rfkill_ops);
}
static int pega_rfkill_init(struct asus_laptop *asus)
{
int ret = 0;
if(!asus->is_pega_lucid)
return -ENODEV;
ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
PEGA_WLAN, RFKILL_TYPE_WLAN);
if(ret)
goto exit;
ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
if(ret)
goto exit;
ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
PEGA_WWAN, RFKILL_TYPE_WWAN);
exit:
if (ret)
asus_rfkill_exit(asus);
return ret;
}
/*
* Input device (i.e. hotkeys)
*/
static void asus_input_notify(struct asus_laptop *asus, int event)
{
if (!asus->inputdev)
return ;
if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
pr_info("Unknown key %x pressed\n", event);
}
static int asus_input_init(struct asus_laptop *asus)
{
struct input_dev *input;
int error;
input = input_allocate_device();
if (!input)
return -ENOMEM;
input->name = "Asus Laptop extra buttons";
input->phys = ASUS_LAPTOP_FILE "/input0";
input->id.bustype = BUS_HOST;
input->dev.parent = &asus->platform_device->dev;
error = sparse_keymap_setup(input, asus_keymap, NULL);
if (error) {
pr_err("Unable to setup input device keymap\n");
goto err_free_dev;
}
error = input_register_device(input);
if (error) {
pr_warn("Unable to register input device\n");
goto err_free_dev;
}
asus->inputdev = input;
return 0;
err_free_dev:
input_free_device(input);
return error;
}
static void asus_input_exit(struct asus_laptop *asus)
{
if (asus->inputdev)
input_unregister_device(asus->inputdev);
asus->inputdev = NULL;
}
/*
* ACPI driver
*/
static void asus_acpi_notify(struct acpi_device *device, u32 event)
{
struct asus_laptop *asus = acpi_driver_data(device);
u16 count;
/* TODO Find a better way to handle events count. */
count = asus->event_count[event % 128]++;
acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
dev_name(&asus->device->dev), event,
count);
if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX)
event = ATKD_BRNUP;
else if (event >= ATKD_BRNDOWN_MIN &&
event <= ATKD_BRNDOWN_MAX)
event = ATKD_BRNDOWN;
/* Brightness events are special */
if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) {
if (asus->backlight_device != NULL) {
/* Update the backlight device. */
asus_backlight_notify(asus);
return ;
}
}
/* Accelerometer "coarse orientation change" event */
if (asus->pega_accel_poll && event == 0xEA) {
kobject_uevent(&asus->pega_accel_poll->input->dev.kobj,
KOBJ_CHANGE);
return ;
}
asus_input_notify(asus, event);
}
static struct attribute *asus_attributes[] = {
&dev_attr_infos.attr,
&dev_attr_wlan.attr,
&dev_attr_bluetooth.attr,
&dev_attr_wimax.attr,
&dev_attr_wwan.attr,
&dev_attr_display.attr,
&dev_attr_ledd.attr,
&dev_attr_ls_value.attr,
&dev_attr_ls_level.attr,
&dev_attr_ls_switch.attr,
&dev_attr_gps.attr,
NULL
};
static umode_t asus_sysfs_is_visible(struct kobject *kobj,
struct attribute *attr,
int idx)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct asus_laptop *asus = dev_get_drvdata(dev);
acpi_handle handle = asus->handle;
bool supported;
if (asus->is_pega_lucid) {
/* no ls_level interface on the Lucid */
if (attr == &dev_attr_ls_switch.attr)
supported = true;
else if (attr == &dev_attr_ls_level.attr)
supported = false;
else
goto normal;
return supported ? attr->mode : 0;
}
normal:
if (attr == &dev_attr_wlan.attr) {
supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
} else if (attr == &dev_attr_bluetooth.attr) {
supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
} else if (attr == &dev_attr_display.attr) {
supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
} else if (attr == &dev_attr_wimax.attr) {
supported =
!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
} else if (attr == &dev_attr_wwan.attr) {
supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
} else if (attr == &dev_attr_ledd.attr) {
supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
} else if (attr == &dev_attr_ls_switch.attr ||
attr == &dev_attr_ls_level.attr) {
supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
!acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
} else if (attr == &dev_attr_ls_value.attr) {
supported = asus->is_pega_lucid;
} else if (attr == &dev_attr_gps.attr) {
supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
!acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
!acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
} else {
supported = true;
}
return supported ? attr->mode : 0;
}
static const struct attribute_group asus_attr_group = {
.is_visible = asus_sysfs_is_visible,
.attrs = asus_attributes,
};
static int asus_platform_init(struct asus_laptop *asus)
{
int result;
asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1);
if (!asus->platform_device)
return -ENOMEM;
platform_set_drvdata(asus->platform_device, asus);
result = platform_device_add(asus->platform_device);
if (result)
goto fail_platform_device;
result = sysfs_create_group(&asus->platform_device->dev.kobj,
&asus_attr_group);
if (result)
goto fail_sysfs;
return 0;
fail_sysfs:
platform_device_del(asus->platform_device);
fail_platform_device:
platform_device_put(asus->platform_device);
return result;
}
static void asus_platform_exit(struct asus_laptop *asus)
{
sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
platform_device_unregister(asus->platform_device);
}
static struct platform_driver platform_driver = {
.driver = {
.name = ASUS_LAPTOP_FILE,
},
};
/*
* This function is used to initialize the context with right values. In this
* method, we can make all the detection we want, and modify the asus_laptop
* struct
*/
static int asus_laptop_get_info(struct asus_laptop *asus)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *model = NULL;
unsigned long long bsts_result;
char *string = NULL;
acpi_status status;
/*
* Get DSDT headers early enough to allow for differentiating between
* models, but late enough to allow acpi_bus_register_driver() to fail
* before doing anything ACPI-specific. Should we encounter a machine,
* which needs special handling (i.e. its hotkey device has a different
* HID), this bit will be moved.
*/
status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
if (ACPI_FAILURE(status))
pr_warn("Couldn't get the DSDT table header\n");
/* We have to write 0 on init this far for all ASUS models */
if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
pr_err("Hotkey initialization failed\n");
return -ENODEV;
}
/* This needs to be called for some laptops to init properly */
status =
acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
if (ACPI_FAILURE(status))
pr_warn("Error calling BSTS\n");
else if (bsts_result)
pr_notice("BSTS called, 0x%02x returned\n",
(uint) bsts_result);
/* This too ... */
if (write_acpi_int(asus->handle, "CWAP", wapf))
pr_err("Error calling CWAP(%d)\n", wapf);
/*
* Try to match the object returned by INIT to the specific model.
* Handle every possible object (or the lack of thereof) the DSDT
* writers might throw at us. When in trouble, we pass NULL to
* asus_model_match() and try something completely different.
*/
if (buffer.pointer) {
model = buffer.pointer;
switch (model->type) {
case ACPI_TYPE_STRING:
string = model->string.pointer;
break;
case ACPI_TYPE_BUFFER:
string = model->buffer.pointer;
break;
default:
string = "";
break;
}
}
asus->name = kstrdup(string, GFP_KERNEL);
if (!asus->name) {
kfree(buffer.pointer);
return -ENOMEM;
}
if (string)
pr_notice(" %s model detected\n", string);
if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
asus->have_rsts = true;
kfree(model);
return AE_OK;
}
static int asus_acpi_init(struct asus_laptop *asus)
{
int result = 0;
result = acpi_bus_get_status(asus->device);
if (result)
return result;
if (!asus->device->status.present) {
pr_err("Hotkey device not present, aborting\n");
return -ENODEV;
}
result = asus_laptop_get_info(asus);
if (result)
return result;
if (!strcmp(bled_type, "led"))
asus->bled_type = TYPE_LED;
else if (!strcmp(bled_type, "rfkill"))
asus->bled_type = TYPE_RFKILL;
if (!strcmp(wled_type, "led"))
asus->wled_type = TYPE_LED;
else if (!strcmp(wled_type, "rfkill"))
asus->wled_type = TYPE_RFKILL;
if (bluetooth_status >= 0)
asus_bluetooth_set(asus, !!bluetooth_status);
if (wlan_status >= 0)
asus_wlan_set(asus, !!wlan_status);
if (wimax_status >= 0)
asus_wimax_set(asus, !!wimax_status);
if (wwan_status >= 0)
asus_wwan_set(asus, !!wwan_status);
/* Keyboard Backlight is on by default */
if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
asus_kled_set(asus, 1);
/* LED display is off by default */
asus->ledd_status = 0xFFF;
/* Set initial values of light sensor and level */
asus->light_switch = !!als_status;
asus->light_level = 5; /* level 5 for sensor sensitivity */
if (asus->is_pega_lucid) {
asus_als_switch(asus, asus->light_switch);
} else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
!acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
asus_als_switch(asus, asus->light_switch);
asus_als_level(asus, asus->light_level);
}
return result;
}
static void asus_dmi_check(void)
{
const char *model;
model = dmi_get_system_info(DMI_PRODUCT_NAME);
if (!model)
return;
/* On L1400B WLED control the sound card, don't mess with it ... */
if (strncmp(model, "L1400B", 6) == 0) {
wlan_status = -1;
}
}
static bool asus_device_present;
static int asus_acpi_add(struct acpi_device *device)
{
struct asus_laptop *asus;
int result;
pr_notice("Asus Laptop Support version %s\n",
ASUS_LAPTOP_VERSION);
asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
if (!asus)
return -ENOMEM;
asus->handle = device->handle;
strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
device->driver_data = asus;
asus->device = device;
asus_dmi_check();
result = asus_acpi_init(asus);
if (result)
goto fail_platform;
/*
* Need platform type detection first, then the platform
* device. It is used as a parent for the sub-devices below.
*/
asus->is_pega_lucid = asus_check_pega_lucid(asus);
result = asus_platform_init(asus);
if (result)
goto fail_platform;
if (acpi_video_get_backlight_type() == acpi_backlight_vendor) {
result = asus_backlight_init(asus);
if (result)
goto fail_backlight;
}
result = asus_input_init(asus);
if (result)
goto fail_input;
result = asus_led_init(asus);
if (result)
goto fail_led;
result = asus_rfkill_init(asus);
if (result && result != -ENODEV)
goto fail_rfkill;
result = pega_accel_init(asus);
if (result && result != -ENODEV)
goto fail_pega_accel;
result = pega_rfkill_init(asus);
if (result && result != -ENODEV)
goto fail_pega_rfkill;
asus_device_present = true;
return 0;
fail_pega_rfkill:
pega_accel_exit(asus);
fail_pega_accel:
asus_rfkill_exit(asus);
fail_rfkill:
asus_led_exit(asus);
fail_led:
asus_input_exit(asus);
fail_input:
asus_backlight_exit(asus);
fail_backlight:
asus_platform_exit(asus);
fail_platform:
kfree(asus);
return result;
}
static int asus_acpi_remove(struct acpi_device *device)
{
struct asus_laptop *asus = acpi_driver_data(device);
asus_backlight_exit(asus);
asus_rfkill_exit(asus);
asus_led_exit(asus);
asus_input_exit(asus);
pega_accel_exit(asus);
asus_platform_exit(asus);
kfree(asus->name);
kfree(asus);
return 0;
}
static const struct acpi_device_id asus_device_ids[] = {
{"ATK0100", 0},
{"ATK0101", 0},
{"", 0},
};
MODULE_DEVICE_TABLE(acpi, asus_device_ids);
static struct acpi_driver asus_acpi_driver = {
.name = ASUS_LAPTOP_NAME,
.class = ASUS_LAPTOP_CLASS,
.owner = THIS_MODULE,
.ids = asus_device_ids,
.flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
.ops = {
.add = asus_acpi_add,
.remove = asus_acpi_remove,
.notify = asus_acpi_notify,
},
};
static int __init asus_laptop_init(void)
{
int result;
result = platform_driver_register(&platform_driver);
if (result < 0)
return result;
result = acpi_bus_register_driver(&asus_acpi_driver);
if (result < 0)
goto fail_acpi_driver;
if (!asus_device_present) {
result = -ENODEV;
goto fail_no_device;
}
return 0;
fail_no_device:
acpi_bus_unregister_driver(&asus_acpi_driver);
fail_acpi_driver:
platform_driver_unregister(&platform_driver);
return result;
}
static void __exit asus_laptop_exit(void)
{
acpi_bus_unregister_driver(&asus_acpi_driver);
platform_driver_unregister(&platform_driver);
}
module_init(asus_laptop_init);
module_exit(asus_laptop_exit);