1
0
Fork 0
alistair23-linux/include/linux/blk_types.h

462 lines
13 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 08:07:57 -06:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Block data types and constants. Directly include this file only to
* break include dependency loop.
*/
#ifndef __LINUX_BLK_TYPES_H
#define __LINUX_BLK_TYPES_H
#include <linux/types.h>
#include <linux/bvec.h>
#include <linux/ktime.h>
struct bio_set;
struct bio;
struct bio_integrity_payload;
struct page;
struct block_device;
block: implement bio_associate_current() IO scheduling and cgroup are tied to the issuing task via io_context and cgroup of %current. Unfortunately, there are cases where IOs need to be routed via a different task which makes scheduling and cgroup limit enforcement applied completely incorrectly. For example, all bios delayed by blk-throttle end up being issued by a delayed work item and get assigned the io_context of the worker task which happens to serve the work item and dumped to the default block cgroup. This is double confusing as bios which aren't delayed end up in the correct cgroup and makes using blk-throttle and cfq propio together impossible. Any code which punts IO issuing to another task is affected which is getting more and more common (e.g. btrfs). As both io_context and cgroup are firmly tied to task including userland visible APIs to manipulate them, it makes a lot of sense to match up tasks to bios. This patch implements bio_associate_current() which associates the specified bio with %current. The bio will record the associated ioc and blkcg at that point and block layer will use the recorded ones regardless of which task actually ends up issuing the bio. bio release puts the associated ioc and blkcg. It grabs and remembers ioc and blkcg instead of the task itself because task may already be dead by the time the bio is issued making ioc and blkcg inaccessible and those are all block layer cares about. elevator_set_req_fn() is updated such that the bio elvdata is being allocated for is available to the elevator. This doesn't update block cgroup policies yet. Further patches will implement the support. -v2: #ifdef CONFIG_BLK_CGROUP added around bio->bi_ioc dereference in rq_ioc() to fix build breakage. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Kent Overstreet <koverstreet@google.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2012-03-05 14:15:27 -07:00
struct io_context;
struct cgroup_subsys_state;
typedef void (bio_end_io_t) (struct bio *);
/*
* Block error status values. See block/blk-core:blk_errors for the details.
* Alpha cannot write a byte atomically, so we need to use 32-bit value.
*/
#if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
typedef u32 __bitwise blk_status_t;
#else
typedef u8 __bitwise blk_status_t;
#endif
#define BLK_STS_OK 0
#define BLK_STS_NOTSUPP ((__force blk_status_t)1)
#define BLK_STS_TIMEOUT ((__force blk_status_t)2)
#define BLK_STS_NOSPC ((__force blk_status_t)3)
#define BLK_STS_TRANSPORT ((__force blk_status_t)4)
#define BLK_STS_TARGET ((__force blk_status_t)5)
#define BLK_STS_NEXUS ((__force blk_status_t)6)
#define BLK_STS_MEDIUM ((__force blk_status_t)7)
#define BLK_STS_PROTECTION ((__force blk_status_t)8)
#define BLK_STS_RESOURCE ((__force blk_status_t)9)
#define BLK_STS_IOERR ((__force blk_status_t)10)
/* hack for device mapper, don't use elsewhere: */
#define BLK_STS_DM_REQUEUE ((__force blk_status_t)11)
#define BLK_STS_AGAIN ((__force blk_status_t)12)
blk-mq: introduce BLK_STS_DEV_RESOURCE This status is returned from driver to block layer if device related resource is unavailable, but driver can guarantee that IO dispatch will be triggered in future when the resource is available. Convert some drivers to return BLK_STS_DEV_RESOURCE. Also, if driver returns BLK_STS_RESOURCE and SCHED_RESTART is set, rerun queue after a delay (BLK_MQ_DELAY_QUEUE) to avoid IO stalls. BLK_MQ_DELAY_QUEUE is 3 ms because both scsi-mq and nvmefc are using that magic value. If a driver can make sure there is in-flight IO, it is safe to return BLK_STS_DEV_RESOURCE because: 1) If all in-flight IOs complete before examining SCHED_RESTART in blk_mq_dispatch_rq_list(), SCHED_RESTART must be cleared, so queue is run immediately in this case by blk_mq_dispatch_rq_list(); 2) if there is any in-flight IO after/when examining SCHED_RESTART in blk_mq_dispatch_rq_list(): - if SCHED_RESTART isn't set, queue is run immediately as handled in 1) - otherwise, this request will be dispatched after any in-flight IO is completed via blk_mq_sched_restart() 3) if SCHED_RESTART is set concurently in context because of BLK_STS_RESOURCE, blk_mq_delay_run_hw_queue() will cover the above two cases and make sure IO hang can be avoided. One invariant is that queue will be rerun if SCHED_RESTART is set. Suggested-by: Jens Axboe <axboe@kernel.dk> Tested-by: Laurence Oberman <loberman@redhat.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-30 20:04:57 -07:00
/*
* BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
* device related resources are unavailable, but the driver can guarantee
* that the queue will be rerun in the future once resources become
* available again. This is typically the case for device specific
* resources that are consumed for IO. If the driver fails allocating these
* resources, we know that inflight (or pending) IO will free these
* resource upon completion.
*
* This is different from BLK_STS_RESOURCE in that it explicitly references
* a device specific resource. For resources of wider scope, allocation
* failure can happen without having pending IO. This means that we can't
* rely on request completions freeing these resources, as IO may not be in
* flight. Examples of that are kernel memory allocations, DMA mappings, or
* any other system wide resources.
*/
#define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13)
/**
* blk_path_error - returns true if error may be path related
* @error: status the request was completed with
*
* Description:
* This classifies block error status into non-retryable errors and ones
* that may be successful if retried on a failover path.
*
* Return:
* %false - retrying failover path will not help
* %true - may succeed if retried
*/
static inline bool blk_path_error(blk_status_t error)
{
switch (error) {
case BLK_STS_NOTSUPP:
case BLK_STS_NOSPC:
case BLK_STS_TARGET:
case BLK_STS_NEXUS:
case BLK_STS_MEDIUM:
case BLK_STS_PROTECTION:
return false;
}
/* Anything else could be a path failure, so should be retried */
return true;
}
/*
* From most significant bit:
* 1 bit: reserved for other usage, see below
* 12 bits: original size of bio
* 51 bits: issue time of bio
*/
#define BIO_ISSUE_RES_BITS 1
#define BIO_ISSUE_SIZE_BITS 12
#define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
#define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
#define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
#define BIO_ISSUE_SIZE_MASK \
(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
#define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
/* Reserved bit for blk-throtl */
#define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
struct bio_issue {
u64 value;
};
static inline u64 __bio_issue_time(u64 time)
{
return time & BIO_ISSUE_TIME_MASK;
}
static inline u64 bio_issue_time(struct bio_issue *issue)
{
return __bio_issue_time(issue->value);
}
static inline sector_t bio_issue_size(struct bio_issue *issue)
{
return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
}
static inline void bio_issue_init(struct bio_issue *issue,
sector_t size)
{
size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
(ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
((u64)size << BIO_ISSUE_SIZE_SHIFT));
}
/*
* main unit of I/O for the block layer and lower layers (ie drivers and
* stacking drivers)
*/
struct bio {
struct bio *bi_next; /* request queue link */
struct gendisk *bi_disk;
unsigned int bi_opf; /* bottom bits req flags,
* top bits REQ_OP. Use
* accessors.
*/
unsigned short bi_flags; /* status, etc and bvec pool number */
unsigned short bi_ioprio;
unsigned short bi_write_hint;
blk_status_t bi_status;
u8 bi_partno;
/* Number of segments in this BIO after
* physical address coalescing is performed.
*/
unsigned int bi_phys_segments;
/*
* To keep track of the max segment size, we account for the
* sizes of the first and last mergeable segments in this bio.
*/
unsigned int bi_seg_front_size;
unsigned int bi_seg_back_size;
struct bvec_iter bi_iter;
atomic_t __bi_remaining;
bio_end_io_t *bi_end_io;
void *bi_private;
block: implement bio_associate_current() IO scheduling and cgroup are tied to the issuing task via io_context and cgroup of %current. Unfortunately, there are cases where IOs need to be routed via a different task which makes scheduling and cgroup limit enforcement applied completely incorrectly. For example, all bios delayed by blk-throttle end up being issued by a delayed work item and get assigned the io_context of the worker task which happens to serve the work item and dumped to the default block cgroup. This is double confusing as bios which aren't delayed end up in the correct cgroup and makes using blk-throttle and cfq propio together impossible. Any code which punts IO issuing to another task is affected which is getting more and more common (e.g. btrfs). As both io_context and cgroup are firmly tied to task including userland visible APIs to manipulate them, it makes a lot of sense to match up tasks to bios. This patch implements bio_associate_current() which associates the specified bio with %current. The bio will record the associated ioc and blkcg at that point and block layer will use the recorded ones regardless of which task actually ends up issuing the bio. bio release puts the associated ioc and blkcg. It grabs and remembers ioc and blkcg instead of the task itself because task may already be dead by the time the bio is issued making ioc and blkcg inaccessible and those are all block layer cares about. elevator_set_req_fn() is updated such that the bio elvdata is being allocated for is available to the elevator. This doesn't update block cgroup policies yet. Further patches will implement the support. -v2: #ifdef CONFIG_BLK_CGROUP added around bio->bi_ioc dereference in rq_ioc() to fix build breakage. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Kent Overstreet <koverstreet@google.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2012-03-05 14:15:27 -07:00
#ifdef CONFIG_BLK_CGROUP
/*
* Optional ioc and css associated with this bio. Put on bio
* release. Read comment on top of bio_associate_current().
*/
struct io_context *bi_ioc;
struct cgroup_subsys_state *bi_css;
struct blkcg_gq *bi_blkg;
struct bio_issue bi_issue;
block: implement bio_associate_current() IO scheduling and cgroup are tied to the issuing task via io_context and cgroup of %current. Unfortunately, there are cases where IOs need to be routed via a different task which makes scheduling and cgroup limit enforcement applied completely incorrectly. For example, all bios delayed by blk-throttle end up being issued by a delayed work item and get assigned the io_context of the worker task which happens to serve the work item and dumped to the default block cgroup. This is double confusing as bios which aren't delayed end up in the correct cgroup and makes using blk-throttle and cfq propio together impossible. Any code which punts IO issuing to another task is affected which is getting more and more common (e.g. btrfs). As both io_context and cgroup are firmly tied to task including userland visible APIs to manipulate them, it makes a lot of sense to match up tasks to bios. This patch implements bio_associate_current() which associates the specified bio with %current. The bio will record the associated ioc and blkcg at that point and block layer will use the recorded ones regardless of which task actually ends up issuing the bio. bio release puts the associated ioc and blkcg. It grabs and remembers ioc and blkcg instead of the task itself because task may already be dead by the time the bio is issued making ioc and blkcg inaccessible and those are all block layer cares about. elevator_set_req_fn() is updated such that the bio elvdata is being allocated for is available to the elevator. This doesn't update block cgroup policies yet. Further patches will implement the support. -v2: #ifdef CONFIG_BLK_CGROUP added around bio->bi_ioc dereference in rq_ioc() to fix build breakage. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Kent Overstreet <koverstreet@google.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2012-03-05 14:15:27 -07:00
#endif
union {
#if defined(CONFIG_BLK_DEV_INTEGRITY)
struct bio_integrity_payload *bi_integrity; /* data integrity */
#endif
};
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 16:44:27 -06:00
unsigned short bi_vcnt; /* how many bio_vec's */
/*
* Everything starting with bi_max_vecs will be preserved by bio_reset()
*/
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-11 16:44:27 -06:00
unsigned short bi_max_vecs; /* max bvl_vecs we can hold */
atomic_t __bi_cnt; /* pin count */
struct bio_vec *bi_io_vec; /* the actual vec list */
struct bio_set *bi_pool;
/*
* We can inline a number of vecs at the end of the bio, to avoid
* double allocations for a small number of bio_vecs. This member
* MUST obviously be kept at the very end of the bio.
*/
struct bio_vec bi_inline_vecs[0];
};
#define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs)
/*
* bio flags
*/
#define BIO_SEG_VALID 1 /* bi_phys_segments valid */
#define BIO_CLONED 2 /* doesn't own data */
#define BIO_BOUNCED 3 /* bio is a bounce bio */
#define BIO_USER_MAPPED 4 /* contains user pages */
#define BIO_NULL_MAPPED 5 /* contains invalid user pages */
#define BIO_QUIET 6 /* Make BIO Quiet */
#define BIO_CHAIN 7 /* chained bio, ->bi_remaining in effect */
#define BIO_REFFED 8 /* bio has elevated ->bi_cnt */
#define BIO_THROTTLED 9 /* This bio has already been subjected to
* throttling rules. Don't do it again. */
block: trace completion of all bios. Currently only dm and md/raid5 bios trigger trace_block_bio_complete(). Now that we have bio_chain() and bio_inc_remaining(), it is not possible, in general, for a driver to know when the bio is really complete. Only bio_endio() knows that. So move the trace_block_bio_complete() call to bio_endio(). Now trace_block_bio_complete() pairs with trace_block_bio_queue(). Any bio for which a 'queue' event is traced, will subsequently generate a 'complete' event. There are a few cases where completion tracing is not wanted. 1/ If blk_update_request() has already generated a completion trace event at the 'request' level, there is no point generating one at the bio level too. In this case the bi_sector and bi_size will have changed, so the bio level event would be wrong 2/ If the bio hasn't actually been queued yet, but is being aborted early, then a trace event could be confusing. Some filesystems call bio_endio() but do not want tracing. 3/ The bio_integrity code interposes itself by replacing bi_end_io, then restoring it and calling bio_endio() again. This would produce two identical trace events if left like that. To handle these, we introduce a flag BIO_TRACE_COMPLETION and only produce the trace event when this is set. We address point 1 above by clearing the flag in blk_update_request(). We address point 2 above by only setting the flag when generic_make_request() is called. We address point 3 above by clearing the flag after generating a completion event. When bio_split() is used on a bio, particularly in blk_queue_split(), there is an extra complication. A new bio is split off the front, and may be handle directly without going through generic_make_request(). The old bio, which has been advanced, is passed to generic_make_request(), so it will trigger a trace event a second time. Probably the best result when a split happens is to see a single 'queue' event for the whole bio, then multiple 'complete' events - one for each component. To achieve this was can: - copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split() - avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set. This way, the split-off bio won't create a queue event, the original won't either even if it re-submitted to generic_make_request(), but both will produce completion events, each for their own range. So if generic_make_request() is called (which generates a QUEUED event), then bi_endio() will create a single COMPLETE event for each range that the bio is split into, unless the driver has explicitly requested it not to. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07 09:40:52 -06:00
#define BIO_TRACE_COMPLETION 10 /* bio_endio() should trace the final completion
* of this bio. */
#define BIO_QUEUE_ENTERED 11 /* can use blk_queue_enter_live() */
/* See BVEC_POOL_OFFSET below before adding new flags */
/*
* We support 6 different bvec pools, the last one is magic in that it
* is backed by a mempool.
*/
#define BVEC_POOL_NR 6
#define BVEC_POOL_MAX (BVEC_POOL_NR - 1)
/*
* Top 3 bits of bio flags indicate the pool the bvecs came from. We add
* 1 to the actual index so that 0 indicates that there are no bvecs to be
* freed.
*/
#define BVEC_POOL_BITS (3)
#define BVEC_POOL_OFFSET (16 - BVEC_POOL_BITS)
#define BVEC_POOL_IDX(bio) ((bio)->bi_flags >> BVEC_POOL_OFFSET)
#if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1)
# error "BVEC_POOL_BITS is too small"
#endif
/*
* Flags starting here get preserved by bio_reset() - this includes
* only BVEC_POOL_IDX()
*/
#define BIO_RESET_BITS BVEC_POOL_OFFSET
typedef __u32 __bitwise blk_mq_req_flags_t;
/*
* Operations and flags common to the bio and request structures.
* We use 8 bits for encoding the operation, and the remaining 24 for flags.
*
* The least significant bit of the operation number indicates the data
* transfer direction:
*
* - if the least significant bit is set transfers are TO the device
* - if the least significant bit is not set transfers are FROM the device
*
* If a operation does not transfer data the least significant bit has no
* meaning.
*/
#define REQ_OP_BITS 8
#define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1)
#define REQ_FLAG_BITS 24
enum req_opf {
/* read sectors from the device */
REQ_OP_READ = 0,
/* write sectors to the device */
REQ_OP_WRITE = 1,
/* flush the volatile write cache */
REQ_OP_FLUSH = 2,
/* discard sectors */
REQ_OP_DISCARD = 3,
/* securely erase sectors */
REQ_OP_SECURE_ERASE = 5,
/* seset a zone write pointer */
REQ_OP_ZONE_RESET = 6,
/* write the same sector many times */
REQ_OP_WRITE_SAME = 7,
/* write the zero filled sector many times */
REQ_OP_WRITE_ZEROES = 9,
/* SCSI passthrough using struct scsi_request */
REQ_OP_SCSI_IN = 32,
REQ_OP_SCSI_OUT = 33,
/* Driver private requests */
REQ_OP_DRV_IN = 34,
REQ_OP_DRV_OUT = 35,
REQ_OP_LAST,
};
enum req_flag_bits {
__REQ_FAILFAST_DEV = /* no driver retries of device errors */
REQ_OP_BITS,
__REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
__REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */
__REQ_SYNC, /* request is sync (sync write or read) */
__REQ_META, /* metadata io request */
__REQ_PRIO, /* boost priority in cfq */
__REQ_NOMERGE, /* don't touch this for merging */
__REQ_IDLE, /* anticipate more IO after this one */
__REQ_INTEGRITY, /* I/O includes block integrity payload */
__REQ_FUA, /* forced unit access */
__REQ_PREFLUSH, /* request for cache flush */
__REQ_RAHEAD, /* read ahead, can fail anytime */
__REQ_BACKGROUND, /* background IO */
__REQ_NOWAIT, /* Don't wait if request will block */
/* command specific flags for REQ_OP_WRITE_ZEROES: */
__REQ_NOUNMAP, /* do not free blocks when zeroing */
__REQ_HIPRI,
/* for driver use */
__REQ_DRV,
__REQ_SWAP, /* swapping request. */
__REQ_NR_BITS, /* stops here */
};
#define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV)
#define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT)
#define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER)
#define REQ_SYNC (1ULL << __REQ_SYNC)
#define REQ_META (1ULL << __REQ_META)
#define REQ_PRIO (1ULL << __REQ_PRIO)
#define REQ_NOMERGE (1ULL << __REQ_NOMERGE)
#define REQ_IDLE (1ULL << __REQ_IDLE)
#define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY)
#define REQ_FUA (1ULL << __REQ_FUA)
#define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH)
#define REQ_RAHEAD (1ULL << __REQ_RAHEAD)
#define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND)
#define REQ_NOWAIT (1ULL << __REQ_NOWAIT)
#define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP)
#define REQ_HIPRI (1ULL << __REQ_HIPRI)
#define REQ_DRV (1ULL << __REQ_DRV)
#define REQ_SWAP (1ULL << __REQ_SWAP)
#define REQ_FAILFAST_MASK \
(REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
#define REQ_NOMERGE_FLAGS \
(REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
enum stat_group {
STAT_READ,
STAT_WRITE,
STAT_DISCARD,
NR_STAT_GROUPS
};
#define bio_op(bio) \
((bio)->bi_opf & REQ_OP_MASK)
#define req_op(req) \
((req)->cmd_flags & REQ_OP_MASK)
/* obsolete, don't use in new code */
static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
unsigned op_flags)
{
bio->bi_opf = op | op_flags;
}
static inline bool op_is_write(unsigned int op)
{
return (op & 1);
}
/*
* Check if the bio or request is one that needs special treatment in the
* flush state machine.
*/
static inline bool op_is_flush(unsigned int op)
{
return op & (REQ_FUA | REQ_PREFLUSH);
}
/*
* Reads are always treated as synchronous, as are requests with the FUA or
* PREFLUSH flag. Other operations may be marked as synchronous using the
* REQ_SYNC flag.
*/
static inline bool op_is_sync(unsigned int op)
{
return (op & REQ_OP_MASK) == REQ_OP_READ ||
(op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
}
static inline bool op_is_discard(unsigned int op)
{
return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
}
static inline int op_stat_group(unsigned int op)
{
if (op_is_discard(op))
return STAT_DISCARD;
return op_is_write(op);
}
typedef unsigned int blk_qc_t;
#define BLK_QC_T_NONE -1U
#define BLK_QC_T_SHIFT 16
#define BLK_QC_T_INTERNAL (1U << 31)
static inline bool blk_qc_t_valid(blk_qc_t cookie)
{
return cookie != BLK_QC_T_NONE;
}
static inline blk_qc_t blk_tag_to_qc_t(unsigned int tag, unsigned int queue_num,
bool internal)
{
blk_qc_t ret = tag | (queue_num << BLK_QC_T_SHIFT);
if (internal)
ret |= BLK_QC_T_INTERNAL;
return ret;
}
static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie)
{
return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT;
}
static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie)
{
return cookie & ((1u << BLK_QC_T_SHIFT) - 1);
}
static inline bool blk_qc_t_is_internal(blk_qc_t cookie)
{
return (cookie & BLK_QC_T_INTERNAL) != 0;
}
struct blk_rq_stat {
u64 mean;
u64 min;
u64 max;
u32 nr_samples;
u64 batch;
};
#endif /* __LINUX_BLK_TYPES_H */