1
0
Fork 0
alistair23-linux/fs/fuse/inode.c

1083 lines
25 KiB
C
Raw Normal View History

[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
/*
FUSE: Filesystem in Userspace
Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
This program can be distributed under the terms of the GNU GPL.
See the file COPYING.
*/
#include "fuse_i.h"
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/parser.h>
#include <linux/statfs.h>
#include <linux/random.h>
#include <linux/sched.h>
#include <linux/exportfs.h>
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
MODULE_AUTHOR("Miklos Szeredi <miklos@szeredi.hu>");
MODULE_DESCRIPTION("Filesystem in Userspace");
MODULE_LICENSE("GPL");
static struct kmem_cache *fuse_inode_cachep;
struct list_head fuse_conn_list;
DEFINE_MUTEX(fuse_mutex);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
#define FUSE_SUPER_MAGIC 0x65735546
#define FUSE_DEFAULT_BLKSIZE 512
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
struct fuse_mount_data {
int fd;
unsigned rootmode;
unsigned user_id;
unsigned group_id;
unsigned fd_present:1;
unsigned rootmode_present:1;
unsigned user_id_present:1;
unsigned group_id_present:1;
unsigned flags;
unsigned max_read;
unsigned blksize;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
};
static struct inode *fuse_alloc_inode(struct super_block *sb)
{
struct inode *inode;
struct fuse_inode *fi;
inode = kmem_cache_alloc(fuse_inode_cachep, GFP_KERNEL);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
if (!inode)
return NULL;
fi = get_fuse_inode(inode);
fi->i_time = 0;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
fi->nodeid = 0;
fi->nlookup = 0;
fi->attr_version = 0;
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 01:54:41 -06:00
fi->writectr = 0;
INIT_LIST_HEAD(&fi->write_files);
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 01:54:41 -06:00
INIT_LIST_HEAD(&fi->queued_writes);
INIT_LIST_HEAD(&fi->writepages);
init_waitqueue_head(&fi->page_waitq);
fi->forget_req = fuse_request_alloc();
if (!fi->forget_req) {
kmem_cache_free(fuse_inode_cachep, inode);
return NULL;
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
return inode;
}
static void fuse_destroy_inode(struct inode *inode)
{
struct fuse_inode *fi = get_fuse_inode(inode);
BUG_ON(!list_empty(&fi->write_files));
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 01:54:41 -06:00
BUG_ON(!list_empty(&fi->queued_writes));
if (fi->forget_req)
fuse_request_free(fi->forget_req);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
kmem_cache_free(fuse_inode_cachep, inode);
}
void fuse_send_forget(struct fuse_conn *fc, struct fuse_req *req,
u64 nodeid, u64 nlookup)
{
struct fuse_forget_in *inarg = &req->misc.forget_in;
inarg->nlookup = nlookup;
req->in.h.opcode = FUSE_FORGET;
req->in.h.nodeid = nodeid;
req->in.numargs = 1;
req->in.args[0].size = sizeof(struct fuse_forget_in);
req->in.args[0].value = inarg;
fuse_request_send_noreply(fc, req);
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
static void fuse_clear_inode(struct inode *inode)
{
if (inode->i_sb->s_flags & MS_ACTIVE) {
struct fuse_conn *fc = get_fuse_conn(inode);
struct fuse_inode *fi = get_fuse_inode(inode);
fuse_send_forget(fc, fi->forget_req, fi->nodeid, fi->nlookup);
fi->forget_req = NULL;
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
}
static int fuse_remount_fs(struct super_block *sb, int *flags, char *data)
{
if (*flags & MS_MANDLOCK)
return -EINVAL;
return 0;
}
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 01:54:41 -06:00
void fuse_truncate(struct address_space *mapping, loff_t offset)
{
/* See vmtruncate() */
unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
truncate_inode_pages(mapping, offset);
unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
}
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 01:54:41 -06:00
void fuse_change_attributes_common(struct inode *inode, struct fuse_attr *attr,
u64 attr_valid)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
{
struct fuse_conn *fc = get_fuse_conn(inode);
struct fuse_inode *fi = get_fuse_inode(inode);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
fi->attr_version = ++fc->attr_version;
fi->i_time = attr_valid;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
inode->i_ino = attr->ino;
inode->i_mode = (inode->i_mode & S_IFMT) | (attr->mode & 07777);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
inode->i_nlink = attr->nlink;
inode->i_uid = attr->uid;
inode->i_gid = attr->gid;
inode->i_blocks = attr->blocks;
inode->i_atime.tv_sec = attr->atime;
inode->i_atime.tv_nsec = attr->atimensec;
inode->i_mtime.tv_sec = attr->mtime;
inode->i_mtime.tv_nsec = attr->mtimensec;
inode->i_ctime.tv_sec = attr->ctime;
inode->i_ctime.tv_nsec = attr->ctimensec;
if (attr->blksize != 0)
inode->i_blkbits = ilog2(attr->blksize);
else
inode->i_blkbits = inode->i_sb->s_blocksize_bits;
/*
* Don't set the sticky bit in i_mode, unless we want the VFS
* to check permissions. This prevents failures due to the
* check in may_delete().
*/
fi->orig_i_mode = inode->i_mode;
if (!(fc->flags & FUSE_DEFAULT_PERMISSIONS))
inode->i_mode &= ~S_ISVTX;
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 01:54:41 -06:00
}
void fuse_change_attributes(struct inode *inode, struct fuse_attr *attr,
u64 attr_valid, u64 attr_version)
{
struct fuse_conn *fc = get_fuse_conn(inode);
struct fuse_inode *fi = get_fuse_inode(inode);
loff_t oldsize;
spin_lock(&fc->lock);
if (attr_version != 0 && fi->attr_version > attr_version) {
spin_unlock(&fc->lock);
return;
}
fuse_change_attributes_common(inode, attr, attr_valid);
oldsize = inode->i_size;
i_size_write(inode, attr->size);
spin_unlock(&fc->lock);
if (S_ISREG(inode->i_mode) && oldsize != attr->size) {
if (attr->size < oldsize)
fuse_truncate(inode->i_mapping, attr->size);
invalidate_inode_pages2(inode->i_mapping);
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
}
static void fuse_init_inode(struct inode *inode, struct fuse_attr *attr)
{
inode->i_mode = attr->mode & S_IFMT;
inode->i_size = attr->size;
if (S_ISREG(inode->i_mode)) {
fuse_init_common(inode);
fuse_init_file_inode(inode);
} else if (S_ISDIR(inode->i_mode))
fuse_init_dir(inode);
else if (S_ISLNK(inode->i_mode))
fuse_init_symlink(inode);
else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
fuse_init_common(inode);
init_special_inode(inode, inode->i_mode,
new_decode_dev(attr->rdev));
} else
BUG();
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
}
static int fuse_inode_eq(struct inode *inode, void *_nodeidp)
{
u64 nodeid = *(u64 *) _nodeidp;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
if (get_node_id(inode) == nodeid)
return 1;
else
return 0;
}
static int fuse_inode_set(struct inode *inode, void *_nodeidp)
{
u64 nodeid = *(u64 *) _nodeidp;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
get_fuse_inode(inode)->nodeid = nodeid;
return 0;
}
struct inode *fuse_iget(struct super_block *sb, u64 nodeid,
int generation, struct fuse_attr *attr,
u64 attr_valid, u64 attr_version)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
{
struct inode *inode;
struct fuse_inode *fi;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
struct fuse_conn *fc = get_fuse_conn_super(sb);
retry:
inode = iget5_locked(sb, nodeid, fuse_inode_eq, fuse_inode_set, &nodeid);
if (!inode)
return NULL;
if ((inode->i_state & I_NEW)) {
inode->i_flags |= S_NOATIME|S_NOCMTIME;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
inode->i_generation = generation;
inode->i_data.backing_dev_info = &fc->bdi;
fuse_init_inode(inode, attr);
unlock_new_inode(inode);
} else if ((inode->i_mode ^ attr->mode) & S_IFMT) {
/* Inode has changed type, any I/O on the old should fail */
make_bad_inode(inode);
iput(inode);
goto retry;
}
fi = get_fuse_inode(inode);
spin_lock(&fc->lock);
fi->nlookup++;
spin_unlock(&fc->lock);
fuse_change_attributes(inode, attr, attr_valid, attr_version);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
return inode;
}
static void fuse_umount_begin(struct super_block *sb)
{
fuse_abort_conn(get_fuse_conn_super(sb));
}
static void fuse_send_destroy(struct fuse_conn *fc)
{
struct fuse_req *req = fc->destroy_req;
if (req && fc->conn_init) {
fc->destroy_req = NULL;
req->in.h.opcode = FUSE_DESTROY;
req->force = 1;
fuse_request_send(fc, req);
fuse_put_request(fc, req);
}
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
static void fuse_put_super(struct super_block *sb)
{
struct fuse_conn *fc = get_fuse_conn_super(sb);
fuse_send_destroy(fc);
spin_lock(&fc->lock);
fc->connected = 0;
fc->blocked = 0;
spin_unlock(&fc->lock);
/* Flush all readers on this fs */
kill_fasync(&fc->fasync, SIGIO, POLL_IN);
wake_up_all(&fc->waitq);
wake_up_all(&fc->blocked_waitq);
wake_up_all(&fc->reserved_req_waitq);
mutex_lock(&fuse_mutex);
list_del(&fc->entry);
fuse_ctl_remove_conn(fc);
mutex_unlock(&fuse_mutex);
fuse_conn_put(fc);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
}
static void convert_fuse_statfs(struct kstatfs *stbuf, struct fuse_kstatfs *attr)
{
stbuf->f_type = FUSE_SUPER_MAGIC;
stbuf->f_bsize = attr->bsize;
stbuf->f_frsize = attr->frsize;
stbuf->f_blocks = attr->blocks;
stbuf->f_bfree = attr->bfree;
stbuf->f_bavail = attr->bavail;
stbuf->f_files = attr->files;
stbuf->f_ffree = attr->ffree;
stbuf->f_namelen = attr->namelen;
/* fsid is left zero */
}
static int fuse_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct fuse_conn *fc = get_fuse_conn_super(sb);
struct fuse_req *req;
struct fuse_statfs_out outarg;
int err;
if (!fuse_allow_task(fc, current)) {
buf->f_type = FUSE_SUPER_MAGIC;
return 0;
}
req = fuse_get_req(fc);
if (IS_ERR(req))
return PTR_ERR(req);
memset(&outarg, 0, sizeof(outarg));
req->in.numargs = 0;
req->in.h.opcode = FUSE_STATFS;
req->in.h.nodeid = get_node_id(dentry->d_inode);
req->out.numargs = 1;
req->out.args[0].size =
fc->minor < 4 ? FUSE_COMPAT_STATFS_SIZE : sizeof(outarg);
req->out.args[0].value = &outarg;
fuse_request_send(fc, req);
err = req->out.h.error;
if (!err)
convert_fuse_statfs(buf, &outarg.st);
fuse_put_request(fc, req);
return err;
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
enum {
OPT_FD,
OPT_ROOTMODE,
OPT_USER_ID,
OPT_GROUP_ID,
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
OPT_DEFAULT_PERMISSIONS,
OPT_ALLOW_OTHER,
OPT_MAX_READ,
OPT_BLKSIZE,
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
OPT_ERR
};
static const match_table_t tokens = {
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
{OPT_FD, "fd=%u"},
{OPT_ROOTMODE, "rootmode=%o"},
{OPT_USER_ID, "user_id=%u"},
{OPT_GROUP_ID, "group_id=%u"},
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
{OPT_DEFAULT_PERMISSIONS, "default_permissions"},
{OPT_ALLOW_OTHER, "allow_other"},
{OPT_MAX_READ, "max_read=%u"},
{OPT_BLKSIZE, "blksize=%u"},
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
{OPT_ERR, NULL}
};
static int parse_fuse_opt(char *opt, struct fuse_mount_data *d, int is_bdev)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
{
char *p;
memset(d, 0, sizeof(struct fuse_mount_data));
d->max_read = ~0;
d->blksize = FUSE_DEFAULT_BLKSIZE;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
while ((p = strsep(&opt, ",")) != NULL) {
int token;
int value;
substring_t args[MAX_OPT_ARGS];
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case OPT_FD:
if (match_int(&args[0], &value))
return 0;
d->fd = value;
d->fd_present = 1;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
break;
case OPT_ROOTMODE:
if (match_octal(&args[0], &value))
return 0;
if (!fuse_valid_type(value))
return 0;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
d->rootmode = value;
d->rootmode_present = 1;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
break;
case OPT_USER_ID:
if (match_int(&args[0], &value))
return 0;
d->user_id = value;
d->user_id_present = 1;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
break;
case OPT_GROUP_ID:
if (match_int(&args[0], &value))
return 0;
d->group_id = value;
d->group_id_present = 1;
break;
case OPT_DEFAULT_PERMISSIONS:
d->flags |= FUSE_DEFAULT_PERMISSIONS;
break;
case OPT_ALLOW_OTHER:
d->flags |= FUSE_ALLOW_OTHER;
break;
case OPT_MAX_READ:
if (match_int(&args[0], &value))
return 0;
d->max_read = value;
break;
case OPT_BLKSIZE:
if (!is_bdev || match_int(&args[0], &value))
return 0;
d->blksize = value;
break;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
default:
return 0;
}
}
if (!d->fd_present || !d->rootmode_present ||
!d->user_id_present || !d->group_id_present)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
return 0;
return 1;
}
static int fuse_show_options(struct seq_file *m, struct vfsmount *mnt)
{
struct fuse_conn *fc = get_fuse_conn_super(mnt->mnt_sb);
seq_printf(m, ",user_id=%u", fc->user_id);
seq_printf(m, ",group_id=%u", fc->group_id);
if (fc->flags & FUSE_DEFAULT_PERMISSIONS)
seq_puts(m, ",default_permissions");
if (fc->flags & FUSE_ALLOW_OTHER)
seq_puts(m, ",allow_other");
if (fc->max_read != ~0)
seq_printf(m, ",max_read=%u", fc->max_read);
if (mnt->mnt_sb->s_bdev &&
mnt->mnt_sb->s_blocksize != FUSE_DEFAULT_BLKSIZE)
seq_printf(m, ",blksize=%lu", mnt->mnt_sb->s_blocksize);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
return 0;
}
int fuse_conn_init(struct fuse_conn *fc, struct super_block *sb)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
{
int err;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
memset(fc, 0, sizeof(*fc));
spin_lock_init(&fc->lock);
mutex_init(&fc->inst_mutex);
atomic_set(&fc->count, 1);
init_waitqueue_head(&fc->waitq);
init_waitqueue_head(&fc->blocked_waitq);
init_waitqueue_head(&fc->reserved_req_waitq);
INIT_LIST_HEAD(&fc->pending);
INIT_LIST_HEAD(&fc->processing);
INIT_LIST_HEAD(&fc->io);
INIT_LIST_HEAD(&fc->interrupts);
INIT_LIST_HEAD(&fc->bg_queue);
INIT_LIST_HEAD(&fc->entry);
atomic_set(&fc->num_waiting, 0);
fc->bdi.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
fc->bdi.unplug_io_fn = default_unplug_io_fn;
/* fuse does it's own writeback accounting */
fc->bdi.capabilities = BDI_CAP_NO_ACCT_WB;
fc->khctr = 0;
fc->polled_files = RB_ROOT;
fc->dev = sb->s_dev;
err = bdi_init(&fc->bdi);
if (err)
goto error_mutex_destroy;
if (sb->s_bdev) {
err = bdi_register(&fc->bdi, NULL, "%u:%u-fuseblk",
MAJOR(fc->dev), MINOR(fc->dev));
} else {
err = bdi_register_dev(&fc->bdi, fc->dev);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
}
if (err)
goto error_bdi_destroy;
/*
* For a single fuse filesystem use max 1% of dirty +
* writeback threshold.
*
* This gives about 1M of write buffer for memory maps on a
* machine with 1G and 10% dirty_ratio, which should be more
* than enough.
*
* Privileged users can raise it by writing to
*
* /sys/class/bdi/<bdi>/max_ratio
*/
bdi_set_max_ratio(&fc->bdi, 1);
fc->reqctr = 0;
fc->blocked = 1;
fc->attr_version = 1;
get_random_bytes(&fc->scramble_key, sizeof(fc->scramble_key));
return 0;
error_bdi_destroy:
bdi_destroy(&fc->bdi);
error_mutex_destroy:
mutex_destroy(&fc->inst_mutex);
return err;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
}
EXPORT_SYMBOL_GPL(fuse_conn_init);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
void fuse_conn_put(struct fuse_conn *fc)
{
if (atomic_dec_and_test(&fc->count)) {
if (fc->destroy_req)
fuse_request_free(fc->destroy_req);
mutex_destroy(&fc->inst_mutex);
bdi_destroy(&fc->bdi);
kfree(fc);
}
}
struct fuse_conn *fuse_conn_get(struct fuse_conn *fc)
{
atomic_inc(&fc->count);
return fc;
}
static struct inode *fuse_get_root_inode(struct super_block *sb, unsigned mode)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
{
struct fuse_attr attr;
memset(&attr, 0, sizeof(attr));
attr.mode = mode;
attr.ino = FUSE_ROOT_ID;
attr.nlink = 1;
return fuse_iget(sb, 1, 0, &attr, 0, 0);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
}
struct fuse_inode_handle {
u64 nodeid;
u32 generation;
};
static struct dentry *fuse_get_dentry(struct super_block *sb,
struct fuse_inode_handle *handle)
{
struct fuse_conn *fc = get_fuse_conn_super(sb);
struct inode *inode;
struct dentry *entry;
int err = -ESTALE;
if (handle->nodeid == 0)
goto out_err;
inode = ilookup5(sb, handle->nodeid, fuse_inode_eq, &handle->nodeid);
if (!inode) {
struct fuse_entry_out outarg;
struct qstr name;
if (!fc->export_support)
goto out_err;
name.len = 1;
name.name = ".";
err = fuse_lookup_name(sb, handle->nodeid, &name, &outarg,
&inode);
if (err && err != -ENOENT)
goto out_err;
if (err || !inode) {
err = -ESTALE;
goto out_err;
}
err = -EIO;
if (get_node_id(inode) != handle->nodeid)
goto out_iput;
}
err = -ESTALE;
if (inode->i_generation != handle->generation)
goto out_iput;
entry = d_obtain_alias(inode);
if (!IS_ERR(entry) && get_node_id(inode) != FUSE_ROOT_ID) {
entry->d_op = &fuse_dentry_operations;
fuse_invalidate_entry_cache(entry);
}
return entry;
out_iput:
iput(inode);
out_err:
return ERR_PTR(err);
}
static int fuse_encode_fh(struct dentry *dentry, u32 *fh, int *max_len,
int connectable)
{
struct inode *inode = dentry->d_inode;
bool encode_parent = connectable && !S_ISDIR(inode->i_mode);
int len = encode_parent ? 6 : 3;
u64 nodeid;
u32 generation;
if (*max_len < len)
return 255;
nodeid = get_fuse_inode(inode)->nodeid;
generation = inode->i_generation;
fh[0] = (u32)(nodeid >> 32);
fh[1] = (u32)(nodeid & 0xffffffff);
fh[2] = generation;
if (encode_parent) {
struct inode *parent;
spin_lock(&dentry->d_lock);
parent = dentry->d_parent->d_inode;
nodeid = get_fuse_inode(parent)->nodeid;
generation = parent->i_generation;
spin_unlock(&dentry->d_lock);
fh[3] = (u32)(nodeid >> 32);
fh[4] = (u32)(nodeid & 0xffffffff);
fh[5] = generation;
}
*max_len = len;
return encode_parent ? 0x82 : 0x81;
}
static struct dentry *fuse_fh_to_dentry(struct super_block *sb,
struct fid *fid, int fh_len, int fh_type)
{
struct fuse_inode_handle handle;
if ((fh_type != 0x81 && fh_type != 0x82) || fh_len < 3)
return NULL;
handle.nodeid = (u64) fid->raw[0] << 32;
handle.nodeid |= (u64) fid->raw[1];
handle.generation = fid->raw[2];
return fuse_get_dentry(sb, &handle);
}
static struct dentry *fuse_fh_to_parent(struct super_block *sb,
struct fid *fid, int fh_len, int fh_type)
{
struct fuse_inode_handle parent;
if (fh_type != 0x82 || fh_len < 6)
return NULL;
parent.nodeid = (u64) fid->raw[3] << 32;
parent.nodeid |= (u64) fid->raw[4];
parent.generation = fid->raw[5];
return fuse_get_dentry(sb, &parent);
}
static struct dentry *fuse_get_parent(struct dentry *child)
{
struct inode *child_inode = child->d_inode;
struct fuse_conn *fc = get_fuse_conn(child_inode);
struct inode *inode;
struct dentry *parent;
struct fuse_entry_out outarg;
struct qstr name;
int err;
if (!fc->export_support)
return ERR_PTR(-ESTALE);
name.len = 2;
name.name = "..";
err = fuse_lookup_name(child_inode->i_sb, get_node_id(child_inode),
&name, &outarg, &inode);
if (err) {
if (err == -ENOENT)
return ERR_PTR(-ESTALE);
return ERR_PTR(err);
}
parent = d_obtain_alias(inode);
if (!IS_ERR(parent) && get_node_id(inode) != FUSE_ROOT_ID) {
parent->d_op = &fuse_dentry_operations;
fuse_invalidate_entry_cache(parent);
}
return parent;
}
static const struct export_operations fuse_export_operations = {
.fh_to_dentry = fuse_fh_to_dentry,
.fh_to_parent = fuse_fh_to_parent,
.encode_fh = fuse_encode_fh,
.get_parent = fuse_get_parent,
};
static const struct super_operations fuse_super_operations = {
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
.alloc_inode = fuse_alloc_inode,
.destroy_inode = fuse_destroy_inode,
.clear_inode = fuse_clear_inode,
.drop_inode = generic_delete_inode,
.remount_fs = fuse_remount_fs,
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
.put_super = fuse_put_super,
.umount_begin = fuse_umount_begin,
.statfs = fuse_statfs,
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
.show_options = fuse_show_options,
};
static void process_init_reply(struct fuse_conn *fc, struct fuse_req *req)
{
struct fuse_init_out *arg = &req->misc.init_out;
if (req->out.h.error || arg->major != FUSE_KERNEL_VERSION)
fc->conn_error = 1;
else {
unsigned long ra_pages;
if (arg->minor >= 6) {
ra_pages = arg->max_readahead / PAGE_CACHE_SIZE;
if (arg->flags & FUSE_ASYNC_READ)
fc->async_read = 1;
if (!(arg->flags & FUSE_POSIX_LOCKS))
fc->no_lock = 1;
if (arg->flags & FUSE_ATOMIC_O_TRUNC)
fc->atomic_o_trunc = 1;
if (arg->minor >= 9) {
/* LOOKUP has dependency on proto version */
if (arg->flags & FUSE_EXPORT_SUPPORT)
fc->export_support = 1;
}
if (arg->flags & FUSE_BIG_WRITES)
fc->big_writes = 1;
} else {
ra_pages = fc->max_read / PAGE_CACHE_SIZE;
fc->no_lock = 1;
}
fc->bdi.ra_pages = min(fc->bdi.ra_pages, ra_pages);
fc->minor = arg->minor;
fc->max_write = arg->minor < 5 ? 4096 : arg->max_write;
fc->max_write = max_t(unsigned, 4096, fc->max_write);
fc->conn_init = 1;
}
fc->blocked = 0;
wake_up_all(&fc->blocked_waitq);
}
static void fuse_send_init(struct fuse_conn *fc, struct fuse_req *req)
{
struct fuse_init_in *arg = &req->misc.init_in;
arg->major = FUSE_KERNEL_VERSION;
arg->minor = FUSE_KERNEL_MINOR_VERSION;
arg->max_readahead = fc->bdi.ra_pages * PAGE_CACHE_SIZE;
arg->flags |= FUSE_ASYNC_READ | FUSE_POSIX_LOCKS | FUSE_ATOMIC_O_TRUNC |
FUSE_EXPORT_SUPPORT | FUSE_BIG_WRITES;
req->in.h.opcode = FUSE_INIT;
req->in.numargs = 1;
req->in.args[0].size = sizeof(*arg);
req->in.args[0].value = arg;
req->out.numargs = 1;
/* Variable length arguement used for backward compatibility
with interface version < 7.5. Rest of init_out is zeroed
by do_get_request(), so a short reply is not a problem */
req->out.argvar = 1;
req->out.args[0].size = sizeof(struct fuse_init_out);
req->out.args[0].value = &req->misc.init_out;
req->end = process_init_reply;
fuse_request_send_background(fc, req);
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
static int fuse_fill_super(struct super_block *sb, void *data, int silent)
{
struct fuse_conn *fc;
struct inode *root;
struct fuse_mount_data d;
struct file *file;
struct dentry *root_dentry;
struct fuse_req *init_req;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
int err;
int is_bdev = sb->s_bdev != NULL;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
if (sb->s_flags & MS_MANDLOCK)
return -EINVAL;
if (!parse_fuse_opt((char *) data, &d, is_bdev))
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
return -EINVAL;
if (is_bdev) {
#ifdef CONFIG_BLOCK
if (!sb_set_blocksize(sb, d.blksize))
return -EINVAL;
#endif
} else {
sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
sb->s_magic = FUSE_SUPER_MAGIC;
sb->s_op = &fuse_super_operations;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_export_op = &fuse_export_operations;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
file = fget(d.fd);
if (!file)
return -EINVAL;
if (file->f_op != &fuse_dev_operations)
return -EINVAL;
fc = kmalloc(sizeof(*fc), GFP_KERNEL);
if (!fc)
return -ENOMEM;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
err = fuse_conn_init(fc, sb);
if (err) {
kfree(fc);
return err;
}
fc->flags = d.flags;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
fc->user_id = d.user_id;
fc->group_id = d.group_id;
fc->max_read = max_t(unsigned, 4096, d.max_read);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
/* Used by get_root_inode() */
sb->s_fs_info = fc;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
err = -ENOMEM;
root = fuse_get_root_inode(sb, d.rootmode);
if (!root)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
goto err;
root_dentry = d_alloc_root(root);
if (!root_dentry) {
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
iput(root);
goto err;
}
init_req = fuse_request_alloc();
if (!init_req)
goto err_put_root;
if (is_bdev) {
fc->destroy_req = fuse_request_alloc();
if (!fc->destroy_req)
goto err_free_init_req;
}
mutex_lock(&fuse_mutex);
err = -EINVAL;
if (file->private_data)
goto err_unlock;
err = fuse_ctl_add_conn(fc);
if (err)
goto err_unlock;
list_add_tail(&fc->entry, &fuse_conn_list);
sb->s_root = root_dentry;
fc->connected = 1;
file->private_data = fuse_conn_get(fc);
mutex_unlock(&fuse_mutex);
/*
* atomic_dec_and_test() in fput() provides the necessary
* memory barrier for file->private_data to be visible on all
* CPUs after this
*/
fput(file);
fuse_send_init(fc, init_req);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
return 0;
err_unlock:
mutex_unlock(&fuse_mutex);
err_free_init_req:
fuse_request_free(init_req);
err_put_root:
dput(root_dentry);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
err:
fput(file);
fuse_conn_put(fc);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
return err;
}
[PATCH] VFS: Permit filesystem to override root dentry on mount Extend the get_sb() filesystem operation to take an extra argument that permits the VFS to pass in the target vfsmount that defines the mountpoint. The filesystem is then required to manually set the superblock and root dentry pointers. For most filesystems, this should be done with simple_set_mnt() which will set the superblock pointer and then set the root dentry to the superblock's s_root (as per the old default behaviour). The get_sb() op now returns an integer as there's now no need to return the superblock pointer. This patch permits a superblock to be implicitly shared amongst several mount points, such as can be done with NFS to avoid potential inode aliasing. In such a case, simple_set_mnt() would not be called, and instead the mnt_root and mnt_sb would be set directly. The patch also makes the following changes: (*) the get_sb_*() convenience functions in the core kernel now take a vfsmount pointer argument and return an integer, so most filesystems have to change very little. (*) If one of the convenience function is not used, then get_sb() should normally call simple_set_mnt() to instantiate the vfsmount. This will always return 0, and so can be tail-called from get_sb(). (*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the dcache upon superblock destruction rather than shrink_dcache_anon(). This is required because the superblock may now have multiple trees that aren't actually bound to s_root, but that still need to be cleaned up. The currently called functions assume that the whole tree is rooted at s_root, and that anonymous dentries are not the roots of trees which results in dentries being left unculled. However, with the way NFS superblock sharing are currently set to be implemented, these assumptions are violated: the root of the filesystem is simply a dummy dentry and inode (the real inode for '/' may well be inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries with child trees. [*] Anonymous until discovered from another tree. (*) The documentation has been adjusted, including the additional bit of changing ext2_* into foo_* in the documentation. [akpm@osdl.org: convert ipath_fs, do other stuff] Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Nathan Scott <nathans@sgi.com> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 03:02:57 -06:00
static int fuse_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name,
void *raw_data, struct vfsmount *mnt)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
{
[PATCH] VFS: Permit filesystem to override root dentry on mount Extend the get_sb() filesystem operation to take an extra argument that permits the VFS to pass in the target vfsmount that defines the mountpoint. The filesystem is then required to manually set the superblock and root dentry pointers. For most filesystems, this should be done with simple_set_mnt() which will set the superblock pointer and then set the root dentry to the superblock's s_root (as per the old default behaviour). The get_sb() op now returns an integer as there's now no need to return the superblock pointer. This patch permits a superblock to be implicitly shared amongst several mount points, such as can be done with NFS to avoid potential inode aliasing. In such a case, simple_set_mnt() would not be called, and instead the mnt_root and mnt_sb would be set directly. The patch also makes the following changes: (*) the get_sb_*() convenience functions in the core kernel now take a vfsmount pointer argument and return an integer, so most filesystems have to change very little. (*) If one of the convenience function is not used, then get_sb() should normally call simple_set_mnt() to instantiate the vfsmount. This will always return 0, and so can be tail-called from get_sb(). (*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the dcache upon superblock destruction rather than shrink_dcache_anon(). This is required because the superblock may now have multiple trees that aren't actually bound to s_root, but that still need to be cleaned up. The currently called functions assume that the whole tree is rooted at s_root, and that anonymous dentries are not the roots of trees which results in dentries being left unculled. However, with the way NFS superblock sharing are currently set to be implemented, these assumptions are violated: the root of the filesystem is simply a dummy dentry and inode (the real inode for '/' may well be inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries with child trees. [*] Anonymous until discovered from another tree. (*) The documentation has been adjusted, including the additional bit of changing ext2_* into foo_* in the documentation. [akpm@osdl.org: convert ipath_fs, do other stuff] Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Nathan Scott <nathans@sgi.com> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 03:02:57 -06:00
return get_sb_nodev(fs_type, flags, raw_data, fuse_fill_super, mnt);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
}
static struct file_system_type fuse_fs_type = {
.owner = THIS_MODULE,
.name = "fuse",
.fs_flags = FS_HAS_SUBTYPE,
.get_sb = fuse_get_sb,
.kill_sb = kill_anon_super,
};
#ifdef CONFIG_BLOCK
static int fuse_get_sb_blk(struct file_system_type *fs_type,
int flags, const char *dev_name,
void *raw_data, struct vfsmount *mnt)
{
return get_sb_bdev(fs_type, flags, dev_name, raw_data, fuse_fill_super,
mnt);
}
static struct file_system_type fuseblk_fs_type = {
.owner = THIS_MODULE,
.name = "fuseblk",
.get_sb = fuse_get_sb_blk,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV | FS_HAS_SUBTYPE,
};
static inline int register_fuseblk(void)
{
return register_filesystem(&fuseblk_fs_type);
}
static inline void unregister_fuseblk(void)
{
unregister_filesystem(&fuseblk_fs_type);
}
#else
static inline int register_fuseblk(void)
{
return 0;
}
static inline void unregister_fuseblk(void)
{
}
#endif
static void fuse_inode_init_once(void *foo)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
{
struct inode *inode = foo;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
inode_init_once(inode);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
}
static int __init fuse_fs_init(void)
{
int err;
err = register_filesystem(&fuse_fs_type);
if (err)
goto out;
err = register_fuseblk();
if (err)
goto out_unreg;
fuse_inode_cachep = kmem_cache_create("fuse_inode",
sizeof(struct fuse_inode),
0, SLAB_HWCACHE_ALIGN,
fuse_inode_init_once);
err = -ENOMEM;
if (!fuse_inode_cachep)
goto out_unreg2;
return 0;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
out_unreg2:
unregister_fuseblk();
out_unreg:
unregister_filesystem(&fuse_fs_type);
out:
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
return err;
}
static void fuse_fs_cleanup(void)
{
unregister_filesystem(&fuse_fs_type);
unregister_fuseblk();
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
kmem_cache_destroy(fuse_inode_cachep);
}
static struct kobject *fuse_kobj;
static struct kobject *connections_kobj;
static int fuse_sysfs_init(void)
{
int err;
fuse_kobj = kobject_create_and_add("fuse", fs_kobj);
if (!fuse_kobj) {
err = -ENOMEM;
goto out_err;
}
connections_kobj = kobject_create_and_add("connections", fuse_kobj);
if (!connections_kobj) {
err = -ENOMEM;
goto out_fuse_unregister;
}
return 0;
out_fuse_unregister:
kobject_put(fuse_kobj);
out_err:
return err;
}
static void fuse_sysfs_cleanup(void)
{
kobject_put(connections_kobj);
kobject_put(fuse_kobj);
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
static int __init fuse_init(void)
{
int res;
printk(KERN_INFO "fuse init (API version %i.%i)\n",
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
FUSE_KERNEL_VERSION, FUSE_KERNEL_MINOR_VERSION);
INIT_LIST_HEAD(&fuse_conn_list);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
res = fuse_fs_init();
if (res)
goto err;
res = fuse_dev_init();
if (res)
goto err_fs_cleanup;
res = fuse_sysfs_init();
if (res)
goto err_dev_cleanup;
res = fuse_ctl_init();
if (res)
goto err_sysfs_cleanup;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
return 0;
err_sysfs_cleanup:
fuse_sysfs_cleanup();
err_dev_cleanup:
fuse_dev_cleanup();
err_fs_cleanup:
fuse_fs_cleanup();
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
err:
return res;
}
static void __exit fuse_exit(void)
{
printk(KERN_DEBUG "fuse exit\n");
fuse_ctl_cleanup();
fuse_sysfs_cleanup();
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
fuse_fs_cleanup();
fuse_dev_cleanup();
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 14:10:26 -06:00
}
module_init(fuse_init);
module_exit(fuse_exit);