1
0
Fork 0
alistair23-linux/arch/x86/kernel/fpu/xstate.c

955 lines
26 KiB
C
Raw Normal View History

/*
* xsave/xrstor support.
*
* Author: Suresh Siddha <suresh.b.siddha@intel.com>
*/
#include <linux/compat.h>
#include <linux/cpu.h>
x86/mm/pkeys: Allow kernel to modify user pkey rights register The Protection Key Rights for User memory (PKRU) is a 32-bit user-accessible register. It contains two bits for each protection key: one to write-disable (WD) access to memory covered by the key and another to access-disable (AD). Userspace can read/write the register with the RDPKRU and WRPKRU instructions. But, the register is saved and restored with the XSAVE family of instructions, which means we have to treat it like a floating point register. The kernel needs to write to the register if it wants to implement execute-only memory or if it implements a system call to change PKRU. To do this, we need to create a 'pkru_state' buffer, read the old contents in to it, modify it, and then tell the FPU code that there is modified data in there so it can (possibly) move the buffer back in to the registers. This uses the fpu__xfeature_set_state() function that we defined in the previous patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20160212210236.0BE13217@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-12 14:02:36 -07:00
#include <linux/pkeys.h>
#include <asm/fpu/api.h>
#include <asm/fpu/internal.h>
#include <asm/fpu/signal.h>
#include <asm/fpu/regset.h>
#include <asm/tlbflush.h>
x86/fpu: Add placeholder for 'Processor Trace' XSAVE state There is an XSAVE state component for Intel Processor Trace (PT). But, we do not currently use it. We add a placeholder in the code for it so it is not a mystery and also so we do not need an explicit enum initialization for Protection Keys in a moment. Why don't we use it? We might end up using this at _some_ point in the future. But, this is a "system" state which requires using the currently unsupported XSAVES feature. Unlike all the other XSAVE states, PT state is also not directly tied to a thread. You might context-switch between threads, but not want to change any of the PT state. Or, you might switch between threads, and *do* want to change PT state, all depending on what is being traced. We currently just manually set some MSRs to do this PT context switching, and it is unclear whether replacing our direct MSR use with XSAVE will be a net win or loss, both in code complexity and performance. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: fenghua.yu@intel.com Cc: linux-mm@kvack.org Cc: yu-cheng.yu@intel.com Link: http://lkml.kernel.org/r/20160212210158.5E4BCAE2@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-12 14:01:58 -07:00
/*
* Although we spell it out in here, the Processor Trace
* xfeature is completely unused. We use other mechanisms
* to save/restore PT state in Linux.
*/
static const char *xfeature_names[] =
{
"x87 floating point registers" ,
"SSE registers" ,
"AVX registers" ,
"MPX bounds registers" ,
"MPX CSR" ,
"AVX-512 opmask" ,
"AVX-512 Hi256" ,
"AVX-512 ZMM_Hi256" ,
x86/fpu: Add placeholder for 'Processor Trace' XSAVE state There is an XSAVE state component for Intel Processor Trace (PT). But, we do not currently use it. We add a placeholder in the code for it so it is not a mystery and also so we do not need an explicit enum initialization for Protection Keys in a moment. Why don't we use it? We might end up using this at _some_ point in the future. But, this is a "system" state which requires using the currently unsupported XSAVES feature. Unlike all the other XSAVE states, PT state is also not directly tied to a thread. You might context-switch between threads, but not want to change any of the PT state. Or, you might switch between threads, and *do* want to change PT state, all depending on what is being traced. We currently just manually set some MSRs to do this PT context switching, and it is unclear whether replacing our direct MSR use with XSAVE will be a net win or loss, both in code complexity and performance. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: fenghua.yu@intel.com Cc: linux-mm@kvack.org Cc: yu-cheng.yu@intel.com Link: http://lkml.kernel.org/r/20160212210158.5E4BCAE2@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-12 14:01:58 -07:00
"Processor Trace (unused)" ,
"Protection Keys User registers",
"unknown xstate feature" ,
};
/*
* Mask of xstate features supported by the CPU and the kernel:
*/
u64 xfeatures_mask __read_mostly;
static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
static unsigned int xstate_sizes[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
static unsigned int xstate_comp_offsets[sizeof(xfeatures_mask)*8];
/*
* The XSAVE area of kernel can be in standard or compacted format;
* it is always in standard format for user mode. This is the user
* mode standard format size used for signal and ptrace frames.
*/
unsigned int fpu_user_xstate_size;
/*
* Clear all of the X86_FEATURE_* bits that are unavailable
* when the CPU has no XSAVE support.
*/
void fpu__xstate_clear_all_cpu_caps(void)
{
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
setup_clear_cpu_cap(X86_FEATURE_XSAVEC);
setup_clear_cpu_cap(X86_FEATURE_XSAVES);
setup_clear_cpu_cap(X86_FEATURE_AVX);
setup_clear_cpu_cap(X86_FEATURE_AVX2);
setup_clear_cpu_cap(X86_FEATURE_AVX512F);
setup_clear_cpu_cap(X86_FEATURE_AVX512PF);
setup_clear_cpu_cap(X86_FEATURE_AVX512ER);
setup_clear_cpu_cap(X86_FEATURE_AVX512CD);
setup_clear_cpu_cap(X86_FEATURE_AVX512DQ);
setup_clear_cpu_cap(X86_FEATURE_AVX512BW);
setup_clear_cpu_cap(X86_FEATURE_AVX512VL);
setup_clear_cpu_cap(X86_FEATURE_MPX);
setup_clear_cpu_cap(X86_FEATURE_XGETBV1);
setup_clear_cpu_cap(X86_FEATURE_PKU);
}
/*
* Return whether the system supports a given xfeature.
*
* Also return the name of the (most advanced) feature that the caller requested:
*/
int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
{
u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask;
if (unlikely(feature_name)) {
long xfeature_idx, max_idx;
u64 xfeatures_print;
/*
* So we use FLS here to be able to print the most advanced
* feature that was requested but is missing. So if a driver
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:26 -06:00
* asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
* missing AVX feature - this is the most informative message
* to users:
*/
if (xfeatures_missing)
xfeatures_print = xfeatures_missing;
else
xfeatures_print = xfeatures_needed;
xfeature_idx = fls64(xfeatures_print)-1;
max_idx = ARRAY_SIZE(xfeature_names)-1;
xfeature_idx = min(xfeature_idx, max_idx);
*feature_name = xfeature_names[xfeature_idx];
}
if (xfeatures_missing)
return 0;
return 1;
}
EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
/*
* When executing XSAVEOPT (or other optimized XSAVE instructions), if
* a processor implementation detects that an FPU state component is still
* (or is again) in its initialized state, it may clear the corresponding
* bit in the header.xfeatures field, and can skip the writeout of registers
* to the corresponding memory layout.
*
* This means that when the bit is zero, the state component might still contain
* some previous - non-initialized register state.
*
* Before writing xstate information to user-space we sanitize those components,
* to always ensure that the memory layout of a feature will be in the init state
* if the corresponding header bit is zero. This is to ensure that user-space doesn't
* see some stale state in the memory layout during signal handling, debugging etc.
*/
void fpstate_sanitize_xstate(struct fpu *fpu)
{
struct fxregs_state *fx = &fpu->state.fxsave;
int feature_bit;
u64 xfeatures;
if (!use_xsaveopt())
return;
xfeatures = fpu->state.xsave.header.xfeatures;
/*
* None of the feature bits are in init state. So nothing else
* to do for us, as the memory layout is up to date.
*/
if ((xfeatures & xfeatures_mask) == xfeatures_mask)
return;
/*
* FP is in init state
*/
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:26 -06:00
if (!(xfeatures & XFEATURE_MASK_FP)) {
fx->cwd = 0x37f;
fx->swd = 0;
fx->twd = 0;
fx->fop = 0;
fx->rip = 0;
fx->rdp = 0;
memset(&fx->st_space[0], 0, 128);
}
/*
* SSE is in init state
*/
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:26 -06:00
if (!(xfeatures & XFEATURE_MASK_SSE))
memset(&fx->xmm_space[0], 0, 256);
/*
* First two features are FPU and SSE, which above we handled
* in a special way already:
*/
feature_bit = 0x2;
xfeatures = (xfeatures_mask & ~xfeatures) >> 2;
/*
* Update all the remaining memory layouts according to their
* standard xstate layout, if their header bit is in the init
* state:
*/
while (xfeatures) {
if (xfeatures & 0x1) {
int offset = xstate_comp_offsets[feature_bit];
int size = xstate_sizes[feature_bit];
memcpy((void *)fx + offset,
(void *)&init_fpstate.xsave + offset,
size);
}
xfeatures >>= 1;
feature_bit++;
}
}
/*
* Enable the extended processor state save/restore feature.
* Called once per CPU onlining.
*/
void fpu__init_cpu_xstate(void)
{
if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask)
return;
cr4_set_bits(X86_CR4_OSXSAVE);
xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
}
/*
* Note that in the future we will likely need a pair of
* functions here: one for user xstates and the other for
* system xstates. For now, they are the same.
*/
static int xfeature_enabled(enum xfeature xfeature)
{
return !!(xfeatures_mask & (1UL << xfeature));
}
/*
x86/fpu/xstate: Don't assume the first zero xfeatures zero bit means the end The current xstate code in setup_xstate_features() assumes that the first zero bit means the end of xfeatures - but that is not so, the SDM clearly states that an arbitrary set of xfeatures might be enabled - and it is also clear from the description of the compaction feature that holes are possible: "13-6 Vol. 1MANAGING STATE USING THE XSAVE FEATURE SET [...] Compacted format. Each state component i (i ≥ 2) is located at a byte offset from the base address of the XSAVE area based on the XCOMP_BV field in the XSAVE header: — If XCOMP_BV[i] = 0, state component i is not in the XSAVE area. — If XCOMP_BV[i] = 1, the following items apply: • If XCOMP_BV[j] = 0 for every j, 2 ≤ j < i, state component i is located at a byte offset 576 from the base address of the XSAVE area. (This item applies if i is the first bit set in bits 62:2 of the XCOMP_BV; it implies that state component i is located at the beginning of the extended region.) • Otherwise, let j, 2 ≤ j < i, be the greatest value such that XCOMP_BV[j] = 1. Then state component i is located at a byte offset X from the location of state component j, where X is the number of bytes required for state component j as enumerated in CPUID.(EAX=0DH,ECX=j):EAX. (This item implies that state component i immediately follows the preceding state component whose bit is set in XCOMP_BV.)" So don't assume that the first zero xfeatures bit means the end of all xfeatures - iterate through all of them. I'm not aware of hardware that triggers this currently. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-03 23:37:47 -06:00
* Record the offsets and sizes of various xstates contained
* in the XSAVE state memory layout.
*/
static void __init setup_xstate_features(void)
{
u32 eax, ebx, ecx, edx, i;
/* start at the beginnning of the "extended state" */
unsigned int last_good_offset = offsetof(struct xregs_state,
extended_state_area);
for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
if (!xfeature_enabled(i))
continue;
cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
xstate_offsets[i] = ebx;
xstate_sizes[i] = eax;
/*
* In our xstate size checks, we assume that the
* highest-numbered xstate feature has the
* highest offset in the buffer. Ensure it does.
*/
WARN_ONCE(last_good_offset > xstate_offsets[i],
"x86/fpu: misordered xstate at %d\n", last_good_offset);
last_good_offset = xstate_offsets[i];
printk(KERN_INFO "x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n", i, ebx, i, eax);
x86/fpu/xstate: Don't assume the first zero xfeatures zero bit means the end The current xstate code in setup_xstate_features() assumes that the first zero bit means the end of xfeatures - but that is not so, the SDM clearly states that an arbitrary set of xfeatures might be enabled - and it is also clear from the description of the compaction feature that holes are possible: "13-6 Vol. 1MANAGING STATE USING THE XSAVE FEATURE SET [...] Compacted format. Each state component i (i ≥ 2) is located at a byte offset from the base address of the XSAVE area based on the XCOMP_BV field in the XSAVE header: — If XCOMP_BV[i] = 0, state component i is not in the XSAVE area. — If XCOMP_BV[i] = 1, the following items apply: • If XCOMP_BV[j] = 0 for every j, 2 ≤ j < i, state component i is located at a byte offset 576 from the base address of the XSAVE area. (This item applies if i is the first bit set in bits 62:2 of the XCOMP_BV; it implies that state component i is located at the beginning of the extended region.) • Otherwise, let j, 2 ≤ j < i, be the greatest value such that XCOMP_BV[j] = 1. Then state component i is located at a byte offset X from the location of state component j, where X is the number of bytes required for state component j as enumerated in CPUID.(EAX=0DH,ECX=j):EAX. (This item implies that state component i immediately follows the preceding state component whose bit is set in XCOMP_BV.)" So don't assume that the first zero xfeatures bit means the end of all xfeatures - iterate through all of them. I'm not aware of hardware that triggers this currently. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-03 23:37:47 -06:00
}
}
static void __init print_xstate_feature(u64 xstate_mask)
{
const char *feature_name;
if (cpu_has_xfeatures(xstate_mask, &feature_name))
pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
}
/*
* Print out all the supported xstate features:
*/
static void __init print_xstate_features(void)
{
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:26 -06:00
print_xstate_feature(XFEATURE_MASK_FP);
print_xstate_feature(XFEATURE_MASK_SSE);
print_xstate_feature(XFEATURE_MASK_YMM);
print_xstate_feature(XFEATURE_MASK_BNDREGS);
print_xstate_feature(XFEATURE_MASK_BNDCSR);
print_xstate_feature(XFEATURE_MASK_OPMASK);
print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
print_xstate_feature(XFEATURE_MASK_PKRU);
}
/*
* This check is important because it is easy to get XSTATE_*
* confused with XSTATE_BIT_*.
*/
#define CHECK_XFEATURE(nr) do { \
WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \
WARN_ON(nr >= XFEATURE_MAX); \
} while (0)
/*
* We could cache this like xstate_size[], but we only use
* it here, so it would be a waste of space.
*/
static int xfeature_is_aligned(int xfeature_nr)
{
u32 eax, ebx, ecx, edx;
CHECK_XFEATURE(xfeature_nr);
cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
/*
* The value returned by ECX[1] indicates the alignment
* of state component 'i' when the compacted format
* of the extended region of an XSAVE area is used:
*/
return !!(ecx & 2);
}
/*
* This function sets up offsets and sizes of all extended states in
* xsave area. This supports both standard format and compacted format
* of the xsave aread.
*/
static void __init setup_xstate_comp(void)
{
unsigned int xstate_comp_sizes[sizeof(xfeatures_mask)*8];
int i;
/*
* The FP xstates and SSE xstates are legacy states. They are always
* in the fixed offsets in the xsave area in either compacted form
* or standard form.
*/
xstate_comp_offsets[0] = 0;
xstate_comp_offsets[1] = offsetof(struct fxregs_state, xmm_space);
if (!boot_cpu_has(X86_FEATURE_XSAVES)) {
for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
if (xfeature_enabled(i)) {
xstate_comp_offsets[i] = xstate_offsets[i];
xstate_comp_sizes[i] = xstate_sizes[i];
}
}
return;
}
xstate_comp_offsets[FIRST_EXTENDED_XFEATURE] =
FXSAVE_SIZE + XSAVE_HDR_SIZE;
for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
if (xfeature_enabled(i))
xstate_comp_sizes[i] = xstate_sizes[i];
else
xstate_comp_sizes[i] = 0;
if (i > FIRST_EXTENDED_XFEATURE) {
xstate_comp_offsets[i] = xstate_comp_offsets[i-1]
+ xstate_comp_sizes[i-1];
if (xfeature_is_aligned(i))
xstate_comp_offsets[i] =
ALIGN(xstate_comp_offsets[i], 64);
}
}
}
/*
* setup the xstate image representing the init state
*/
static void __init setup_init_fpu_buf(void)
{
static int on_boot_cpu __initdata = 1;
WARN_ON_FPU(!on_boot_cpu);
on_boot_cpu = 0;
if (!boot_cpu_has(X86_FEATURE_XSAVE))
return;
setup_xstate_features();
print_xstate_features();
if (boot_cpu_has(X86_FEATURE_XSAVES))
init_fpstate.xsave.header.xcomp_bv = (u64)1 << 63 | xfeatures_mask;
/*
* Init all the features state with header.xfeatures being 0x0
*/
copy_kernel_to_xregs_booting(&init_fpstate.xsave);
/*
* Dump the init state again. This is to identify the init state
* of any feature which is not represented by all zero's.
*/
copy_xregs_to_kernel_booting(&init_fpstate.xsave);
}
x86/fpu: Correct and check XSAVE xstate size calculations Note: our xsaves support is currently broken and disabled. This patch does not fix it, but it is an incremental improvement. This might be useful to someone backporting the entire set of XSAVES patches at some point, but it should not be backported alone. Ingo said he wanted something like this (bullets 2 and 3): http://lkml.kernel.org/r/20150808091508.GB32641@gmail.com There are currently two xsave buffer formats: standard and compacted. The standard format is waht 'XSAVE' and 'XSAVEOPT' produce while 'XSAVES' and 'XSAVEC' produce a compacted-formet buffer. (The kernel never uses XSAVEC) But, the XSAVES buffer *ALSO* contains "system state components" which are never saved by a plain XSAVE. So, XSAVES has two things that might make its buffer differently-sized from an XSAVE-produced one. The current code assumes that an XSAVES buffer's size is simply the sum of the sizes of the (user) states which are supported. This seems to work in most cases, but it is not consistent with what the SDM says, and it breaks if we 'align' a component in the buffer. The calculation is also unnecessary work since the CPU *tells* us the size of the buffer directly. This patch just reads the size of the buffer right out of the CPUID leaf instead of trying to derive it. But, blindly trusting the CPU like this is dangerous. We add a verification pass in do_extra_xstate_size_checks() to ensure that the size we calculate matches with what we see from the hardware. When it comes down to it, we trust but verify the CPU. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233130.234FE1EC@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:30 -06:00
static int xfeature_is_supervisor(int xfeature_nr)
{
/*
* We currently do not support supervisor states, but if
* we did, we could find out like this.
*
* SDM says: If state component i is a user state component,
* ECX[0] return 0; if state component i is a supervisor
* state component, ECX[0] returns 1.
u32 eax, ebx, ecx, edx;
cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx;
return !!(ecx & 1);
*/
return 0;
}
/*
static int xfeature_is_user(int xfeature_nr)
{
return !xfeature_is_supervisor(xfeature_nr);
}
*/
static int xfeature_uncompacted_offset(int xfeature_nr)
{
u32 eax, ebx, ecx, edx;
CHECK_XFEATURE(xfeature_nr);
cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
return ebx;
}
static int xfeature_size(int xfeature_nr)
{
u32 eax, ebx, ecx, edx;
CHECK_XFEATURE(xfeature_nr);
cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
return eax;
}
/*
* 'XSAVES' implies two different things:
* 1. saving of supervisor/system state
* 2. using the compacted format
*
* Use this function when dealing with the compacted format so
* that it is obvious which aspect of 'XSAVES' is being handled
* by the calling code.
*/
int using_compacted_format(void)
x86/fpu: Correct and check XSAVE xstate size calculations Note: our xsaves support is currently broken and disabled. This patch does not fix it, but it is an incremental improvement. This might be useful to someone backporting the entire set of XSAVES patches at some point, but it should not be backported alone. Ingo said he wanted something like this (bullets 2 and 3): http://lkml.kernel.org/r/20150808091508.GB32641@gmail.com There are currently two xsave buffer formats: standard and compacted. The standard format is waht 'XSAVE' and 'XSAVEOPT' produce while 'XSAVES' and 'XSAVEC' produce a compacted-formet buffer. (The kernel never uses XSAVEC) But, the XSAVES buffer *ALSO* contains "system state components" which are never saved by a plain XSAVE. So, XSAVES has two things that might make its buffer differently-sized from an XSAVE-produced one. The current code assumes that an XSAVES buffer's size is simply the sum of the sizes of the (user) states which are supported. This seems to work in most cases, but it is not consistent with what the SDM says, and it breaks if we 'align' a component in the buffer. The calculation is also unnecessary work since the CPU *tells* us the size of the buffer directly. This patch just reads the size of the buffer right out of the CPUID leaf instead of trying to derive it. But, blindly trusting the CPU like this is dangerous. We add a verification pass in do_extra_xstate_size_checks() to ensure that the size we calculate matches with what we see from the hardware. When it comes down to it, we trust but verify the CPU. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233130.234FE1EC@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:30 -06:00
{
return boot_cpu_has(X86_FEATURE_XSAVES);
x86/fpu: Correct and check XSAVE xstate size calculations Note: our xsaves support is currently broken and disabled. This patch does not fix it, but it is an incremental improvement. This might be useful to someone backporting the entire set of XSAVES patches at some point, but it should not be backported alone. Ingo said he wanted something like this (bullets 2 and 3): http://lkml.kernel.org/r/20150808091508.GB32641@gmail.com There are currently two xsave buffer formats: standard and compacted. The standard format is waht 'XSAVE' and 'XSAVEOPT' produce while 'XSAVES' and 'XSAVEC' produce a compacted-formet buffer. (The kernel never uses XSAVEC) But, the XSAVES buffer *ALSO* contains "system state components" which are never saved by a plain XSAVE. So, XSAVES has two things that might make its buffer differently-sized from an XSAVE-produced one. The current code assumes that an XSAVES buffer's size is simply the sum of the sizes of the (user) states which are supported. This seems to work in most cases, but it is not consistent with what the SDM says, and it breaks if we 'align' a component in the buffer. The calculation is also unnecessary work since the CPU *tells* us the size of the buffer directly. This patch just reads the size of the buffer right out of the CPUID leaf instead of trying to derive it. But, blindly trusting the CPU like this is dangerous. We add a verification pass in do_extra_xstate_size_checks() to ensure that the size we calculate matches with what we see from the hardware. When it comes down to it, we trust but verify the CPU. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233130.234FE1EC@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:30 -06:00
}
static void __xstate_dump_leaves(void)
{
int i;
u32 eax, ebx, ecx, edx;
static int should_dump = 1;
if (!should_dump)
return;
should_dump = 0;
/*
* Dump out a few leaves past the ones that we support
* just in case there are some goodies up there
*/
for (i = 0; i < XFEATURE_MAX + 10; i++) {
cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
XSTATE_CPUID, i, eax, ebx, ecx, edx);
}
}
#define XSTATE_WARN_ON(x) do { \
if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) { \
__xstate_dump_leaves(); \
} \
} while (0)
#define XCHECK_SZ(sz, nr, nr_macro, __struct) do { \
if ((nr == nr_macro) && \
WARN_ONCE(sz != sizeof(__struct), \
"%s: struct is %zu bytes, cpu state %d bytes\n", \
__stringify(nr_macro), sizeof(__struct), sz)) { \
__xstate_dump_leaves(); \
} \
} while (0)
/*
* We have a C struct for each 'xstate'. We need to ensure
* that our software representation matches what the CPU
* tells us about the state's size.
*/
static void check_xstate_against_struct(int nr)
{
/*
* Ask the CPU for the size of the state.
*/
int sz = xfeature_size(nr);
/*
* Match each CPU state with the corresponding software
* structure.
*/
XCHECK_SZ(sz, nr, XFEATURE_YMM, struct ymmh_struct);
XCHECK_SZ(sz, nr, XFEATURE_BNDREGS, struct mpx_bndreg_state);
XCHECK_SZ(sz, nr, XFEATURE_BNDCSR, struct mpx_bndcsr_state);
XCHECK_SZ(sz, nr, XFEATURE_OPMASK, struct avx_512_opmask_state);
XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM, struct avx_512_hi16_state);
XCHECK_SZ(sz, nr, XFEATURE_PKRU, struct pkru_state);
/*
* Make *SURE* to add any feature numbers in below if
* there are "holes" in the xsave state component
* numbers.
*/
if ((nr < XFEATURE_YMM) ||
x86/fpu: Add placeholder for 'Processor Trace' XSAVE state There is an XSAVE state component for Intel Processor Trace (PT). But, we do not currently use it. We add a placeholder in the code for it so it is not a mystery and also so we do not need an explicit enum initialization for Protection Keys in a moment. Why don't we use it? We might end up using this at _some_ point in the future. But, this is a "system" state which requires using the currently unsupported XSAVES feature. Unlike all the other XSAVE states, PT state is also not directly tied to a thread. You might context-switch between threads, but not want to change any of the PT state. Or, you might switch between threads, and *do* want to change PT state, all depending on what is being traced. We currently just manually set some MSRs to do this PT context switching, and it is unclear whether replacing our direct MSR use with XSAVE will be a net win or loss, both in code complexity and performance. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: fenghua.yu@intel.com Cc: linux-mm@kvack.org Cc: yu-cheng.yu@intel.com Link: http://lkml.kernel.org/r/20160212210158.5E4BCAE2@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-12 14:01:58 -07:00
(nr >= XFEATURE_MAX) ||
(nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR)) {
WARN_ONCE(1, "no structure for xstate: %d\n", nr);
XSTATE_WARN_ON(1);
}
}
x86/fpu: Correct and check XSAVE xstate size calculations Note: our xsaves support is currently broken and disabled. This patch does not fix it, but it is an incremental improvement. This might be useful to someone backporting the entire set of XSAVES patches at some point, but it should not be backported alone. Ingo said he wanted something like this (bullets 2 and 3): http://lkml.kernel.org/r/20150808091508.GB32641@gmail.com There are currently two xsave buffer formats: standard and compacted. The standard format is waht 'XSAVE' and 'XSAVEOPT' produce while 'XSAVES' and 'XSAVEC' produce a compacted-formet buffer. (The kernel never uses XSAVEC) But, the XSAVES buffer *ALSO* contains "system state components" which are never saved by a plain XSAVE. So, XSAVES has two things that might make its buffer differently-sized from an XSAVE-produced one. The current code assumes that an XSAVES buffer's size is simply the sum of the sizes of the (user) states which are supported. This seems to work in most cases, but it is not consistent with what the SDM says, and it breaks if we 'align' a component in the buffer. The calculation is also unnecessary work since the CPU *tells* us the size of the buffer directly. This patch just reads the size of the buffer right out of the CPUID leaf instead of trying to derive it. But, blindly trusting the CPU like this is dangerous. We add a verification pass in do_extra_xstate_size_checks() to ensure that the size we calculate matches with what we see from the hardware. When it comes down to it, we trust but verify the CPU. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233130.234FE1EC@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:30 -06:00
/*
* This essentially double-checks what the cpu told us about
* how large the XSAVE buffer needs to be. We are recalculating
* it to be safe.
*/
static void do_extra_xstate_size_checks(void)
{
int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
int i;
for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
if (!xfeature_enabled(i))
continue;
check_xstate_against_struct(i);
x86/fpu: Correct and check XSAVE xstate size calculations Note: our xsaves support is currently broken and disabled. This patch does not fix it, but it is an incremental improvement. This might be useful to someone backporting the entire set of XSAVES patches at some point, but it should not be backported alone. Ingo said he wanted something like this (bullets 2 and 3): http://lkml.kernel.org/r/20150808091508.GB32641@gmail.com There are currently two xsave buffer formats: standard and compacted. The standard format is waht 'XSAVE' and 'XSAVEOPT' produce while 'XSAVES' and 'XSAVEC' produce a compacted-formet buffer. (The kernel never uses XSAVEC) But, the XSAVES buffer *ALSO* contains "system state components" which are never saved by a plain XSAVE. So, XSAVES has two things that might make its buffer differently-sized from an XSAVE-produced one. The current code assumes that an XSAVES buffer's size is simply the sum of the sizes of the (user) states which are supported. This seems to work in most cases, but it is not consistent with what the SDM says, and it breaks if we 'align' a component in the buffer. The calculation is also unnecessary work since the CPU *tells* us the size of the buffer directly. This patch just reads the size of the buffer right out of the CPUID leaf instead of trying to derive it. But, blindly trusting the CPU like this is dangerous. We add a verification pass in do_extra_xstate_size_checks() to ensure that the size we calculate matches with what we see from the hardware. When it comes down to it, we trust but verify the CPU. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233130.234FE1EC@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:30 -06:00
/*
* Supervisor state components can be managed only by
* XSAVES, which is compacted-format only.
*/
if (!using_compacted_format())
XSTATE_WARN_ON(xfeature_is_supervisor(i));
/* Align from the end of the previous feature */
if (xfeature_is_aligned(i))
paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64);
/*
* The offset of a given state in the non-compacted
* format is given to us in a CPUID leaf. We check
* them for being ordered (increasing offsets) in
* setup_xstate_features().
*/
if (!using_compacted_format())
paranoid_xstate_size = xfeature_uncompacted_offset(i);
/*
* The compacted-format offset always depends on where
* the previous state ended.
*/
paranoid_xstate_size += xfeature_size(i);
}
XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size);
x86/fpu: Correct and check XSAVE xstate size calculations Note: our xsaves support is currently broken and disabled. This patch does not fix it, but it is an incremental improvement. This might be useful to someone backporting the entire set of XSAVES patches at some point, but it should not be backported alone. Ingo said he wanted something like this (bullets 2 and 3): http://lkml.kernel.org/r/20150808091508.GB32641@gmail.com There are currently two xsave buffer formats: standard and compacted. The standard format is waht 'XSAVE' and 'XSAVEOPT' produce while 'XSAVES' and 'XSAVEC' produce a compacted-formet buffer. (The kernel never uses XSAVEC) But, the XSAVES buffer *ALSO* contains "system state components" which are never saved by a plain XSAVE. So, XSAVES has two things that might make its buffer differently-sized from an XSAVE-produced one. The current code assumes that an XSAVES buffer's size is simply the sum of the sizes of the (user) states which are supported. This seems to work in most cases, but it is not consistent with what the SDM says, and it breaks if we 'align' a component in the buffer. The calculation is also unnecessary work since the CPU *tells* us the size of the buffer directly. This patch just reads the size of the buffer right out of the CPUID leaf instead of trying to derive it. But, blindly trusting the CPU like this is dangerous. We add a verification pass in do_extra_xstate_size_checks() to ensure that the size we calculate matches with what we see from the hardware. When it comes down to it, we trust but verify the CPU. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233130.234FE1EC@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:30 -06:00
}
/*
* Get total size of enabled xstates in XCR0/xfeatures_mask.
x86/fpu: Correct and check XSAVE xstate size calculations Note: our xsaves support is currently broken and disabled. This patch does not fix it, but it is an incremental improvement. This might be useful to someone backporting the entire set of XSAVES patches at some point, but it should not be backported alone. Ingo said he wanted something like this (bullets 2 and 3): http://lkml.kernel.org/r/20150808091508.GB32641@gmail.com There are currently two xsave buffer formats: standard and compacted. The standard format is waht 'XSAVE' and 'XSAVEOPT' produce while 'XSAVES' and 'XSAVEC' produce a compacted-formet buffer. (The kernel never uses XSAVEC) But, the XSAVES buffer *ALSO* contains "system state components" which are never saved by a plain XSAVE. So, XSAVES has two things that might make its buffer differently-sized from an XSAVE-produced one. The current code assumes that an XSAVES buffer's size is simply the sum of the sizes of the (user) states which are supported. This seems to work in most cases, but it is not consistent with what the SDM says, and it breaks if we 'align' a component in the buffer. The calculation is also unnecessary work since the CPU *tells* us the size of the buffer directly. This patch just reads the size of the buffer right out of the CPUID leaf instead of trying to derive it. But, blindly trusting the CPU like this is dangerous. We add a verification pass in do_extra_xstate_size_checks() to ensure that the size we calculate matches with what we see from the hardware. When it comes down to it, we trust but verify the CPU. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233130.234FE1EC@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:30 -06:00
*
* Note the SDM's wording here. "sub-function 0" only enumerates
* the size of the *user* states. If we use it to size a buffer
* that we use 'XSAVES' on, we could potentially overflow the
* buffer because 'XSAVES' saves system states too.
*
* Note that we do not currently set any bits on IA32_XSS so
* 'XCR0 | IA32_XSS == XCR0' for now.
*/
static unsigned int __init get_xsaves_size(void)
{
unsigned int eax, ebx, ecx, edx;
/*
* - CPUID function 0DH, sub-function 1:
* EBX enumerates the size (in bytes) required by
* the XSAVES instruction for an XSAVE area
* containing all the state components
* corresponding to bits currently set in
* XCR0 | IA32_XSS.
*/
cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
return ebx;
}
static unsigned int __init get_xsave_size(void)
{
unsigned int eax, ebx, ecx, edx;
/*
* - CPUID function 0DH, sub-function 0:
* EBX enumerates the size (in bytes) required by
* the XSAVE instruction for an XSAVE area
* containing all the *user* state components
* corresponding to bits currently set in XCR0.
*/
cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
return ebx;
x86/fpu: Remove XSTATE_RESERVE The original purpose of XSTATE_RESERVE was to carve out space to store all of the possible extended state components that get saved with the XSAVE instruction(s). However, we are now almost entirely dynamically allocating the buffers we use for XSAVE by placing them at the end of the task_struct and them sizing them at boot. The one exception for that is the init_task. The maximum extended state component size that we have today is on systems with space for AVX-512 and Memory Protection Keys: 2696 bytes. We have reserved a PAGE_SIZE buffer in the init_task via fpregs_state->__padding. This check ensures that even if the component sizes or layout were changed (which we do not expect), that we will still not overflow the init_task's buffer. In the case that we detect we might overflow the buffer, we completely disable XSAVE support in the kernel and try to boot as if we had 'legacy x87 FPU' support in place. This is a crippled state without any of the XSAVE-enabled features (MPX, AVX, etc...). But, it at least let us boot safely. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233125.D948D475@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:25 -06:00
}
/*
* Will the runtime-enumerated 'xstate_size' fit in the init
* task's statically-allocated buffer?
*/
static bool is_supported_xstate_size(unsigned int test_xstate_size)
{
if (test_xstate_size <= sizeof(union fpregs_state))
return true;
pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n",
sizeof(union fpregs_state), test_xstate_size);
return false;
}
static int init_xstate_size(void)
{
/* Recompute the context size for enabled features: */
unsigned int possible_xstate_size;
unsigned int xsave_size;
xsave_size = get_xsave_size();
if (boot_cpu_has(X86_FEATURE_XSAVES))
possible_xstate_size = get_xsaves_size();
else
possible_xstate_size = xsave_size;
x86/fpu: Remove XSTATE_RESERVE The original purpose of XSTATE_RESERVE was to carve out space to store all of the possible extended state components that get saved with the XSAVE instruction(s). However, we are now almost entirely dynamically allocating the buffers we use for XSAVE by placing them at the end of the task_struct and them sizing them at boot. The one exception for that is the init_task. The maximum extended state component size that we have today is on systems with space for AVX-512 and Memory Protection Keys: 2696 bytes. We have reserved a PAGE_SIZE buffer in the init_task via fpregs_state->__padding. This check ensures that even if the component sizes or layout were changed (which we do not expect), that we will still not overflow the init_task's buffer. In the case that we detect we might overflow the buffer, we completely disable XSAVE support in the kernel and try to boot as if we had 'legacy x87 FPU' support in place. This is a crippled state without any of the XSAVE-enabled features (MPX, AVX, etc...). But, it at least let us boot safely. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233125.D948D475@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:25 -06:00
/* Ensure we have the space to store all enabled: */
if (!is_supported_xstate_size(possible_xstate_size))
return -EINVAL;
/*
* The size is OK, we are definitely going to use xsave,
* make it known to the world that we need more space.
*/
fpu_kernel_xstate_size = possible_xstate_size;
x86/fpu: Correct and check XSAVE xstate size calculations Note: our xsaves support is currently broken and disabled. This patch does not fix it, but it is an incremental improvement. This might be useful to someone backporting the entire set of XSAVES patches at some point, but it should not be backported alone. Ingo said he wanted something like this (bullets 2 and 3): http://lkml.kernel.org/r/20150808091508.GB32641@gmail.com There are currently two xsave buffer formats: standard and compacted. The standard format is waht 'XSAVE' and 'XSAVEOPT' produce while 'XSAVES' and 'XSAVEC' produce a compacted-formet buffer. (The kernel never uses XSAVEC) But, the XSAVES buffer *ALSO* contains "system state components" which are never saved by a plain XSAVE. So, XSAVES has two things that might make its buffer differently-sized from an XSAVE-produced one. The current code assumes that an XSAVES buffer's size is simply the sum of the sizes of the (user) states which are supported. This seems to work in most cases, but it is not consistent with what the SDM says, and it breaks if we 'align' a component in the buffer. The calculation is also unnecessary work since the CPU *tells* us the size of the buffer directly. This patch just reads the size of the buffer right out of the CPUID leaf instead of trying to derive it. But, blindly trusting the CPU like this is dangerous. We add a verification pass in do_extra_xstate_size_checks() to ensure that the size we calculate matches with what we see from the hardware. When it comes down to it, we trust but verify the CPU. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233130.234FE1EC@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:30 -06:00
do_extra_xstate_size_checks();
/*
* User space is always in standard format.
*/
fpu_user_xstate_size = xsave_size;
x86/fpu: Remove XSTATE_RESERVE The original purpose of XSTATE_RESERVE was to carve out space to store all of the possible extended state components that get saved with the XSAVE instruction(s). However, we are now almost entirely dynamically allocating the buffers we use for XSAVE by placing them at the end of the task_struct and them sizing them at boot. The one exception for that is the init_task. The maximum extended state component size that we have today is on systems with space for AVX-512 and Memory Protection Keys: 2696 bytes. We have reserved a PAGE_SIZE buffer in the init_task via fpregs_state->__padding. This check ensures that even if the component sizes or layout were changed (which we do not expect), that we will still not overflow the init_task's buffer. In the case that we detect we might overflow the buffer, we completely disable XSAVE support in the kernel and try to boot as if we had 'legacy x87 FPU' support in place. This is a crippled state without any of the XSAVE-enabled features (MPX, AVX, etc...). But, it at least let us boot safely. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233125.D948D475@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:25 -06:00
return 0;
}
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:26 -06:00
/*
* We enabled the XSAVE hardware, but something went wrong and
* we can not use it. Disable it.
*/
static void fpu__init_disable_system_xstate(void)
x86/fpu: Remove XSTATE_RESERVE The original purpose of XSTATE_RESERVE was to carve out space to store all of the possible extended state components that get saved with the XSAVE instruction(s). However, we are now almost entirely dynamically allocating the buffers we use for XSAVE by placing them at the end of the task_struct and them sizing them at boot. The one exception for that is the init_task. The maximum extended state component size that we have today is on systems with space for AVX-512 and Memory Protection Keys: 2696 bytes. We have reserved a PAGE_SIZE buffer in the init_task via fpregs_state->__padding. This check ensures that even if the component sizes or layout were changed (which we do not expect), that we will still not overflow the init_task's buffer. In the case that we detect we might overflow the buffer, we completely disable XSAVE support in the kernel and try to boot as if we had 'legacy x87 FPU' support in place. This is a crippled state without any of the XSAVE-enabled features (MPX, AVX, etc...). But, it at least let us boot safely. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233125.D948D475@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:25 -06:00
{
xfeatures_mask = 0;
cr4_clear_bits(X86_CR4_OSXSAVE);
fpu__xstate_clear_all_cpu_caps();
}
/*
* Enable and initialize the xsave feature.
* Called once per system bootup.
*/
void __init fpu__init_system_xstate(void)
{
unsigned int eax, ebx, ecx, edx;
static int on_boot_cpu __initdata = 1;
x86/fpu: Remove XSTATE_RESERVE The original purpose of XSTATE_RESERVE was to carve out space to store all of the possible extended state components that get saved with the XSAVE instruction(s). However, we are now almost entirely dynamically allocating the buffers we use for XSAVE by placing them at the end of the task_struct and them sizing them at boot. The one exception for that is the init_task. The maximum extended state component size that we have today is on systems with space for AVX-512 and Memory Protection Keys: 2696 bytes. We have reserved a PAGE_SIZE buffer in the init_task via fpregs_state->__padding. This check ensures that even if the component sizes or layout were changed (which we do not expect), that we will still not overflow the init_task's buffer. In the case that we detect we might overflow the buffer, we completely disable XSAVE support in the kernel and try to boot as if we had 'legacy x87 FPU' support in place. This is a crippled state without any of the XSAVE-enabled features (MPX, AVX, etc...). But, it at least let us boot safely. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233125.D948D475@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:25 -06:00
int err;
WARN_ON_FPU(!on_boot_cpu);
on_boot_cpu = 0;
if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
pr_info("x86/fpu: Legacy x87 FPU detected.\n");
return;
}
if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
WARN_ON_FPU(1);
return;
}
cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
xfeatures_mask = eax + ((u64)edx << 32);
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:26 -06:00
if ((xfeatures_mask & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", xfeatures_mask);
BUG();
}
xfeatures_mask &= fpu__get_supported_xfeatures_mask();
/* Enable xstate instructions to be able to continue with initialization: */
fpu__init_cpu_xstate();
x86/fpu: Remove XSTATE_RESERVE The original purpose of XSTATE_RESERVE was to carve out space to store all of the possible extended state components that get saved with the XSAVE instruction(s). However, we are now almost entirely dynamically allocating the buffers we use for XSAVE by placing them at the end of the task_struct and them sizing them at boot. The one exception for that is the init_task. The maximum extended state component size that we have today is on systems with space for AVX-512 and Memory Protection Keys: 2696 bytes. We have reserved a PAGE_SIZE buffer in the init_task via fpregs_state->__padding. This check ensures that even if the component sizes or layout were changed (which we do not expect), that we will still not overflow the init_task's buffer. In the case that we detect we might overflow the buffer, we completely disable XSAVE support in the kernel and try to boot as if we had 'legacy x87 FPU' support in place. This is a crippled state without any of the XSAVE-enabled features (MPX, AVX, etc...). But, it at least let us boot safely. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233125.D948D475@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:25 -06:00
err = init_xstate_size();
if (err) {
/* something went wrong, boot without any XSAVE support */
fpu__init_disable_system_xstate();
return;
}
update_regset_xstate_info(fpu_kernel_xstate_size, xfeatures_mask);
fpu__init_prepare_fx_sw_frame();
setup_init_fpu_buf();
setup_xstate_comp();
pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
xfeatures_mask,
fpu_kernel_xstate_size,
boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard");
}
/*
* Restore minimal FPU state after suspend:
*/
void fpu__resume_cpu(void)
{
/*
* Restore XCR0 on xsave capable CPUs:
*/
if (boot_cpu_has(X86_FEATURE_XSAVE))
xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
}
/*
* Given an xstate feature mask, calculate where in the xsave
* buffer the state is. Callers should ensure that the buffer
* is valid.
*
* Note: does not work for compacted buffers.
*/
void *__raw_xsave_addr(struct xregs_state *xsave, int xstate_feature_mask)
{
int feature_nr = fls64(xstate_feature_mask) - 1;
return (void *)xsave + xstate_comp_offsets[feature_nr];
}
/*
* Given the xsave area and a state inside, this function returns the
* address of the state.
*
* This is the API that is called to get xstate address in either
* standard format or compacted format of xsave area.
*
* Note that if there is no data for the field in the xsave buffer
* this will return NULL.
*
* Inputs:
* xstate: the thread's storage area for all FPU data
* xstate_feature: state which is defined in xsave.h (e.g.
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:26 -06:00
* XFEATURE_MASK_FP, XFEATURE_MASK_SSE, etc...)
* Output:
* address of the state in the xsave area, or NULL if the
* field is not present in the xsave buffer.
*/
void *get_xsave_addr(struct xregs_state *xsave, int xstate_feature)
{
/*
* Do we even *have* xsave state?
*/
if (!boot_cpu_has(X86_FEATURE_XSAVE))
return NULL;
/*
* We should not ever be requesting features that we
* have not enabled. Remember that pcntxt_mask is
* what we write to the XCR0 register.
*/
WARN_ONCE(!(xfeatures_mask & xstate_feature),
"get of unsupported state");
/*
* This assumes the last 'xsave*' instruction to
* have requested that 'xstate_feature' be saved.
* If it did not, we might be seeing and old value
* of the field in the buffer.
*
* This can happen because the last 'xsave' did not
* request that this feature be saved (unlikely)
* or because the "init optimization" caused it
* to not be saved.
*/
if (!(xsave->header.xfeatures & xstate_feature))
return NULL;
return __raw_xsave_addr(xsave, xstate_feature);
}
EXPORT_SYMBOL_GPL(get_xsave_addr);
x86/fpu/xstate: Wrap get_xsave_addr() to make it safer The MPX code appears is calling a low-level FPU function (copy_fpregs_to_fpstate()). This function is not able to be called in all contexts, although it is safe to call directly in some cases. Although probably correct, the current code is ugly and potentially error-prone. So, add a wrapper that calls the (slightly) higher-level fpu__save() (which is preempt- safe) and also ensures that we even *have* an FPU context (in the case that this was called when in lazy FPU mode). Ingo had this to say about the details about when we need preemption disabled: > it's indeed generally unsafe to access/copy FPU registers with preemption enabled, > for two reasons: > > - on older systems that use FSAVE the instruction destroys FPU register > contents, which has to be handled carefully > > - even on newer systems if we copy to FPU registers (which this code doesn't) > then we don't want a context switch to occur in the middle of it, because a > context switch will write to the fpstate, potentially overwriting our new data > with old FPU state. > > But it's safe to access FPU registers with preemption enabled in a couple of > special cases: > > - potentially destructively saving FPU registers: the signal handling code does > this in copy_fpstate_to_sigframe(), because it can rely on the signal restore > side to restore the original FPU state. > > - reading FPU registers on modern systems: we don't do this anywhere at the > moment, mostly to keep symmetry with older systems where FSAVE is > destructive. > > - initializing FPU registers on modern systems: fpu__clear() does this. Here > it's safe because we don't copy from the fpstate. > > - directly writing FPU registers from user-space memory (!). We do this in > fpu__restore_sig(), and it's safe because neither context switches nor > irq-handler FPU use can corrupt the source context of the copy (which is > user-space memory). > > Note that the MPX code's current use of copy_fpregs_to_fpstate() was safe I think, > because: > > - MPX is predicated on eagerfpu, so the destructive F[N]SAVE instruction won't be > used. > > - the code was only reading FPU registers, and was doing it only in places that > guaranteed that an FPU state was already active (i.e. didn't do it in > kthreads) Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave@sr71.net> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Suresh Siddha <sbsiddha@gmail.com> Cc: bp@alien8.de Link: http://lkml.kernel.org/r/20150607183700.AA881696@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 12:37:00 -06:00
/*
* This wraps up the common operations that need to occur when retrieving
* data from xsave state. It first ensures that the current task was
* using the FPU and retrieves the data in to a buffer. It then calculates
* the offset of the requested field in the buffer.
*
* This function is safe to call whether the FPU is in use or not.
*
* Note that this only works on the current task.
*
* Inputs:
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:26 -06:00
* @xsave_state: state which is defined in xsave.h (e.g. XFEATURE_MASK_FP,
* XFEATURE_MASK_SSE, etc...)
x86/fpu/xstate: Wrap get_xsave_addr() to make it safer The MPX code appears is calling a low-level FPU function (copy_fpregs_to_fpstate()). This function is not able to be called in all contexts, although it is safe to call directly in some cases. Although probably correct, the current code is ugly and potentially error-prone. So, add a wrapper that calls the (slightly) higher-level fpu__save() (which is preempt- safe) and also ensures that we even *have* an FPU context (in the case that this was called when in lazy FPU mode). Ingo had this to say about the details about when we need preemption disabled: > it's indeed generally unsafe to access/copy FPU registers with preemption enabled, > for two reasons: > > - on older systems that use FSAVE the instruction destroys FPU register > contents, which has to be handled carefully > > - even on newer systems if we copy to FPU registers (which this code doesn't) > then we don't want a context switch to occur in the middle of it, because a > context switch will write to the fpstate, potentially overwriting our new data > with old FPU state. > > But it's safe to access FPU registers with preemption enabled in a couple of > special cases: > > - potentially destructively saving FPU registers: the signal handling code does > this in copy_fpstate_to_sigframe(), because it can rely on the signal restore > side to restore the original FPU state. > > - reading FPU registers on modern systems: we don't do this anywhere at the > moment, mostly to keep symmetry with older systems where FSAVE is > destructive. > > - initializing FPU registers on modern systems: fpu__clear() does this. Here > it's safe because we don't copy from the fpstate. > > - directly writing FPU registers from user-space memory (!). We do this in > fpu__restore_sig(), and it's safe because neither context switches nor > irq-handler FPU use can corrupt the source context of the copy (which is > user-space memory). > > Note that the MPX code's current use of copy_fpregs_to_fpstate() was safe I think, > because: > > - MPX is predicated on eagerfpu, so the destructive F[N]SAVE instruction won't be > used. > > - the code was only reading FPU registers, and was doing it only in places that > guaranteed that an FPU state was already active (i.e. didn't do it in > kthreads) Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave@sr71.net> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Suresh Siddha <sbsiddha@gmail.com> Cc: bp@alien8.de Link: http://lkml.kernel.org/r/20150607183700.AA881696@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 12:37:00 -06:00
* Output:
* address of the state in the xsave area or NULL if the state
* is not present or is in its 'init state'.
*/
const void *get_xsave_field_ptr(int xsave_state)
{
struct fpu *fpu = &current->thread.fpu;
if (!fpu->fpstate_active)
return NULL;
/*
* fpu__save() takes the CPU's xstate registers
* and saves them off to the 'fpu memory buffer.
*/
fpu__save(fpu);
return get_xsave_addr(&fpu->state.xsave, xsave_state);
}
/*
* Set xfeatures (aka XSTATE_BV) bit for a feature that we want
* to take out of its "init state". This will ensure that an
* XRSTOR actually restores the state.
*/
static void fpu__xfeature_set_non_init(struct xregs_state *xsave,
int xstate_feature_mask)
{
xsave->header.xfeatures |= xstate_feature_mask;
}
/*
* This function is safe to call whether the FPU is in use or not.
*
* Note that this only works on the current task.
*
* Inputs:
* @xsave_state: state which is defined in xsave.h (e.g. XFEATURE_MASK_FP,
* XFEATURE_MASK_SSE, etc...)
* @xsave_state_ptr: a pointer to a copy of the state that you would
* like written in to the current task's FPU xsave state. This pointer
* must not be located in the current tasks's xsave area.
* Output:
* address of the state in the xsave area or NULL if the state
* is not present or is in its 'init state'.
*/
static void fpu__xfeature_set_state(int xstate_feature_mask,
void *xstate_feature_src, size_t len)
{
struct xregs_state *xsave = &current->thread.fpu.state.xsave;
struct fpu *fpu = &current->thread.fpu;
void *dst;
if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
WARN_ONCE(1, "%s() attempted with no xsave support", __func__);
return;
}
/*
* Tell the FPU code that we need the FPU state to be in
* 'fpu' (not in the registers), and that we need it to
* be stable while we write to it.
*/
fpu__current_fpstate_write_begin();
/*
* This method *WILL* *NOT* work for compact-format
* buffers. If the 'xstate_feature_mask' is unset in
* xcomp_bv then we may need to move other feature state
* "up" in the buffer.
*/
if (xsave->header.xcomp_bv & xstate_feature_mask) {
WARN_ON_ONCE(1);
goto out;
}
/* find the location in the xsave buffer of the desired state */
dst = __raw_xsave_addr(&fpu->state.xsave, xstate_feature_mask);
/*
* Make sure that the pointer being passed in did not
* come from the xsave buffer itself.
*/
WARN_ONCE(xstate_feature_src == dst, "set from xsave buffer itself");
/* put the caller-provided data in the location */
memcpy(dst, xstate_feature_src, len);
/*
* Mark the xfeature so that the CPU knows there is state
* in the buffer now.
*/
fpu__xfeature_set_non_init(xsave, xstate_feature_mask);
out:
/*
* We are done writing to the 'fpu'. Reenable preeption
* and (possibly) move the fpstate back in to the fpregs.
*/
fpu__current_fpstate_write_end();
}
x86/mm/pkeys: Allow kernel to modify user pkey rights register The Protection Key Rights for User memory (PKRU) is a 32-bit user-accessible register. It contains two bits for each protection key: one to write-disable (WD) access to memory covered by the key and another to access-disable (AD). Userspace can read/write the register with the RDPKRU and WRPKRU instructions. But, the register is saved and restored with the XSAVE family of instructions, which means we have to treat it like a floating point register. The kernel needs to write to the register if it wants to implement execute-only memory or if it implements a system call to change PKRU. To do this, we need to create a 'pkru_state' buffer, read the old contents in to it, modify it, and then tell the FPU code that there is modified data in there so it can (possibly) move the buffer back in to the registers. This uses the fpu__xfeature_set_state() function that we defined in the previous patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20160212210236.0BE13217@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-12 14:02:36 -07:00
#define NR_VALID_PKRU_BITS (CONFIG_NR_PROTECTION_KEYS * 2)
#define PKRU_VALID_MASK (NR_VALID_PKRU_BITS - 1)
/*
* This will go out and modify the XSAVE buffer so that PKRU is
* set to a particular state for access to 'pkey'.
*
* PKRU state does affect kernel access to user memory. We do
* not modfiy PKRU *itself* here, only the XSAVE state that will
* be restored in to PKRU when we return back to userspace.
*/
int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
unsigned long init_val)
{
struct xregs_state *xsave = &tsk->thread.fpu.state.xsave;
struct pkru_state *old_pkru_state;
struct pkru_state new_pkru_state;
int pkey_shift = (pkey * PKRU_BITS_PER_PKEY);
u32 new_pkru_bits = 0;
/*
* This check implies XSAVE support. OSPKE only gets
* set if we enable XSAVE and we enable PKU in XCR0.
*/
if (!boot_cpu_has(X86_FEATURE_OSPKE))
return -EINVAL;
/* Set the bits we need in PKRU */
if (init_val & PKEY_DISABLE_ACCESS)
new_pkru_bits |= PKRU_AD_BIT;
if (init_val & PKEY_DISABLE_WRITE)
new_pkru_bits |= PKRU_WD_BIT;
/* Shift the bits in to the correct place in PKRU for pkey. */
new_pkru_bits <<= pkey_shift;
/* Locate old copy of the state in the xsave buffer */
old_pkru_state = get_xsave_addr(xsave, XFEATURE_MASK_PKRU);
/*
* When state is not in the buffer, it is in the init
* state, set it manually. Otherwise, copy out the old
* state.
*/
if (!old_pkru_state)
new_pkru_state.pkru = 0;
else
new_pkru_state.pkru = old_pkru_state->pkru;
/* mask off any old bits in place */
new_pkru_state.pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
/* Set the newly-requested bits */
new_pkru_state.pkru |= new_pkru_bits;
/*
* We could theoretically live without zeroing pkru.pad.
* The current XSAVE feature state definition says that
* only bytes 0->3 are used. But we do not want to
* chance leaking kernel stack out to userspace in case a
* memcpy() of the whole xsave buffer was done.
*
* They're in the same cacheline anyway.
*/
new_pkru_state.pad = 0;
fpu__xfeature_set_state(XFEATURE_MASK_PKRU, &new_pkru_state,
sizeof(new_pkru_state));
return 0;
}