1
0
Fork 0
alistair23-linux/drivers/video/backlight/l4f00242t03.c

266 lines
6.7 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* l4f00242t03.c -- support for Epson L4F00242T03 LCD
*
* Copyright 2007-2009 Freescale Semiconductor, Inc. All Rights Reserved.
*
* Copyright (c) 2009 Alberto Panizzo <maramaopercheseimorto@gmail.com>
* Inspired by Marek Vasut work in l4f00242t03.c
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/gpio.h>
#include <linux/lcd.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/spi/l4f00242t03.h>
struct l4f00242t03_priv {
struct spi_device *spi;
struct lcd_device *ld;
int lcd_state;
struct regulator *io_reg;
struct regulator *core_reg;
};
static void l4f00242t03_reset(unsigned int gpio)
{
pr_debug("l4f00242t03_reset.\n");
gpio_set_value(gpio, 1);
mdelay(100);
gpio_set_value(gpio, 0);
mdelay(10); /* tRES >= 100us */
gpio_set_value(gpio, 1);
mdelay(20);
}
#define param(x) ((x) | 0x100)
static void l4f00242t03_lcd_init(struct spi_device *spi)
{
struct l4f00242t03_pdata *pdata = dev_get_platdata(&spi->dev);
struct l4f00242t03_priv *priv = spi_get_drvdata(spi);
const u16 cmd[] = { 0x36, param(0), 0x3A, param(0x60) };
int ret;
dev_dbg(&spi->dev, "initializing LCD\n");
ret = regulator_set_voltage(priv->io_reg, 1800000, 1800000);
if (ret) {
dev_err(&spi->dev, "failed to set the IO regulator voltage.\n");
return;
}
ret = regulator_enable(priv->io_reg);
if (ret) {
dev_err(&spi->dev, "failed to enable the IO regulator.\n");
return;
}
ret = regulator_set_voltage(priv->core_reg, 2800000, 2800000);
if (ret) {
dev_err(&spi->dev, "failed to set the core regulator voltage.\n");
regulator_disable(priv->io_reg);
return;
}
ret = regulator_enable(priv->core_reg);
if (ret) {
dev_err(&spi->dev, "failed to enable the core regulator.\n");
regulator_disable(priv->io_reg);
return;
}
l4f00242t03_reset(pdata->reset_gpio);
gpio_set_value(pdata->data_enable_gpio, 1);
msleep(60);
spi_write(spi, (const u8 *)cmd, ARRAY_SIZE(cmd) * sizeof(u16));
}
static void l4f00242t03_lcd_powerdown(struct spi_device *spi)
{
struct l4f00242t03_pdata *pdata = dev_get_platdata(&spi->dev);
struct l4f00242t03_priv *priv = spi_get_drvdata(spi);
dev_dbg(&spi->dev, "Powering down LCD\n");
gpio_set_value(pdata->data_enable_gpio, 0);
regulator_disable(priv->io_reg);
regulator_disable(priv->core_reg);
}
static int l4f00242t03_lcd_power_get(struct lcd_device *ld)
{
struct l4f00242t03_priv *priv = lcd_get_data(ld);
return priv->lcd_state;
}
static int l4f00242t03_lcd_power_set(struct lcd_device *ld, int power)
{
struct l4f00242t03_priv *priv = lcd_get_data(ld);
struct spi_device *spi = priv->spi;
const u16 slpout = 0x11;
const u16 dison = 0x29;
const u16 slpin = 0x10;
const u16 disoff = 0x28;
if (power <= FB_BLANK_NORMAL) {
if (priv->lcd_state <= FB_BLANK_NORMAL) {
/* Do nothing, the LCD is running */
} else if (priv->lcd_state < FB_BLANK_POWERDOWN) {
dev_dbg(&spi->dev, "Resuming LCD\n");
spi_write(spi, (const u8 *)&slpout, sizeof(u16));
msleep(60);
spi_write(spi, (const u8 *)&dison, sizeof(u16));
} else {
/* priv->lcd_state == FB_BLANK_POWERDOWN */
l4f00242t03_lcd_init(spi);
priv->lcd_state = FB_BLANK_VSYNC_SUSPEND;
l4f00242t03_lcd_power_set(priv->ld, power);
}
} else if (power < FB_BLANK_POWERDOWN) {
if (priv->lcd_state <= FB_BLANK_NORMAL) {
/* Send the display in standby */
dev_dbg(&spi->dev, "Standby the LCD\n");
spi_write(spi, (const u8 *)&disoff, sizeof(u16));
msleep(60);
spi_write(spi, (const u8 *)&slpin, sizeof(u16));
} else if (priv->lcd_state < FB_BLANK_POWERDOWN) {
/* Do nothing, the LCD is already in standby */
} else {
/* priv->lcd_state == FB_BLANK_POWERDOWN */
l4f00242t03_lcd_init(spi);
priv->lcd_state = FB_BLANK_UNBLANK;
l4f00242t03_lcd_power_set(ld, power);
}
} else {
/* power == FB_BLANK_POWERDOWN */
if (priv->lcd_state != FB_BLANK_POWERDOWN) {
/* Clear the screen before shutting down */
spi_write(spi, (const u8 *)&disoff, sizeof(u16));
msleep(60);
l4f00242t03_lcd_powerdown(spi);
}
}
priv->lcd_state = power;
return 0;
}
static struct lcd_ops l4f_ops = {
.set_power = l4f00242t03_lcd_power_set,
.get_power = l4f00242t03_lcd_power_get,
};
static int l4f00242t03_probe(struct spi_device *spi)
{
struct l4f00242t03_priv *priv;
struct l4f00242t03_pdata *pdata = dev_get_platdata(&spi->dev);
int ret;
if (pdata == NULL) {
dev_err(&spi->dev, "Uninitialized platform data.\n");
return -EINVAL;
}
priv = devm_kzalloc(&spi->dev, sizeof(struct l4f00242t03_priv),
GFP_KERNEL);
if (priv == NULL)
return -ENOMEM;
spi_set_drvdata(spi, priv);
spi->bits_per_word = 9;
spi_setup(spi);
priv->spi = spi;
ret = devm_gpio_request_one(&spi->dev, pdata->reset_gpio,
GPIOF_OUT_INIT_HIGH, "lcd l4f00242t03 reset");
if (ret) {
dev_err(&spi->dev,
"Unable to get the lcd l4f00242t03 reset gpio.\n");
return ret;
}
ret = devm_gpio_request_one(&spi->dev, pdata->data_enable_gpio,
GPIOF_OUT_INIT_LOW, "lcd l4f00242t03 data enable");
if (ret) {
dev_err(&spi->dev,
"Unable to get the lcd l4f00242t03 data en gpio.\n");
return ret;
}
priv->io_reg = devm_regulator_get(&spi->dev, "vdd");
if (IS_ERR(priv->io_reg)) {
dev_err(&spi->dev, "%s: Unable to get the IO regulator\n",
__func__);
return PTR_ERR(priv->io_reg);
}
priv->core_reg = devm_regulator_get(&spi->dev, "vcore");
if (IS_ERR(priv->core_reg)) {
dev_err(&spi->dev, "%s: Unable to get the core regulator\n",
__func__);
return PTR_ERR(priv->core_reg);
}
priv->ld = devm_lcd_device_register(&spi->dev, "l4f00242t03", &spi->dev,
priv, &l4f_ops);
if (IS_ERR(priv->ld))
return PTR_ERR(priv->ld);
/* Init the LCD */
l4f00242t03_lcd_init(spi);
priv->lcd_state = FB_BLANK_VSYNC_SUSPEND;
l4f00242t03_lcd_power_set(priv->ld, FB_BLANK_UNBLANK);
dev_info(&spi->dev, "Epson l4f00242t03 lcd probed.\n");
return 0;
}
static int l4f00242t03_remove(struct spi_device *spi)
{
struct l4f00242t03_priv *priv = spi_get_drvdata(spi);
l4f00242t03_lcd_power_set(priv->ld, FB_BLANK_POWERDOWN);
return 0;
}
static void l4f00242t03_shutdown(struct spi_device *spi)
{
struct l4f00242t03_priv *priv = spi_get_drvdata(spi);
if (priv)
l4f00242t03_lcd_power_set(priv->ld, FB_BLANK_POWERDOWN);
}
static struct spi_driver l4f00242t03_driver = {
.driver = {
.name = "l4f00242t03",
},
.probe = l4f00242t03_probe,
.remove = l4f00242t03_remove,
.shutdown = l4f00242t03_shutdown,
};
module_spi_driver(l4f00242t03_driver);
MODULE_AUTHOR("Alberto Panizzo <maramaopercheseimorto@gmail.com>");
MODULE_DESCRIPTION("EPSON L4F00242T03 LCD");
MODULE_LICENSE("GPL v2");