1
0
Fork 0
alistair23-linux/include/linux/xarray.h

1755 lines
54 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0+ */
#ifndef _LINUX_XARRAY_H
#define _LINUX_XARRAY_H
/*
* eXtensible Arrays
* Copyright (c) 2017 Microsoft Corporation
* Author: Matthew Wilcox <willy@infradead.org>
*
* See Documentation/core-api/xarray.rst for how to use the XArray.
*/
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/gfp.h>
#include <linux/kconfig.h>
#include <linux/kernel.h>
#include <linux/rcupdate.h>
#include <linux/spinlock.h>
#include <linux/types.h>
/*
* The bottom two bits of the entry determine how the XArray interprets
* the contents:
*
* 00: Pointer entry
* 10: Internal entry
* x1: Value entry or tagged pointer
*
* Attempting to store internal entries in the XArray is a bug.
*
* Most internal entries are pointers to the next node in the tree.
* The following internal entries have a special meaning:
*
* 0-62: Sibling entries
* 256: Zero entry
* 257: Retry entry
*
* Errors are also represented as internal entries, but use the negative
* space (-4094 to -2). They're never stored in the slots array; only
* returned by the normal API.
*/
#define BITS_PER_XA_VALUE (BITS_PER_LONG - 1)
/**
* xa_mk_value() - Create an XArray entry from an integer.
* @v: Value to store in XArray.
*
* Context: Any context.
* Return: An entry suitable for storing in the XArray.
*/
static inline void *xa_mk_value(unsigned long v)
{
WARN_ON((long)v < 0);
return (void *)((v << 1) | 1);
}
/**
* xa_to_value() - Get value stored in an XArray entry.
* @entry: XArray entry.
*
* Context: Any context.
* Return: The value stored in the XArray entry.
*/
static inline unsigned long xa_to_value(const void *entry)
{
return (unsigned long)entry >> 1;
}
/**
* xa_is_value() - Determine if an entry is a value.
* @entry: XArray entry.
*
* Context: Any context.
* Return: True if the entry is a value, false if it is a pointer.
*/
static inline bool xa_is_value(const void *entry)
{
return (unsigned long)entry & 1;
}
/**
* xa_tag_pointer() - Create an XArray entry for a tagged pointer.
* @p: Plain pointer.
* @tag: Tag value (0, 1 or 3).
*
* If the user of the XArray prefers, they can tag their pointers instead
* of storing value entries. Three tags are available (0, 1 and 3).
* These are distinct from the xa_mark_t as they are not replicated up
* through the array and cannot be searched for.
*
* Context: Any context.
* Return: An XArray entry.
*/
static inline void *xa_tag_pointer(void *p, unsigned long tag)
{
return (void *)((unsigned long)p | tag);
}
/**
* xa_untag_pointer() - Turn an XArray entry into a plain pointer.
* @entry: XArray entry.
*
* If you have stored a tagged pointer in the XArray, call this function
* to get the untagged version of the pointer.
*
* Context: Any context.
* Return: A pointer.
*/
static inline void *xa_untag_pointer(void *entry)
{
return (void *)((unsigned long)entry & ~3UL);
}
/**
* xa_pointer_tag() - Get the tag stored in an XArray entry.
* @entry: XArray entry.
*
* If you have stored a tagged pointer in the XArray, call this function
* to get the tag of that pointer.
*
* Context: Any context.
* Return: A tag.
*/
static inline unsigned int xa_pointer_tag(void *entry)
{
return (unsigned long)entry & 3UL;
}
/*
* xa_mk_internal() - Create an internal entry.
* @v: Value to turn into an internal entry.
*
* Internal entries are used for a number of purposes. Entries 0-255 are
* used for sibling entries (only 0-62 are used by the current code). 256
* is used for the retry entry. 257 is used for the reserved / zero entry.
* Negative internal entries are used to represent errnos. Node pointers
* are also tagged as internal entries in some situations.
*
* Context: Any context.
* Return: An XArray internal entry corresponding to this value.
*/
static inline void *xa_mk_internal(unsigned long v)
{
return (void *)((v << 2) | 2);
}
/*
* xa_to_internal() - Extract the value from an internal entry.
* @entry: XArray entry.
*
* Context: Any context.
* Return: The value which was stored in the internal entry.
*/
static inline unsigned long xa_to_internal(const void *entry)
{
return (unsigned long)entry >> 2;
}
/*
* xa_is_internal() - Is the entry an internal entry?
* @entry: XArray entry.
*
* Context: Any context.
* Return: %true if the entry is an internal entry.
*/
static inline bool xa_is_internal(const void *entry)
{
return ((unsigned long)entry & 3) == 2;
}
#define XA_ZERO_ENTRY xa_mk_internal(257)
/**
* xa_is_zero() - Is the entry a zero entry?
* @entry: Entry retrieved from the XArray
*
* The normal API will return NULL as the contents of a slot containing
* a zero entry. You can only see zero entries by using the advanced API.
*
* Return: %true if the entry is a zero entry.
*/
static inline bool xa_is_zero(const void *entry)
{
return unlikely(entry == XA_ZERO_ENTRY);
}
/**
* xa_is_err() - Report whether an XArray operation returned an error
* @entry: Result from calling an XArray function
*
* If an XArray operation cannot complete an operation, it will return
* a special value indicating an error. This function tells you
* whether an error occurred; xa_err() tells you which error occurred.
*
* Context: Any context.
* Return: %true if the entry indicates an error.
*/
static inline bool xa_is_err(const void *entry)
{
return unlikely(xa_is_internal(entry) &&
entry >= xa_mk_internal(-MAX_ERRNO));
}
/**
* xa_err() - Turn an XArray result into an errno.
* @entry: Result from calling an XArray function.
*
* If an XArray operation cannot complete an operation, it will return
* a special pointer value which encodes an errno. This function extracts
* the errno from the pointer value, or returns 0 if the pointer does not
* represent an errno.
*
* Context: Any context.
* Return: A negative errno or 0.
*/
static inline int xa_err(void *entry)
{
/* xa_to_internal() would not do sign extension. */
if (xa_is_err(entry))
return (long)entry >> 2;
return 0;
}
/**
* struct xa_limit - Represents a range of IDs.
* @min: The lowest ID to allocate (inclusive).
* @max: The maximum ID to allocate (inclusive).
*
* This structure is used either directly or via the XA_LIMIT() macro
* to communicate the range of IDs that are valid for allocation.
* Two common ranges are predefined for you:
* * xa_limit_32b - [0 - UINT_MAX]
* * xa_limit_31b - [0 - INT_MAX]
*/
struct xa_limit {
u32 max;
u32 min;
};
#define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
#define xa_limit_32b XA_LIMIT(0, UINT_MAX)
#define xa_limit_31b XA_LIMIT(0, INT_MAX)
typedef unsigned __bitwise xa_mark_t;
#define XA_MARK_0 ((__force xa_mark_t)0U)
#define XA_MARK_1 ((__force xa_mark_t)1U)
#define XA_MARK_2 ((__force xa_mark_t)2U)
#define XA_PRESENT ((__force xa_mark_t)8U)
#define XA_MARK_MAX XA_MARK_2
#define XA_FREE_MARK XA_MARK_0
enum xa_lock_type {
XA_LOCK_IRQ = 1,
XA_LOCK_BH = 2,
};
/*
* Values for xa_flags. The radix tree stores its GFP flags in the xa_flags,
* and we remain compatible with that.
*/
#define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ)
#define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH)
#define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U)
#define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U)
#define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U)
mm: fix page cache convergence regression Since a28334862993 ("page cache: Finish XArray conversion"), on most major Linux distributions, the page cache doesn't correctly transition when the hot data set is changing, and leaves the new pages thrashing indefinitely instead of kicking out the cold ones. On a freshly booted, freshly ssh'd into virtual machine with 1G RAM running stock Arch Linux: [root@ham ~]# ./reclaimtest.sh + dd of=workingset-a bs=1M count=0 seek=600 + cat workingset-a + cat workingset-a + cat workingset-a + cat workingset-a + cat workingset-a + cat workingset-a + cat workingset-a + cat workingset-a + ./mincore workingset-a 153600/153600 workingset-a + dd of=workingset-b bs=1M count=0 seek=600 + cat workingset-b + cat workingset-b + cat workingset-b + cat workingset-b + ./mincore workingset-a workingset-b 104029/153600 workingset-a 120086/153600 workingset-b + cat workingset-b + cat workingset-b + cat workingset-b + cat workingset-b + ./mincore workingset-a workingset-b 104029/153600 workingset-a 120268/153600 workingset-b workingset-b is a 600M file on a 1G host that is otherwise entirely idle. No matter how often it's being accessed, it won't get cached. While investigating, I noticed that the non-resident information gets aggressively reclaimed - /proc/vmstat::workingset_nodereclaim. This is a problem because a workingset transition like this relies on the non-resident information tracked in the page cache tree of evicted file ranges: when the cache faults are refaults of recently evicted cache, we challenge the existing active set, and that allows a new workingset to establish itself. Tracing the shrinker that maintains this memory revealed that all page cache tree nodes were allocated to the root cgroup. This is a problem, because 1) the shrinker sizes the amount of non-resident information it keeps to the size of the cgroup's other memory and 2) on most major Linux distributions, only kernel threads live in the root cgroup and everything else gets put into services or session groups: [root@ham ~]# cat /proc/self/cgroup 0::/user.slice/user-0.slice/session-c1.scope As a result, we basically maintain no non-resident information for the workloads running on the system, thus breaking the caching algorithm. Looking through the code, I found the culprit in the above-mentioned patch: when switching from the radix tree to xarray, it dropped the __GFP_ACCOUNT flag from the tree node allocations - the flag that makes sure the allocated memory gets charged to and tracked by the cgroup of the calling process - in this case, the one doing the fault. To fix this, allow xarray users to specify per-tree flag that makes xarray allocate nodes using __GFP_ACCOUNT. Then restore the page cache tree annotation to request such cgroup tracking for the cache nodes. With this patch applied, the page cache correctly converges on new workingsets again after just a few iterations: [root@ham ~]# ./reclaimtest.sh + dd of=workingset-a bs=1M count=0 seek=600 + cat workingset-a + cat workingset-a + cat workingset-a + cat workingset-a + cat workingset-a + cat workingset-a + cat workingset-a + cat workingset-a + ./mincore workingset-a 153600/153600 workingset-a + dd of=workingset-b bs=1M count=0 seek=600 + cat workingset-b + ./mincore workingset-a workingset-b 124607/153600 workingset-a 87876/153600 workingset-b + cat workingset-b + ./mincore workingset-a workingset-b 81313/153600 workingset-a 133321/153600 workingset-b + cat workingset-b + ./mincore workingset-a workingset-b 63036/153600 workingset-a 153600/153600 workingset-b Cc: stable@vger.kernel.org # 4.20+ Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2019-05-24 08:12:46 -06:00
#define XA_FLAGS_ACCOUNT ((__force gfp_t)32U)
#define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
(__force unsigned)(mark)))
/* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */
#define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
#define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
/**
* struct xarray - The anchor of the XArray.
* @xa_lock: Lock that protects the contents of the XArray.
*
* To use the xarray, define it statically or embed it in your data structure.
* It is a very small data structure, so it does not usually make sense to
* allocate it separately and keep a pointer to it in your data structure.
*
* You may use the xa_lock to protect your own data structures as well.
*/
/*
* If all of the entries in the array are NULL, @xa_head is a NULL pointer.
* If the only non-NULL entry in the array is at index 0, @xa_head is that
* entry. If any other entry in the array is non-NULL, @xa_head points
* to an @xa_node.
*/
struct xarray {
spinlock_t xa_lock;
/* private: The rest of the data structure is not to be used directly. */
gfp_t xa_flags;
void __rcu * xa_head;
};
#define XARRAY_INIT(name, flags) { \
.xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \
.xa_flags = flags, \
.xa_head = NULL, \
}
/**
* DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
* @name: A string that names your XArray.
* @flags: XA_FLAG values.
*
* This is intended for file scope definitions of XArrays. It declares
* and initialises an empty XArray with the chosen name and flags. It is
* equivalent to calling xa_init_flags() on the array, but it does the
* initialisation at compiletime instead of runtime.
*/
#define DEFINE_XARRAY_FLAGS(name, flags) \
struct xarray name = XARRAY_INIT(name, flags)
/**
* DEFINE_XARRAY() - Define an XArray.
* @name: A string that names your XArray.
*
* This is intended for file scope definitions of XArrays. It declares
* and initialises an empty XArray with the chosen name. It is equivalent
* to calling xa_init() on the array, but it does the initialisation at
* compiletime instead of runtime.
*/
#define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
/**
* DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
* @name: A string that names your XArray.
*
* This is intended for file scope definitions of allocating XArrays.
* See also DEFINE_XARRAY().
*/
#define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
/**
* DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
* @name: A string that names your XArray.
*
* This is intended for file scope definitions of allocating XArrays.
* See also DEFINE_XARRAY().
*/
#define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
void *xa_load(struct xarray *, unsigned long index);
void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
void *xa_erase(struct xarray *, unsigned long index);
void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
void *entry, gfp_t);
bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
void *xa_find(struct xarray *xa, unsigned long *index,
unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
void *xa_find_after(struct xarray *xa, unsigned long *index,
unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
unsigned long max, unsigned int n, xa_mark_t);
void xa_destroy(struct xarray *);
/**
* xa_init_flags() - Initialise an empty XArray with flags.
* @xa: XArray.
* @flags: XA_FLAG values.
*
* If you need to initialise an XArray with special flags (eg you need
* to take the lock from interrupt context), use this function instead
* of xa_init().
*
* Context: Any context.
*/
static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
{
spin_lock_init(&xa->xa_lock);
xa->xa_flags = flags;
xa->xa_head = NULL;
}
/**
* xa_init() - Initialise an empty XArray.
* @xa: XArray.
*
* An empty XArray is full of NULL entries.
*
* Context: Any context.
*/
static inline void xa_init(struct xarray *xa)
{
xa_init_flags(xa, 0);
}
/**
* xa_empty() - Determine if an array has any present entries.
* @xa: XArray.
*
* Context: Any context.
* Return: %true if the array contains only NULL pointers.
*/
static inline bool xa_empty(const struct xarray *xa)
{
return xa->xa_head == NULL;
}
/**
* xa_marked() - Inquire whether any entry in this array has a mark set
* @xa: Array
* @mark: Mark value
*
* Context: Any context.
* Return: %true if any entry has this mark set.
*/
static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
{
return xa->xa_flags & XA_FLAGS_MARK(mark);
}
/**
* xa_for_each_start() - Iterate over a portion of an XArray.
* @xa: XArray.
* @index: Index of @entry.
* @entry: Entry retrieved from array.
* @start: First index to retrieve from array.
*
* During the iteration, @entry will have the value of the entry stored
* in @xa at @index. You may modify @index during the iteration if you
* want to skip or reprocess indices. It is safe to modify the array
* during the iteration. At the end of the iteration, @entry will be set
* to NULL and @index will have a value less than or equal to max.
*
* xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have
* to handle your own locking with xas_for_each(), and if you have to unlock
* after each iteration, it will also end up being O(n.log(n)).
* xa_for_each_start() will spin if it hits a retry entry; if you intend to
* see retry entries, you should use the xas_for_each() iterator instead.
* The xas_for_each() iterator will expand into more inline code than
* xa_for_each_start().
*
* Context: Any context. Takes and releases the RCU lock.
*/
#define xa_for_each_start(xa, index, entry, start) \
for (index = start, \
entry = xa_find(xa, &index, ULONG_MAX, XA_PRESENT); \
entry; \
entry = xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT))
/**
* xa_for_each() - Iterate over present entries in an XArray.
* @xa: XArray.
* @index: Index of @entry.
* @entry: Entry retrieved from array.
*
* During the iteration, @entry will have the value of the entry stored
* in @xa at @index. You may modify @index during the iteration if you want
* to skip or reprocess indices. It is safe to modify the array during the
* iteration. At the end of the iteration, @entry will be set to NULL and
* @index will have a value less than or equal to max.
*
* xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have
* to handle your own locking with xas_for_each(), and if you have to unlock
* after each iteration, it will also end up being O(n.log(n)). xa_for_each()
* will spin if it hits a retry entry; if you intend to see retry entries,
* you should use the xas_for_each() iterator instead. The xas_for_each()
* iterator will expand into more inline code than xa_for_each().
*
* Context: Any context. Takes and releases the RCU lock.
*/
#define xa_for_each(xa, index, entry) \
xa_for_each_start(xa, index, entry, 0)
/**
* xa_for_each_marked() - Iterate over marked entries in an XArray.
* @xa: XArray.
* @index: Index of @entry.
* @entry: Entry retrieved from array.
* @filter: Selection criterion.
*
* During the iteration, @entry will have the value of the entry stored
* in @xa at @index. The iteration will skip all entries in the array
* which do not match @filter. You may modify @index during the iteration
* if you want to skip or reprocess indices. It is safe to modify the array
* during the iteration. At the end of the iteration, @entry will be set to
* NULL and @index will have a value less than or equal to max.
*
* xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
* You have to handle your own locking with xas_for_each(), and if you have
* to unlock after each iteration, it will also end up being O(n.log(n)).
* xa_for_each_marked() will spin if it hits a retry entry; if you intend to
* see retry entries, you should use the xas_for_each_marked() iterator
* instead. The xas_for_each_marked() iterator will expand into more inline
* code than xa_for_each_marked().
*
* Context: Any context. Takes and releases the RCU lock.
*/
#define xa_for_each_marked(xa, index, entry, filter) \
for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
#define xa_trylock(xa) spin_trylock(&(xa)->xa_lock)
#define xa_lock(xa) spin_lock(&(xa)->xa_lock)
#define xa_unlock(xa) spin_unlock(&(xa)->xa_lock)
#define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock)
#define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock)
#define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock)
#define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock)
#define xa_lock_irqsave(xa, flags) \
spin_lock_irqsave(&(xa)->xa_lock, flags)
#define xa_unlock_irqrestore(xa, flags) \
spin_unlock_irqrestore(&(xa)->xa_lock, flags)
/*
* Versions of the normal API which require the caller to hold the
* xa_lock. If the GFP flags allow it, they will drop the lock to
* allocate memory, then reacquire it afterwards. These functions
* may also re-enable interrupts if the XArray flags indicate the
* locking should be interrupt safe.
*/
void *__xa_erase(struct xarray *, unsigned long index);
void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
void *entry, gfp_t);
int __must_check __xa_insert(struct xarray *, unsigned long index,
void *entry, gfp_t);
int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
struct xa_limit, gfp_t);
int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
struct xa_limit, u32 *next, gfp_t);
void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
/**
* xa_store_bh() - Store this entry in the XArray.
* @xa: XArray.
* @index: Index into array.
* @entry: New entry.
* @gfp: Memory allocation flags.
*
* This function is like calling xa_store() except it disables softirqs
* while holding the array lock.
*
* Context: Any context. Takes and releases the xa_lock while
* disabling softirqs.
* Return: The entry which used to be at this index.
*/
static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
void *entry, gfp_t gfp)
{
void *curr;
xa_lock_bh(xa);
curr = __xa_store(xa, index, entry, gfp);
xa_unlock_bh(xa);
return curr;
}
/**
* xa_store_irq() - Store this entry in the XArray.
* @xa: XArray.
* @index: Index into array.
* @entry: New entry.
* @gfp: Memory allocation flags.
*
* This function is like calling xa_store() except it disables interrupts
* while holding the array lock.
*
* Context: Process context. Takes and releases the xa_lock while
* disabling interrupts.
* Return: The entry which used to be at this index.
*/
static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
void *entry, gfp_t gfp)
{
void *curr;
xa_lock_irq(xa);
curr = __xa_store(xa, index, entry, gfp);
xa_unlock_irq(xa);
return curr;
}
/**
* xa_erase_bh() - Erase this entry from the XArray.
* @xa: XArray.
* @index: Index of entry.
*
* After this function returns, loading from @index will return %NULL.
* If the index is part of a multi-index entry, all indices will be erased
* and none of the entries will be part of a multi-index entry.
*
* Context: Any context. Takes and releases the xa_lock while
* disabling softirqs.
* Return: The entry which used to be at this index.
*/
static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
{
void *entry;
xa_lock_bh(xa);
entry = __xa_erase(xa, index);
xa_unlock_bh(xa);
return entry;
}
/**
* xa_erase_irq() - Erase this entry from the XArray.
* @xa: XArray.
* @index: Index of entry.
*
* After this function returns, loading from @index will return %NULL.
* If the index is part of a multi-index entry, all indices will be erased
* and none of the entries will be part of a multi-index entry.
*
* Context: Process context. Takes and releases the xa_lock while
* disabling interrupts.
* Return: The entry which used to be at this index.
*/
static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
{
void *entry;
xa_lock_irq(xa);
entry = __xa_erase(xa, index);
xa_unlock_irq(xa);
return entry;
}
/**
* xa_cmpxchg() - Conditionally replace an entry in the XArray.
* @xa: XArray.
* @index: Index into array.
* @old: Old value to test against.
* @entry: New value to place in array.
* @gfp: Memory allocation flags.
*
* If the entry at @index is the same as @old, replace it with @entry.
* If the return value is equal to @old, then the exchange was successful.
*
* Context: Any context. Takes and releases the xa_lock. May sleep
* if the @gfp flags permit.
* Return: The old value at this index or xa_err() if an error happened.
*/
static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
void *old, void *entry, gfp_t gfp)
{
void *curr;
xa_lock(xa);
curr = __xa_cmpxchg(xa, index, old, entry, gfp);
xa_unlock(xa);
return curr;
}
/**
* xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
* @xa: XArray.
* @index: Index into array.
* @old: Old value to test against.
* @entry: New value to place in array.
* @gfp: Memory allocation flags.
*
* This function is like calling xa_cmpxchg() except it disables softirqs
* while holding the array lock.
*
* Context: Any context. Takes and releases the xa_lock while
* disabling softirqs. May sleep if the @gfp flags permit.
* Return: The old value at this index or xa_err() if an error happened.
*/
static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
void *old, void *entry, gfp_t gfp)
{
void *curr;
xa_lock_bh(xa);
curr = __xa_cmpxchg(xa, index, old, entry, gfp);
xa_unlock_bh(xa);
return curr;
}
/**
* xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
* @xa: XArray.
* @index: Index into array.
* @old: Old value to test against.
* @entry: New value to place in array.
* @gfp: Memory allocation flags.
*
* This function is like calling xa_cmpxchg() except it disables interrupts
* while holding the array lock.
*
* Context: Process context. Takes and releases the xa_lock while
* disabling interrupts. May sleep if the @gfp flags permit.
* Return: The old value at this index or xa_err() if an error happened.
*/
static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
void *old, void *entry, gfp_t gfp)
{
void *curr;
xa_lock_irq(xa);
curr = __xa_cmpxchg(xa, index, old, entry, gfp);
xa_unlock_irq(xa);
return curr;
}
/**
* xa_insert() - Store this entry in the XArray unless another entry is
* already present.
* @xa: XArray.
* @index: Index into array.
* @entry: New entry.
* @gfp: Memory allocation flags.
*
* Inserting a NULL entry will store a reserved entry (like xa_reserve())
* if no entry is present. Inserting will fail if a reserved entry is
* present, even though loading from this index will return NULL.
*
* Context: Any context. Takes and releases the xa_lock. May sleep if
* the @gfp flags permit.
* Return: 0 if the store succeeded. -EBUSY if another entry was present.
* -ENOMEM if memory could not be allocated.
*/
static inline int __must_check xa_insert(struct xarray *xa,
unsigned long index, void *entry, gfp_t gfp)
{
int err;
xa_lock(xa);
err = __xa_insert(xa, index, entry, gfp);
xa_unlock(xa);
return err;
}
/**
* xa_insert_bh() - Store this entry in the XArray unless another entry is
* already present.
* @xa: XArray.
* @index: Index into array.
* @entry: New entry.
* @gfp: Memory allocation flags.
*
* Inserting a NULL entry will store a reserved entry (like xa_reserve())
* if no entry is present. Inserting will fail if a reserved entry is
* present, even though loading from this index will return NULL.
*
* Context: Any context. Takes and releases the xa_lock while
* disabling softirqs. May sleep if the @gfp flags permit.
* Return: 0 if the store succeeded. -EBUSY if another entry was present.
* -ENOMEM if memory could not be allocated.
*/
static inline int __must_check xa_insert_bh(struct xarray *xa,
unsigned long index, void *entry, gfp_t gfp)
{
int err;
xa_lock_bh(xa);
err = __xa_insert(xa, index, entry, gfp);
xa_unlock_bh(xa);
return err;
}
/**
* xa_insert_irq() - Store this entry in the XArray unless another entry is
* already present.
* @xa: XArray.
* @index: Index into array.
* @entry: New entry.
* @gfp: Memory allocation flags.
*
* Inserting a NULL entry will store a reserved entry (like xa_reserve())
* if no entry is present. Inserting will fail if a reserved entry is
* present, even though loading from this index will return NULL.
*
* Context: Process context. Takes and releases the xa_lock while
* disabling interrupts. May sleep if the @gfp flags permit.
* Return: 0 if the store succeeded. -EBUSY if another entry was present.
* -ENOMEM if memory could not be allocated.
*/
static inline int __must_check xa_insert_irq(struct xarray *xa,
unsigned long index, void *entry, gfp_t gfp)
{
int err;
xa_lock_irq(xa);
err = __xa_insert(xa, index, entry, gfp);
xa_unlock_irq(xa);
return err;
}
/**
* xa_alloc() - Find somewhere to store this entry in the XArray.
* @xa: XArray.
* @id: Pointer to ID.
* @entry: New entry.
* @limit: Range of ID to allocate.
* @gfp: Memory allocation flags.
*
* Finds an empty entry in @xa between @limit.min and @limit.max,
* stores the index into the @id pointer, then stores the entry at
* that index. A concurrent lookup will not see an uninitialised @id.
*
* Context: Any context. Takes and releases the xa_lock. May sleep if
* the @gfp flags permit.
* Return: 0 on success, -ENOMEM if memory could not be allocated or
* -EBUSY if there are no free entries in @limit.
*/
static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
void *entry, struct xa_limit limit, gfp_t gfp)
{
int err;
xa_lock(xa);
err = __xa_alloc(xa, id, entry, limit, gfp);
xa_unlock(xa);
return err;
}
/**
* xa_alloc_bh() - Find somewhere to store this entry in the XArray.
* @xa: XArray.
* @id: Pointer to ID.
* @entry: New entry.
* @limit: Range of ID to allocate.
* @gfp: Memory allocation flags.
*
* Finds an empty entry in @xa between @limit.min and @limit.max,
* stores the index into the @id pointer, then stores the entry at
* that index. A concurrent lookup will not see an uninitialised @id.
*
* Context: Any context. Takes and releases the xa_lock while
* disabling softirqs. May sleep if the @gfp flags permit.
* Return: 0 on success, -ENOMEM if memory could not be allocated or
* -EBUSY if there are no free entries in @limit.
*/
static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
void *entry, struct xa_limit limit, gfp_t gfp)
{
int err;
xa_lock_bh(xa);
err = __xa_alloc(xa, id, entry, limit, gfp);
xa_unlock_bh(xa);
return err;
}
/**
* xa_alloc_irq() - Find somewhere to store this entry in the XArray.
* @xa: XArray.
* @id: Pointer to ID.
* @entry: New entry.
* @limit: Range of ID to allocate.
* @gfp: Memory allocation flags.
*
* Finds an empty entry in @xa between @limit.min and @limit.max,
* stores the index into the @id pointer, then stores the entry at
* that index. A concurrent lookup will not see an uninitialised @id.
*
* Context: Process context. Takes and releases the xa_lock while
* disabling interrupts. May sleep if the @gfp flags permit.
* Return: 0 on success, -ENOMEM if memory could not be allocated or
* -EBUSY if there are no free entries in @limit.
*/
static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
void *entry, struct xa_limit limit, gfp_t gfp)
{
int err;
xa_lock_irq(xa);
err = __xa_alloc(xa, id, entry, limit, gfp);
xa_unlock_irq(xa);
return err;
}
/**
* xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
* @xa: XArray.
* @id: Pointer to ID.
* @entry: New entry.
* @limit: Range of allocated ID.
* @next: Pointer to next ID to allocate.
* @gfp: Memory allocation flags.
*
* Finds an empty entry in @xa between @limit.min and @limit.max,
* stores the index into the @id pointer, then stores the entry at
* that index. A concurrent lookup will not see an uninitialised @id.
* The search for an empty entry will start at @next and will wrap
* around if necessary.
*
* Context: Any context. Takes and releases the xa_lock. May sleep if
* the @gfp flags permit.
* Return: 0 if the allocation succeeded without wrapping. 1 if the
* allocation succeeded after wrapping, -ENOMEM if memory could not be
* allocated or -EBUSY if there are no free entries in @limit.
*/
static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
struct xa_limit limit, u32 *next, gfp_t gfp)
{
int err;
xa_lock(xa);
err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
xa_unlock(xa);
return err;
}
/**
* xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
* @xa: XArray.
* @id: Pointer to ID.
* @entry: New entry.
* @limit: Range of allocated ID.
* @next: Pointer to next ID to allocate.
* @gfp: Memory allocation flags.
*
* Finds an empty entry in @xa between @limit.min and @limit.max,
* stores the index into the @id pointer, then stores the entry at
* that index. A concurrent lookup will not see an uninitialised @id.
* The search for an empty entry will start at @next and will wrap
* around if necessary.
*
* Context: Any context. Takes and releases the xa_lock while
* disabling softirqs. May sleep if the @gfp flags permit.
* Return: 0 if the allocation succeeded without wrapping. 1 if the
* allocation succeeded after wrapping, -ENOMEM if memory could not be
* allocated or -EBUSY if there are no free entries in @limit.
*/
static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
struct xa_limit limit, u32 *next, gfp_t gfp)
{
int err;
xa_lock_bh(xa);
err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
xa_unlock_bh(xa);
return err;
}
/**
* xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
* @xa: XArray.
* @id: Pointer to ID.
* @entry: New entry.
* @limit: Range of allocated ID.
* @next: Pointer to next ID to allocate.
* @gfp: Memory allocation flags.
*
* Finds an empty entry in @xa between @limit.min and @limit.max,
* stores the index into the @id pointer, then stores the entry at
* that index. A concurrent lookup will not see an uninitialised @id.
* The search for an empty entry will start at @next and will wrap
* around if necessary.
*
* Context: Process context. Takes and releases the xa_lock while
* disabling interrupts. May sleep if the @gfp flags permit.
* Return: 0 if the allocation succeeded without wrapping. 1 if the
* allocation succeeded after wrapping, -ENOMEM if memory could not be
* allocated or -EBUSY if there are no free entries in @limit.
*/
static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
struct xa_limit limit, u32 *next, gfp_t gfp)
{
int err;
xa_lock_irq(xa);
err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
xa_unlock_irq(xa);
return err;
}
/**
* xa_reserve() - Reserve this index in the XArray.
* @xa: XArray.
* @index: Index into array.
* @gfp: Memory allocation flags.
*
* Ensures there is somewhere to store an entry at @index in the array.
* If there is already something stored at @index, this function does
* nothing. If there was nothing there, the entry is marked as reserved.
* Loading from a reserved entry returns a %NULL pointer.
*
* If you do not use the entry that you have reserved, call xa_release()
* or xa_erase() to free any unnecessary memory.
*
* Context: Any context. Takes and releases the xa_lock.
* May sleep if the @gfp flags permit.
* Return: 0 if the reservation succeeded or -ENOMEM if it failed.
*/
static inline __must_check
int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
{
return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
}
/**
* xa_reserve_bh() - Reserve this index in the XArray.
* @xa: XArray.
* @index: Index into array.
* @gfp: Memory allocation flags.
*
* A softirq-disabling version of xa_reserve().
*
* Context: Any context. Takes and releases the xa_lock while
* disabling softirqs.
* Return: 0 if the reservation succeeded or -ENOMEM if it failed.
*/
static inline __must_check
int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
{
return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
}
/**
* xa_reserve_irq() - Reserve this index in the XArray.
* @xa: XArray.
* @index: Index into array.
* @gfp: Memory allocation flags.
*
* An interrupt-disabling version of xa_reserve().
*
* Context: Process context. Takes and releases the xa_lock while
* disabling interrupts.
* Return: 0 if the reservation succeeded or -ENOMEM if it failed.
*/
static inline __must_check
int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
{
return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
}
/**
* xa_release() - Release a reserved entry.
* @xa: XArray.
* @index: Index of entry.
*
* After calling xa_reserve(), you can call this function to release the
* reservation. If the entry at @index has been stored to, this function
* will do nothing.
*/
static inline void xa_release(struct xarray *xa, unsigned long index)
{
xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
}
/* Everything below here is the Advanced API. Proceed with caution. */
/*
* The xarray is constructed out of a set of 'chunks' of pointers. Choosing
* the best chunk size requires some tradeoffs. A power of two recommends
* itself so that we can walk the tree based purely on shifts and masks.
* Generally, the larger the better; as the number of slots per level of the
* tree increases, the less tall the tree needs to be. But that needs to be
* balanced against the memory consumption of each node. On a 64-bit system,
* xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we
* doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
*/
#ifndef XA_CHUNK_SHIFT
#define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
#endif
#define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT)
#define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1)
#define XA_MAX_MARKS 3
#define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
/*
* @count is the count of every non-NULL element in the ->slots array
* whether that is a value entry, a retry entry, a user pointer,
* a sibling entry or a pointer to the next level of the tree.
* @nr_values is the count of every element in ->slots which is
* either a value entry or a sibling of a value entry.
*/
struct xa_node {
unsigned char shift; /* Bits remaining in each slot */
unsigned char offset; /* Slot offset in parent */
unsigned char count; /* Total entry count */
unsigned char nr_values; /* Value entry count */
struct xa_node __rcu *parent; /* NULL at top of tree */
struct xarray *array; /* The array we belong to */
union {
struct list_head private_list; /* For tree user */
struct rcu_head rcu_head; /* Used when freeing node */
};
void __rcu *slots[XA_CHUNK_SIZE];
union {
unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS];
unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS];
};
};
void xa_dump(const struct xarray *);
void xa_dump_node(const struct xa_node *);
#ifdef XA_DEBUG
#define XA_BUG_ON(xa, x) do { \
if (x) { \
xa_dump(xa); \
BUG(); \
} \
} while (0)
#define XA_NODE_BUG_ON(node, x) do { \
if (x) { \
if (node) xa_dump_node(node); \
BUG(); \
} \
} while (0)
#else
#define XA_BUG_ON(xa, x) do { } while (0)
#define XA_NODE_BUG_ON(node, x) do { } while (0)
#endif
/* Private */
static inline void *xa_head(const struct xarray *xa)
{
return rcu_dereference_check(xa->xa_head,
lockdep_is_held(&xa->xa_lock));
}
/* Private */
static inline void *xa_head_locked(const struct xarray *xa)
{
return rcu_dereference_protected(xa->xa_head,
lockdep_is_held(&xa->xa_lock));
}
/* Private */
static inline void *xa_entry(const struct xarray *xa,
const struct xa_node *node, unsigned int offset)
{
XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
return rcu_dereference_check(node->slots[offset],
lockdep_is_held(&xa->xa_lock));
}
/* Private */
static inline void *xa_entry_locked(const struct xarray *xa,
const struct xa_node *node, unsigned int offset)
{
XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
return rcu_dereference_protected(node->slots[offset],
lockdep_is_held(&xa->xa_lock));
}
/* Private */
static inline struct xa_node *xa_parent(const struct xarray *xa,
const struct xa_node *node)
{
return rcu_dereference_check(node->parent,
lockdep_is_held(&xa->xa_lock));
}
/* Private */
static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
const struct xa_node *node)
{
return rcu_dereference_protected(node->parent,
lockdep_is_held(&xa->xa_lock));
}
/* Private */
static inline void *xa_mk_node(const struct xa_node *node)
{
return (void *)((unsigned long)node | 2);
}
/* Private */
static inline struct xa_node *xa_to_node(const void *entry)
{
return (struct xa_node *)((unsigned long)entry - 2);
}
/* Private */
static inline bool xa_is_node(const void *entry)
{
return xa_is_internal(entry) && (unsigned long)entry > 4096;
}
/* Private */
static inline void *xa_mk_sibling(unsigned int offset)
{
return xa_mk_internal(offset);
}
/* Private */
static inline unsigned long xa_to_sibling(const void *entry)
{
return xa_to_internal(entry);
}
/**
* xa_is_sibling() - Is the entry a sibling entry?
* @entry: Entry retrieved from the XArray
*
* Return: %true if the entry is a sibling entry.
*/
static inline bool xa_is_sibling(const void *entry)
{
return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
(entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
}
#define XA_RETRY_ENTRY xa_mk_internal(256)
/**
* xa_is_retry() - Is the entry a retry entry?
* @entry: Entry retrieved from the XArray
*
* Return: %true if the entry is a retry entry.
*/
static inline bool xa_is_retry(const void *entry)
{
return unlikely(entry == XA_RETRY_ENTRY);
}
/**
* xa_is_advanced() - Is the entry only permitted for the advanced API?
* @entry: Entry to be stored in the XArray.
*
* Return: %true if the entry cannot be stored by the normal API.
*/
static inline bool xa_is_advanced(const void *entry)
{
return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
}
/**
* typedef xa_update_node_t - A callback function from the XArray.
* @node: The node which is being processed
*
* This function is called every time the XArray updates the count of
* present and value entries in a node. It allows advanced users to
* maintain the private_list in the node.
*
* Context: The xa_lock is held and interrupts may be disabled.
* Implementations should not drop the xa_lock, nor re-enable
* interrupts.
*/
typedef void (*xa_update_node_t)(struct xa_node *node);
/*
* The xa_state is opaque to its users. It contains various different pieces
* of state involved in the current operation on the XArray. It should be
* declared on the stack and passed between the various internal routines.
* The various elements in it should not be accessed directly, but only
* through the provided accessor functions. The below documentation is for
* the benefit of those working on the code, not for users of the XArray.
*
* @xa_node usually points to the xa_node containing the slot we're operating
* on (and @xa_offset is the offset in the slots array). If there is a
* single entry in the array at index 0, there are no allocated xa_nodes to
* point to, and so we store %NULL in @xa_node. @xa_node is set to
* the value %XAS_RESTART if the xa_state is not walked to the correct
* position in the tree of nodes for this operation. If an error occurs
* during an operation, it is set to an %XAS_ERROR value. If we run off the
* end of the allocated nodes, it is set to %XAS_BOUNDS.
*/
struct xa_state {
struct xarray *xa;
unsigned long xa_index;
unsigned char xa_shift;
unsigned char xa_sibs;
unsigned char xa_offset;
unsigned char xa_pad; /* Helps gcc generate better code */
struct xa_node *xa_node;
struct xa_node *xa_alloc;
xa_update_node_t xa_update;
};
/*
* We encode errnos in the xas->xa_node. If an error has happened, we need to
* drop the lock to fix it, and once we've done so the xa_state is invalid.
*/
#define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
#define XAS_BOUNDS ((struct xa_node *)1UL)
#define XAS_RESTART ((struct xa_node *)3UL)
#define __XA_STATE(array, index, shift, sibs) { \
.xa = array, \
.xa_index = index, \
.xa_shift = shift, \
.xa_sibs = sibs, \
.xa_offset = 0, \
.xa_pad = 0, \
.xa_node = XAS_RESTART, \
.xa_alloc = NULL, \
.xa_update = NULL \
}
/**
* XA_STATE() - Declare an XArray operation state.
* @name: Name of this operation state (usually xas).
* @array: Array to operate on.
* @index: Initial index of interest.
*
* Declare and initialise an xa_state on the stack.
*/
#define XA_STATE(name, array, index) \
struct xa_state name = __XA_STATE(array, index, 0, 0)
/**
* XA_STATE_ORDER() - Declare an XArray operation state.
* @name: Name of this operation state (usually xas).
* @array: Array to operate on.
* @index: Initial index of interest.
* @order: Order of entry.
*
* Declare and initialise an xa_state on the stack. This variant of
* XA_STATE() allows you to specify the 'order' of the element you
* want to operate on.`
*/
#define XA_STATE_ORDER(name, array, index, order) \
struct xa_state name = __XA_STATE(array, \
(index >> order) << order, \
order - (order % XA_CHUNK_SHIFT), \
(1U << (order % XA_CHUNK_SHIFT)) - 1)
#define xas_marked(xas, mark) xa_marked((xas)->xa, (mark))
#define xas_trylock(xas) xa_trylock((xas)->xa)
#define xas_lock(xas) xa_lock((xas)->xa)
#define xas_unlock(xas) xa_unlock((xas)->xa)
#define xas_lock_bh(xas) xa_lock_bh((xas)->xa)
#define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa)
#define xas_lock_irq(xas) xa_lock_irq((xas)->xa)
#define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa)
#define xas_lock_irqsave(xas, flags) \
xa_lock_irqsave((xas)->xa, flags)
#define xas_unlock_irqrestore(xas, flags) \
xa_unlock_irqrestore((xas)->xa, flags)
/**
* xas_error() - Return an errno stored in the xa_state.
* @xas: XArray operation state.
*
* Return: 0 if no error has been noted. A negative errno if one has.
*/
static inline int xas_error(const struct xa_state *xas)
{
return xa_err(xas->xa_node);
}
/**
* xas_set_err() - Note an error in the xa_state.
* @xas: XArray operation state.
* @err: Negative error number.
*
* Only call this function with a negative @err; zero or positive errors
* will probably not behave the way you think they should. If you want
* to clear the error from an xa_state, use xas_reset().
*/
static inline void xas_set_err(struct xa_state *xas, long err)
{
xas->xa_node = XA_ERROR(err);
}
/**
* xas_invalid() - Is the xas in a retry or error state?
* @xas: XArray operation state.
*
* Return: %true if the xas cannot be used for operations.
*/
static inline bool xas_invalid(const struct xa_state *xas)
{
return (unsigned long)xas->xa_node & 3;
}
/**
* xas_valid() - Is the xas a valid cursor into the array?
* @xas: XArray operation state.
*
* Return: %true if the xas can be used for operations.
*/
static inline bool xas_valid(const struct xa_state *xas)
{
return !xas_invalid(xas);
}
/**
* xas_is_node() - Does the xas point to a node?
* @xas: XArray operation state.
*
* Return: %true if the xas currently references a node.
*/
static inline bool xas_is_node(const struct xa_state *xas)
{
return xas_valid(xas) && xas->xa_node;
}
/* True if the pointer is something other than a node */
static inline bool xas_not_node(struct xa_node *node)
{
return ((unsigned long)node & 3) || !node;
}
/* True if the node represents RESTART or an error */
static inline bool xas_frozen(struct xa_node *node)
{
return (unsigned long)node & 2;
}
/* True if the node represents head-of-tree, RESTART or BOUNDS */
static inline bool xas_top(struct xa_node *node)
{
return node <= XAS_RESTART;
}
/**
* xas_reset() - Reset an XArray operation state.
* @xas: XArray operation state.
*
* Resets the error or walk state of the @xas so future walks of the
* array will start from the root. Use this if you have dropped the
* xarray lock and want to reuse the xa_state.
*
* Context: Any context.
*/
static inline void xas_reset(struct xa_state *xas)
{
xas->xa_node = XAS_RESTART;
}
/**
* xas_retry() - Retry the operation if appropriate.
* @xas: XArray operation state.
* @entry: Entry from xarray.
*
* The advanced functions may sometimes return an internal entry, such as
* a retry entry or a zero entry. This function sets up the @xas to restart
* the walk from the head of the array if needed.
*
* Context: Any context.
* Return: true if the operation needs to be retried.
*/
static inline bool xas_retry(struct xa_state *xas, const void *entry)
{
if (xa_is_zero(entry))
return true;
if (!xa_is_retry(entry))
return false;
xas_reset(xas);
return true;
}
void *xas_load(struct xa_state *);
void *xas_store(struct xa_state *, void *entry);
void *xas_find(struct xa_state *, unsigned long max);
void *xas_find_conflict(struct xa_state *);
bool xas_get_mark(const struct xa_state *, xa_mark_t);
void xas_set_mark(const struct xa_state *, xa_mark_t);
void xas_clear_mark(const struct xa_state *, xa_mark_t);
void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
void xas_init_marks(const struct xa_state *);
bool xas_nomem(struct xa_state *, gfp_t);
void xas_pause(struct xa_state *);
void xas_create_range(struct xa_state *);
/**
* xas_reload() - Refetch an entry from the xarray.
* @xas: XArray operation state.
*
* Use this function to check that a previously loaded entry still has
* the same value. This is useful for the lockless pagecache lookup where
* we walk the array with only the RCU lock to protect us, lock the page,
* then check that the page hasn't moved since we looked it up.
*
* The caller guarantees that @xas is still valid. If it may be in an
* error or restart state, call xas_load() instead.
*
* Return: The entry at this location in the xarray.
*/
static inline void *xas_reload(struct xa_state *xas)
{
struct xa_node *node = xas->xa_node;
if (node)
return xa_entry(xas->xa, node, xas->xa_offset);
return xa_head(xas->xa);
}
/**
* xas_set() - Set up XArray operation state for a different index.
* @xas: XArray operation state.
* @index: New index into the XArray.
*
* Move the operation state to refer to a different index. This will
* have the effect of starting a walk from the top; see xas_next()
* to move to an adjacent index.
*/
static inline void xas_set(struct xa_state *xas, unsigned long index)
{
xas->xa_index = index;
xas->xa_node = XAS_RESTART;
}
/**
* xas_set_order() - Set up XArray operation state for a multislot entry.
* @xas: XArray operation state.
* @index: Target of the operation.
* @order: Entry occupies 2^@order indices.
*/
static inline void xas_set_order(struct xa_state *xas, unsigned long index,
unsigned int order)
{
#ifdef CONFIG_XARRAY_MULTI
xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
xas->xa_node = XAS_RESTART;
#else
BUG_ON(order > 0);
xas_set(xas, index);
#endif
}
/**
* xas_set_update() - Set up XArray operation state for a callback.
* @xas: XArray operation state.
* @update: Function to call when updating a node.
*
* The XArray can notify a caller after it has updated an xa_node.
* This is advanced functionality and is only needed by the page cache.
*/
static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
{
xas->xa_update = update;
}
/**
* xas_next_entry() - Advance iterator to next present entry.
* @xas: XArray operation state.
* @max: Highest index to return.
*
* xas_next_entry() is an inline function to optimise xarray traversal for
* speed. It is equivalent to calling xas_find(), and will call xas_find()
* for all the hard cases.
*
* Return: The next present entry after the one currently referred to by @xas.
*/
static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
{
struct xa_node *node = xas->xa_node;
void *entry;
if (unlikely(xas_not_node(node) || node->shift ||
xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
return xas_find(xas, max);
do {
if (unlikely(xas->xa_index >= max))
return xas_find(xas, max);
if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
return xas_find(xas, max);
entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
if (unlikely(xa_is_internal(entry)))
return xas_find(xas, max);
xas->xa_offset++;
xas->xa_index++;
} while (!entry);
return entry;
}
/* Private */
static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
xa_mark_t mark)
{
unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
unsigned int offset = xas->xa_offset;
if (advance)
offset++;
if (XA_CHUNK_SIZE == BITS_PER_LONG) {
if (offset < XA_CHUNK_SIZE) {
unsigned long data = *addr & (~0UL << offset);
if (data)
return __ffs(data);
}
return XA_CHUNK_SIZE;
}
return find_next_bit(addr, XA_CHUNK_SIZE, offset);
}
/**
* xas_next_marked() - Advance iterator to next marked entry.
* @xas: XArray operation state.
* @max: Highest index to return.
* @mark: Mark to search for.
*
* xas_next_marked() is an inline function to optimise xarray traversal for
* speed. It is equivalent to calling xas_find_marked(), and will call
* xas_find_marked() for all the hard cases.
*
* Return: The next marked entry after the one currently referred to by @xas.
*/
static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
xa_mark_t mark)
{
struct xa_node *node = xas->xa_node;
void *entry;
unsigned int offset;
if (unlikely(xas_not_node(node) || node->shift))
return xas_find_marked(xas, max, mark);
offset = xas_find_chunk(xas, true, mark);
xas->xa_offset = offset;
xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
if (xas->xa_index > max)
return NULL;
if (offset == XA_CHUNK_SIZE)
return xas_find_marked(xas, max, mark);
entry = xa_entry(xas->xa, node, offset);
if (!entry)
return xas_find_marked(xas, max, mark);
return entry;
}
/*
* If iterating while holding a lock, drop the lock and reschedule
* every %XA_CHECK_SCHED loops.
*/
enum {
XA_CHECK_SCHED = 4096,
};
/**
* xas_for_each() - Iterate over a range of an XArray.
* @xas: XArray operation state.
* @entry: Entry retrieved from the array.
* @max: Maximum index to retrieve from array.
*
* The loop body will be executed for each entry present in the xarray
* between the current xas position and @max. @entry will be set to
* the entry retrieved from the xarray. It is safe to delete entries
* from the array in the loop body. You should hold either the RCU lock
* or the xa_lock while iterating. If you need to drop the lock, call
* xas_pause() first.
*/
#define xas_for_each(xas, entry, max) \
for (entry = xas_find(xas, max); entry; \
entry = xas_next_entry(xas, max))
/**
* xas_for_each_marked() - Iterate over a range of an XArray.
* @xas: XArray operation state.
* @entry: Entry retrieved from the array.
* @max: Maximum index to retrieve from array.
* @mark: Mark to search for.
*
* The loop body will be executed for each marked entry in the xarray
* between the current xas position and @max. @entry will be set to
* the entry retrieved from the xarray. It is safe to delete entries
* from the array in the loop body. You should hold either the RCU lock
* or the xa_lock while iterating. If you need to drop the lock, call
* xas_pause() first.
*/
#define xas_for_each_marked(xas, entry, max, mark) \
for (entry = xas_find_marked(xas, max, mark); entry; \
entry = xas_next_marked(xas, max, mark))
/**
* xas_for_each_conflict() - Iterate over a range of an XArray.
* @xas: XArray operation state.
* @entry: Entry retrieved from the array.
*
* The loop body will be executed for each entry in the XArray that lies
* within the range specified by @xas. If the loop completes successfully,
* any entries that lie in this range will be replaced by @entry. The caller
* may break out of the loop; if they do so, the contents of the XArray will
* be unchanged. The operation may fail due to an out of memory condition.
* The caller may also call xa_set_err() to exit the loop while setting an
* error to record the reason.
*/
#define xas_for_each_conflict(xas, entry) \
while ((entry = xas_find_conflict(xas)))
void *__xas_next(struct xa_state *);
void *__xas_prev(struct xa_state *);
/**
* xas_prev() - Move iterator to previous index.
* @xas: XArray operation state.
*
* If the @xas was in an error state, it will remain in an error state
* and this function will return %NULL. If the @xas has never been walked,
* it will have the effect of calling xas_load(). Otherwise one will be
* subtracted from the index and the state will be walked to the correct
* location in the array for the next operation.
*
* If the iterator was referencing index 0, this function wraps
* around to %ULONG_MAX.
*
* Return: The entry at the new index. This may be %NULL or an internal
* entry.
*/
static inline void *xas_prev(struct xa_state *xas)
{
struct xa_node *node = xas->xa_node;
if (unlikely(xas_not_node(node) || node->shift ||
xas->xa_offset == 0))
return __xas_prev(xas);
xas->xa_index--;
xas->xa_offset--;
return xa_entry(xas->xa, node, xas->xa_offset);
}
/**
* xas_next() - Move state to next index.
* @xas: XArray operation state.
*
* If the @xas was in an error state, it will remain in an error state
* and this function will return %NULL. If the @xas has never been walked,
* it will have the effect of calling xas_load(). Otherwise one will be
* added to the index and the state will be walked to the correct
* location in the array for the next operation.
*
* If the iterator was referencing index %ULONG_MAX, this function wraps
* around to 0.
*
* Return: The entry at the new index. This may be %NULL or an internal
* entry.
*/
static inline void *xas_next(struct xa_state *xas)
{
struct xa_node *node = xas->xa_node;
if (unlikely(xas_not_node(node) || node->shift ||
xas->xa_offset == XA_CHUNK_MASK))
return __xas_next(xas);
xas->xa_index++;
xas->xa_offset++;
return xa_entry(xas->xa, node, xas->xa_offset);
}
#endif /* _LINUX_XARRAY_H */