1
0
Fork 0
alistair23-linux/drivers/mtd/spi-nor/cadence-quadspi.c

1538 lines
39 KiB
C
Raw Normal View History

/*
* Driver for Cadence QSPI Controller
*
* Copyright Altera Corporation (C) 2012-2014. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sched.h>
#include <linux/spi/spi.h>
#include <linux/timer.h>
#define CQSPI_NAME "cadence-qspi"
#define CQSPI_MAX_CHIPSELECT 16
/* Quirks */
#define CQSPI_NEEDS_WR_DELAY BIT(0)
/* Capabilities mask */
#define CQSPI_BASE_HWCAPS_MASK \
(SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST | \
SNOR_HWCAPS_READ_1_1_2 | SNOR_HWCAPS_READ_1_1_4 | \
SNOR_HWCAPS_PP)
struct cqspi_st;
struct cqspi_flash_pdata {
struct spi_nor nor;
struct cqspi_st *cqspi;
u32 clk_rate;
u32 read_delay;
u32 tshsl_ns;
u32 tsd2d_ns;
u32 tchsh_ns;
u32 tslch_ns;
u8 inst_width;
u8 addr_width;
u8 data_width;
u8 cs;
bool registered;
bool use_direct_mode;
};
struct cqspi_st {
struct platform_device *pdev;
struct clk *clk;
unsigned int sclk;
void __iomem *iobase;
void __iomem *ahb_base;
resource_size_t ahb_size;
struct completion transfer_complete;
struct mutex bus_mutex;
struct dma_chan *rx_chan;
struct completion rx_dma_complete;
dma_addr_t mmap_phys_base;
int current_cs;
int current_page_size;
int current_erase_size;
int current_addr_width;
unsigned long master_ref_clk_hz;
bool is_decoded_cs;
u32 fifo_depth;
u32 fifo_width;
bool rclk_en;
u32 trigger_address;
u32 wr_delay;
struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
};
struct cqspi_driver_platdata {
u32 hwcaps_mask;
u8 quirks;
};
/* Operation timeout value */
#define CQSPI_TIMEOUT_MS 500
#define CQSPI_READ_TIMEOUT_MS 10
/* Instruction type */
#define CQSPI_INST_TYPE_SINGLE 0
#define CQSPI_INST_TYPE_DUAL 1
#define CQSPI_INST_TYPE_QUAD 2
#define CQSPI_INST_TYPE_OCTAL 3
#define CQSPI_DUMMY_CLKS_PER_BYTE 8
#define CQSPI_DUMMY_BYTES_MAX 4
#define CQSPI_DUMMY_CLKS_MAX 31
#define CQSPI_STIG_DATA_LEN_MAX 8
/* Register map */
#define CQSPI_REG_CONFIG 0x00
#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB 19
#define CQSPI_REG_CONFIG_IDLE_LSB 31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
#define CQSPI_REG_RD_INSTR 0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
#define CQSPI_REG_WR_INSTR 0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_DELAY 0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB 0
#define CQSPI_REG_DELAY_TCHSH_LSB 8
#define CQSPI_REG_DELAY_TSD2D_LSB 16
#define CQSPI_REG_DELAY_TSHSL_LSB 24
#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
#define CQSPI_REG_READCAPTURE 0x10
#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
#define CQSPI_REG_SIZE 0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB 0
#define CQSPI_REG_SIZE_PAGE_LSB 4
#define CQSPI_REG_SIZE_BLOCK_LSB 16
#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
#define CQSPI_REG_SRAMPARTITION 0x18
#define CQSPI_REG_INDIRECTTRIGGER 0x1C
#define CQSPI_REG_DMA 0x20
#define CQSPI_REG_DMA_SINGLE_LSB 0
#define CQSPI_REG_DMA_BURST_LSB 8
#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
#define CQSPI_REG_DMA_BURST_MASK 0xFF
#define CQSPI_REG_REMAP 0x24
#define CQSPI_REG_MODE_BIT 0x28
#define CQSPI_REG_SDRAMLEVEL 0x2C
#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
#define CQSPI_REG_IRQSTATUS 0x40
#define CQSPI_REG_IRQMASK 0x44
#define CQSPI_REG_INDIRECTRD 0x60
#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
#define CQSPI_REG_INDIRECTRDBYTES 0x6C
#define CQSPI_REG_CMDCTRL 0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
#define CQSPI_REG_INDIRECTWR 0x70
#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
#define CQSPI_REG_INDIRECTWRBYTES 0x7C
#define CQSPI_REG_CMDADDRESS 0x94
#define CQSPI_REG_CMDREADDATALOWER 0xA0
#define CQSPI_REG_CMDREADDATAUPPER 0xA4
#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
/* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
#define CQSPI_REG_IRQ_IND_COMP BIT(2)
#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
#define CQSPI_REG_IRQ_WATERMARK BIT(6)
#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
CQSPI_REG_IRQ_IND_SRAM_FULL | \
CQSPI_REG_IRQ_IND_COMP)
#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
CQSPI_REG_IRQ_WATERMARK | \
CQSPI_REG_IRQ_UNDERFLOW)
#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
{
unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
u32 val;
while (1) {
val = readl(reg);
if (clear)
val = ~val;
val &= mask;
if (val == mask)
return 0;
if (time_after(jiffies, end))
return -ETIMEDOUT;
}
}
static bool cqspi_is_idle(struct cqspi_st *cqspi)
{
u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
}
static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
{
u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}
static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
{
struct cqspi_st *cqspi = dev;
unsigned int irq_status;
/* Read interrupt status */
irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
/* Clear interrupt */
writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
if (irq_status)
complete(&cqspi->transfer_complete);
return IRQ_HANDLED;
}
static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
u32 rdreg = 0;
rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
return rdreg;
}
static int cqspi_wait_idle(struct cqspi_st *cqspi)
{
const unsigned int poll_idle_retry = 3;
unsigned int count = 0;
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
while (1) {
/*
* Read few times in succession to ensure the controller
* is indeed idle, that is, the bit does not transition
* low again.
*/
if (cqspi_is_idle(cqspi))
count++;
else
count = 0;
if (count >= poll_idle_retry)
return 0;
if (time_after(jiffies, timeout)) {
/* Timeout, in busy mode. */
dev_err(&cqspi->pdev->dev,
"QSPI is still busy after %dms timeout.\n",
CQSPI_TIMEOUT_MS);
return -ETIMEDOUT;
}
cpu_relax();
}
}
static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
{
void __iomem *reg_base = cqspi->iobase;
int ret;
/* Write the CMDCTRL without start execution. */
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Start execute */
reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Polling for completion. */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
if (ret) {
dev_err(&cqspi->pdev->dev,
"Flash command execution timed out.\n");
return ret;
}
/* Polling QSPI idle status. */
return cqspi_wait_idle(cqspi);
}
static int cqspi_command_read(struct spi_nor *nor,
const u8 *txbuf, const unsigned n_tx,
u8 *rxbuf, const unsigned n_rx)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int rdreg;
unsigned int reg;
unsigned int read_len;
int status;
if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
n_rx, rxbuf);
return -EINVAL;
}
reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
/* 0 means 1 byte. */
reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
status = cqspi_exec_flash_cmd(cqspi, reg);
if (status)
return status;
reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
/* Put the read value into rx_buf */
read_len = (n_rx > 4) ? 4 : n_rx;
memcpy(rxbuf, &reg, read_len);
rxbuf += read_len;
if (n_rx > 4) {
reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
read_len = n_rx - read_len;
memcpy(rxbuf, &reg, read_len);
}
return 0;
}
static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
const u8 *txbuf, const unsigned n_tx)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
unsigned int data;
u32 write_len;
int ret;
if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
dev_err(nor->dev,
"Invalid input argument, cmdlen %d txbuf 0x%p\n",
n_tx, txbuf);
return -EINVAL;
}
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
if (n_tx) {
reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
data = 0;
write_len = (n_tx > 4) ? 4 : n_tx;
memcpy(&data, txbuf, write_len);
txbuf += write_len;
writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
if (n_tx > 4) {
data = 0;
write_len = n_tx - 4;
memcpy(&data, txbuf, write_len);
writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
}
}
ret = cqspi_exec_flash_cmd(cqspi, reg);
return ret;
}
static int cqspi_command_write_addr(struct spi_nor *nor,
const u8 opcode, const unsigned int addr)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
return cqspi_exec_flash_cmd(cqspi, reg);
}
static int cqspi_read_setup(struct spi_nor *nor)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int dummy_clk = 0;
unsigned int reg;
reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
/* Setup dummy clock cycles */
dummy_clk = nor->read_dummy;
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
dummy_clk = CQSPI_DUMMY_CLKS_MAX;
if (dummy_clk / 8) {
reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
/* Set mode bits high to ensure chip doesn't enter XIP */
writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
/* Need to subtract the mode byte (8 clocks). */
if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
dummy_clk -= 8;
if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
<< CQSPI_REG_RD_INSTR_DUMMY_LSB;
}
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
/* Set address width */
reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (nor->addr_width - 1);
writel(reg, reg_base + CQSPI_REG_SIZE);
return 0;
}
static int cqspi_indirect_read_execute(struct spi_nor *nor, u8 *rxbuf,
loff_t from_addr, const size_t n_rx)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
void __iomem *ahb_base = cqspi->ahb_base;
unsigned int remaining = n_rx;
unsigned int mod_bytes = n_rx % 4;
unsigned int bytes_to_read = 0;
u8 *rxbuf_end = rxbuf + n_rx;
int ret = 0;
writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
reinit_completion(&cqspi->transfer_complete);
writel(CQSPI_REG_INDIRECTRD_START_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
while (remaining > 0) {
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
ret = -ETIMEDOUT;
bytes_to_read = cqspi_get_rd_sram_level(cqspi);
if (ret && bytes_to_read == 0) {
dev_err(nor->dev, "Indirect read timeout, no bytes\n");
goto failrd;
}
while (bytes_to_read != 0) {
unsigned int word_remain = round_down(remaining, 4);
bytes_to_read *= cqspi->fifo_width;
bytes_to_read = bytes_to_read > remaining ?
remaining : bytes_to_read;
bytes_to_read = round_down(bytes_to_read, 4);
/* Read 4 byte word chunks then single bytes */
if (bytes_to_read) {
ioread32_rep(ahb_base, rxbuf,
(bytes_to_read / 4));
} else if (!word_remain && mod_bytes) {
unsigned int temp = ioread32(ahb_base);
bytes_to_read = mod_bytes;
memcpy(rxbuf, &temp, min((unsigned int)
(rxbuf_end - rxbuf),
bytes_to_read));
}
rxbuf += bytes_to_read;
remaining -= bytes_to_read;
bytes_to_read = cqspi_get_rd_sram_level(cqspi);
}
if (remaining > 0)
reinit_completion(&cqspi->transfer_complete);
}
/* Check indirect done status */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
if (ret) {
dev_err(nor->dev,
"Indirect read completion error (%i)\n", ret);
goto failrd;
}
/* Disable interrupt */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
return 0;
failrd:
/* Disable interrupt */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Cancel the indirect read */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
return ret;
}
static int cqspi_write_setup(struct spi_nor *nor)
{
unsigned int reg;
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
/* Set opcode. */
reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
writel(reg, reg_base + CQSPI_REG_WR_INSTR);
reg = cqspi_calc_rdreg(nor, nor->program_opcode);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (nor->addr_width - 1);
writel(reg, reg_base + CQSPI_REG_SIZE);
return 0;
}
static int cqspi_indirect_write_execute(struct spi_nor *nor, loff_t to_addr,
const u8 *txbuf, const size_t n_tx)
{
const unsigned int page_size = nor->page_size;
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int remaining = n_tx;
unsigned int write_bytes;
int ret;
writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
reinit_completion(&cqspi->transfer_complete);
writel(CQSPI_REG_INDIRECTWR_START_MASK,
reg_base + CQSPI_REG_INDIRECTWR);
/*
* As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
* Controller programming sequence, couple of cycles of
* QSPI_REF_CLK delay is required for the above bit to
* be internally synchronized by the QSPI module. Provide 5
* cycles of delay.
*/
if (cqspi->wr_delay)
ndelay(cqspi->wr_delay);
while (remaining > 0) {
size_t write_words, mod_bytes;
write_bytes = remaining > page_size ? page_size : remaining;
write_words = write_bytes / 4;
mod_bytes = write_bytes % 4;
/* Write 4 bytes at a time then single bytes. */
if (write_words) {
iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
txbuf += (write_words * 4);
}
if (mod_bytes) {
unsigned int temp = 0xFFFFFFFF;
memcpy(&temp, txbuf, mod_bytes);
iowrite32(temp, cqspi->ahb_base);
txbuf += mod_bytes;
}
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
dev_err(nor->dev, "Indirect write timeout\n");
ret = -ETIMEDOUT;
goto failwr;
}
remaining -= write_bytes;
if (remaining > 0)
reinit_completion(&cqspi->transfer_complete);
}
/* Check indirect done status */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
if (ret) {
dev_err(nor->dev,
"Indirect write completion error (%i)\n", ret);
goto failwr;
}
/* Disable interrupt. */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
cqspi_wait_idle(cqspi);
return 0;
failwr:
/* Disable interrupt. */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Cancel the indirect write */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
reg_base + CQSPI_REG_INDIRECTWR);
return ret;
}
static void cqspi_chipselect(struct spi_nor *nor)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int chip_select = f_pdata->cs;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
if (cqspi->is_decoded_cs) {
reg |= CQSPI_REG_CONFIG_DECODE_MASK;
} else {
reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
/* Convert CS if without decoder.
* CS0 to 4b'1110
* CS1 to 4b'1101
* CS2 to 4b'1011
* CS3 to 4b'0111
*/
chip_select = 0xF & ~(1 << chip_select);
}
reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB);
reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *iobase = cqspi->iobase;
unsigned int reg;
/* configure page size and block size. */
reg = readl(iobase + CQSPI_REG_SIZE);
reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
reg |= (nor->addr_width - 1);
writel(reg, iobase + CQSPI_REG_SIZE);
/* configure the chip select */
cqspi_chipselect(nor);
/* Store the new configuration of the controller */
cqspi->current_page_size = nor->page_size;
cqspi->current_erase_size = nor->mtd.erasesize;
cqspi->current_addr_width = nor->addr_width;
}
static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
const unsigned int ns_val)
{
unsigned int ticks;
ticks = ref_clk_hz / 1000; /* kHz */
ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
return ticks;
}
static void cqspi_delay(struct spi_nor *nor)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *iobase = cqspi->iobase;
const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
unsigned int tshsl, tchsh, tslch, tsd2d;
unsigned int reg;
unsigned int tsclk;
/* calculate the number of ref ticks for one sclk tick */
tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
/* this particular value must be at least one sclk */
if (tshsl < tsclk)
tshsl = tsclk;
tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
<< CQSPI_REG_DELAY_TSHSL_LSB;
reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
<< CQSPI_REG_DELAY_TCHSH_LSB;
reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
<< CQSPI_REG_DELAY_TSLCH_LSB;
reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
<< CQSPI_REG_DELAY_TSD2D_LSB;
writel(reg, iobase + CQSPI_REG_DELAY);
}
static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
{
const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
void __iomem *reg_base = cqspi->iobase;
u32 reg, div;
/* Recalculate the baudrate divisor based on QSPI specification. */
div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_readdata_capture(struct cqspi_st *cqspi,
const bool bypass,
const unsigned int delay)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_READCAPTURE);
if (bypass)
reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
else
reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
<< CQSPI_REG_READCAPTURE_DELAY_LSB);
reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
<< CQSPI_REG_READCAPTURE_DELAY_LSB;
writel(reg, reg_base + CQSPI_REG_READCAPTURE);
}
static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
if (enable)
reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
else
reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_configure(struct spi_nor *nor)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
const unsigned int sclk = f_pdata->clk_rate;
int switch_cs = (cqspi->current_cs != f_pdata->cs);
int switch_ck = (cqspi->sclk != sclk);
if ((cqspi->current_page_size != nor->page_size) ||
(cqspi->current_erase_size != nor->mtd.erasesize) ||
(cqspi->current_addr_width != nor->addr_width))
switch_cs = 1;
if (switch_cs || switch_ck)
cqspi_controller_enable(cqspi, 0);
/* Switch chip select. */
if (switch_cs) {
cqspi->current_cs = f_pdata->cs;
cqspi_configure_cs_and_sizes(nor);
}
/* Setup baudrate divisor and delays */
if (switch_ck) {
cqspi->sclk = sclk;
cqspi_config_baudrate_div(cqspi);
cqspi_delay(nor);
cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
f_pdata->read_delay);
}
if (switch_cs || switch_ck)
cqspi_controller_enable(cqspi, 1);
}
static int cqspi_set_protocol(struct spi_nor *nor, const int read)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
if (read) {
mtd: spi-nor: introduce SPI 1-2-2 and SPI 1-4-4 protocols This patch changes the prototype of spi_nor_scan(): its 3rd parameter is replaced by a 'struct spi_nor_hwcaps' pointer, which tells the spi-nor framework about the actual hardware capabilities supported by the SPI controller and its driver. Besides, this patch also introduces a new 'struct spi_nor_flash_parameter' telling the spi-nor framework about the hardware capabilities supported by the SPI flash memory and the associated settings required to use those hardware caps. Then, to improve the readability of spi_nor_scan(), the discovery of the memory settings and the memory initialization are now split into two dedicated functions. 1 - spi_nor_init_params() The spi_nor_init_params() function is responsible for initializing the 'struct spi_nor_flash_parameter'. Currently this structure is filled with legacy values but further patches will allow to override some parameter values dynamically, for instance by reading the JESD216 Serial Flash Discoverable Parameter (SFDP) tables from the SPI memory. The spi_nor_init_params() function only deals with the hardware capabilities of the SPI flash memory: especially it doesn't care about the hardware capabilities supported by the SPI controller. 2 - spi_nor_setup() The second function is called once the 'struct spi_nor_flash_parameter' has been initialized by spi_nor_init_params(). With both 'struct spi_nor_flash_parameter' and 'struct spi_nor_hwcaps', the new argument of spi_nor_scan(), spi_nor_setup() computes the best match between hardware caps supported by both the (Q)SPI memory and controller hence selecting the relevant settings for (Fast) Read and Page Program operations. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Reviewed-by: Marek Vasut <marek.vasut@gmail.com>
2017-04-25 14:08:46 -06:00
switch (nor->read_proto) {
case SNOR_PROTO_1_1_1:
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
break;
mtd: spi-nor: introduce SPI 1-2-2 and SPI 1-4-4 protocols This patch changes the prototype of spi_nor_scan(): its 3rd parameter is replaced by a 'struct spi_nor_hwcaps' pointer, which tells the spi-nor framework about the actual hardware capabilities supported by the SPI controller and its driver. Besides, this patch also introduces a new 'struct spi_nor_flash_parameter' telling the spi-nor framework about the hardware capabilities supported by the SPI flash memory and the associated settings required to use those hardware caps. Then, to improve the readability of spi_nor_scan(), the discovery of the memory settings and the memory initialization are now split into two dedicated functions. 1 - spi_nor_init_params() The spi_nor_init_params() function is responsible for initializing the 'struct spi_nor_flash_parameter'. Currently this structure is filled with legacy values but further patches will allow to override some parameter values dynamically, for instance by reading the JESD216 Serial Flash Discoverable Parameter (SFDP) tables from the SPI memory. The spi_nor_init_params() function only deals with the hardware capabilities of the SPI flash memory: especially it doesn't care about the hardware capabilities supported by the SPI controller. 2 - spi_nor_setup() The second function is called once the 'struct spi_nor_flash_parameter' has been initialized by spi_nor_init_params(). With both 'struct spi_nor_flash_parameter' and 'struct spi_nor_hwcaps', the new argument of spi_nor_scan(), spi_nor_setup() computes the best match between hardware caps supported by both the (Q)SPI memory and controller hence selecting the relevant settings for (Fast) Read and Page Program operations. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Reviewed-by: Marek Vasut <marek.vasut@gmail.com>
2017-04-25 14:08:46 -06:00
case SNOR_PROTO_1_1_2:
f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
break;
mtd: spi-nor: introduce SPI 1-2-2 and SPI 1-4-4 protocols This patch changes the prototype of spi_nor_scan(): its 3rd parameter is replaced by a 'struct spi_nor_hwcaps' pointer, which tells the spi-nor framework about the actual hardware capabilities supported by the SPI controller and its driver. Besides, this patch also introduces a new 'struct spi_nor_flash_parameter' telling the spi-nor framework about the hardware capabilities supported by the SPI flash memory and the associated settings required to use those hardware caps. Then, to improve the readability of spi_nor_scan(), the discovery of the memory settings and the memory initialization are now split into two dedicated functions. 1 - spi_nor_init_params() The spi_nor_init_params() function is responsible for initializing the 'struct spi_nor_flash_parameter'. Currently this structure is filled with legacy values but further patches will allow to override some parameter values dynamically, for instance by reading the JESD216 Serial Flash Discoverable Parameter (SFDP) tables from the SPI memory. The spi_nor_init_params() function only deals with the hardware capabilities of the SPI flash memory: especially it doesn't care about the hardware capabilities supported by the SPI controller. 2 - spi_nor_setup() The second function is called once the 'struct spi_nor_flash_parameter' has been initialized by spi_nor_init_params(). With both 'struct spi_nor_flash_parameter' and 'struct spi_nor_hwcaps', the new argument of spi_nor_scan(), spi_nor_setup() computes the best match between hardware caps supported by both the (Q)SPI memory and controller hence selecting the relevant settings for (Fast) Read and Page Program operations. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Reviewed-by: Marek Vasut <marek.vasut@gmail.com>
2017-04-25 14:08:46 -06:00
case SNOR_PROTO_1_1_4:
f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
break;
case SNOR_PROTO_1_1_8:
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
}
cqspi_configure(nor);
return 0;
}
static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
size_t len, const u_char *buf)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
int ret;
ret = cqspi_set_protocol(nor, 0);
if (ret)
return ret;
ret = cqspi_write_setup(nor);
if (ret)
return ret;
if (f_pdata->use_direct_mode) {
memcpy_toio(cqspi->ahb_base + to, buf, len);
ret = cqspi_wait_idle(cqspi);
} else {
ret = cqspi_indirect_write_execute(nor, to, buf, len);
}
if (ret)
return ret;
return len;
}
static void cqspi_rx_dma_callback(void *param)
{
struct cqspi_st *cqspi = param;
complete(&cqspi->rx_dma_complete);
}
static int cqspi_direct_read_execute(struct spi_nor *nor, u_char *buf,
loff_t from, size_t len)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
int ret = 0;
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
dma_addr_t dma_dst;
if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
memcpy_fromio(buf, cqspi->ahb_base + from, len);
return 0;
}
dma_dst = dma_map_single(nor->dev, buf, len, DMA_FROM_DEVICE);
if (dma_mapping_error(nor->dev, dma_dst)) {
dev_err(nor->dev, "dma mapping failed\n");
return -ENOMEM;
}
tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
len, flags);
if (!tx) {
dev_err(nor->dev, "device_prep_dma_memcpy error\n");
ret = -EIO;
goto err_unmap;
}
tx->callback = cqspi_rx_dma_callback;
tx->callback_param = cqspi;
cookie = tx->tx_submit(tx);
reinit_completion(&cqspi->rx_dma_complete);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(nor->dev, "dma_submit_error %d\n", cookie);
ret = -EIO;
goto err_unmap;
}
dma_async_issue_pending(cqspi->rx_chan);
if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
msecs_to_jiffies(len))) {
dmaengine_terminate_sync(cqspi->rx_chan);
dev_err(nor->dev, "DMA wait_for_completion_timeout\n");
ret = -ETIMEDOUT;
goto err_unmap;
}
err_unmap:
dma_unmap_single(nor->dev, dma_dst, len, DMA_FROM_DEVICE);
return ret;
}
static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
size_t len, u_char *buf)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
int ret;
ret = cqspi_set_protocol(nor, 1);
if (ret)
return ret;
ret = cqspi_read_setup(nor);
if (ret)
return ret;
if (f_pdata->use_direct_mode)
ret = cqspi_direct_read_execute(nor, buf, from, len);
else
ret = cqspi_indirect_read_execute(nor, buf, from, len);
if (ret)
return ret;
return len;
}
static int cqspi_erase(struct spi_nor *nor, loff_t offs)
{
int ret;
ret = cqspi_set_protocol(nor, 0);
if (ret)
return ret;
/* Send write enable, then erase commands. */
ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
if (ret)
return ret;
/* Set up command buffer. */
ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
if (ret)
return ret;
return 0;
}
static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
mutex_lock(&cqspi->bus_mutex);
return 0;
}
static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
mutex_unlock(&cqspi->bus_mutex);
}
static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
int ret;
ret = cqspi_set_protocol(nor, 0);
if (!ret)
ret = cqspi_command_read(nor, &opcode, 1, buf, len);
return ret;
}
static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
int ret;
ret = cqspi_set_protocol(nor, 0);
if (!ret)
ret = cqspi_command_write(nor, opcode, buf, len);
return ret;
}
static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
struct cqspi_flash_pdata *f_pdata,
struct device_node *np)
{
if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
dev_err(&pdev->dev, "couldn't determine read-delay\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
return -ENXIO;
}
return 0;
}
static int cqspi_of_get_pdata(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct cqspi_st *cqspi = platform_get_drvdata(pdev);
cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
dev_err(&pdev->dev, "couldn't determine fifo-width\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,trigger-address",
&cqspi->trigger_address)) {
dev_err(&pdev->dev, "couldn't determine trigger-address\n");
return -ENXIO;
}
cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
return 0;
}
static void cqspi_controller_init(struct cqspi_st *cqspi)
{
u32 reg;
cqspi_controller_enable(cqspi, 0);
/* Configure the remap address register, no remap */
writel(0, cqspi->iobase + CQSPI_REG_REMAP);
/* Disable all interrupts. */
writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
/* Configure the SRAM split to 1:1 . */
writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
/* Load indirect trigger address. */
writel(cqspi->trigger_address,
cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
/* Program read watermark -- 1/2 of the FIFO. */
writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
/* Program write watermark -- 1/8 of the FIFO. */
writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
/* Enable Direct Access Controller */
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
cqspi_controller_enable(cqspi, 1);
}
static void cqspi_request_mmap_dma(struct cqspi_st *cqspi)
{
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
cqspi->rx_chan = dma_request_chan_by_mask(&mask);
if (IS_ERR(cqspi->rx_chan)) {
dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
cqspi->rx_chan = NULL;
}
init_completion(&cqspi->rx_dma_complete);
}
static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
{
struct platform_device *pdev = cqspi->pdev;
struct device *dev = &pdev->dev;
const struct cqspi_driver_platdata *ddata;
struct spi_nor_hwcaps hwcaps;
struct cqspi_flash_pdata *f_pdata;
struct spi_nor *nor;
struct mtd_info *mtd;
unsigned int cs;
int i, ret;
ddata = of_device_get_match_data(dev);
if (!ddata) {
dev_err(dev, "Couldn't find driver data\n");
return -EINVAL;
}
hwcaps.mask = ddata->hwcaps_mask;
/* Get flash device data */
for_each_available_child_of_node(dev->of_node, np) {
ret = of_property_read_u32(np, "reg", &cs);
if (ret) {
dev_err(dev, "Couldn't determine chip select.\n");
goto err;
}
if (cs >= CQSPI_MAX_CHIPSELECT) {
ret = -EINVAL;
dev_err(dev, "Chip select %d out of range.\n", cs);
goto err;
}
f_pdata = &cqspi->f_pdata[cs];
f_pdata->cqspi = cqspi;
f_pdata->cs = cs;
ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
if (ret)
goto err;
nor = &f_pdata->nor;
mtd = &nor->mtd;
mtd->priv = nor;
nor->dev = dev;
spi_nor_set_flash_node(nor, np);
nor->priv = f_pdata;
nor->read_reg = cqspi_read_reg;
nor->write_reg = cqspi_write_reg;
nor->read = cqspi_read;
nor->write = cqspi_write;
nor->erase = cqspi_erase;
nor->prepare = cqspi_prep;
nor->unprepare = cqspi_unprep;
mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
dev_name(dev), cs);
if (!mtd->name) {
ret = -ENOMEM;
goto err;
}
mtd: spi-nor: introduce SPI 1-2-2 and SPI 1-4-4 protocols This patch changes the prototype of spi_nor_scan(): its 3rd parameter is replaced by a 'struct spi_nor_hwcaps' pointer, which tells the spi-nor framework about the actual hardware capabilities supported by the SPI controller and its driver. Besides, this patch also introduces a new 'struct spi_nor_flash_parameter' telling the spi-nor framework about the hardware capabilities supported by the SPI flash memory and the associated settings required to use those hardware caps. Then, to improve the readability of spi_nor_scan(), the discovery of the memory settings and the memory initialization are now split into two dedicated functions. 1 - spi_nor_init_params() The spi_nor_init_params() function is responsible for initializing the 'struct spi_nor_flash_parameter'. Currently this structure is filled with legacy values but further patches will allow to override some parameter values dynamically, for instance by reading the JESD216 Serial Flash Discoverable Parameter (SFDP) tables from the SPI memory. The spi_nor_init_params() function only deals with the hardware capabilities of the SPI flash memory: especially it doesn't care about the hardware capabilities supported by the SPI controller. 2 - spi_nor_setup() The second function is called once the 'struct spi_nor_flash_parameter' has been initialized by spi_nor_init_params(). With both 'struct spi_nor_flash_parameter' and 'struct spi_nor_hwcaps', the new argument of spi_nor_scan(), spi_nor_setup() computes the best match between hardware caps supported by both the (Q)SPI memory and controller hence selecting the relevant settings for (Fast) Read and Page Program operations. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Reviewed-by: Marek Vasut <marek.vasut@gmail.com>
2017-04-25 14:08:46 -06:00
ret = spi_nor_scan(nor, NULL, &hwcaps);
if (ret)
goto err;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err;
f_pdata->registered = true;
if (mtd->size <= cqspi->ahb_size) {
f_pdata->use_direct_mode = true;
dev_dbg(nor->dev, "using direct mode for %s\n",
mtd->name);
if (!cqspi->rx_chan)
cqspi_request_mmap_dma(cqspi);
}
}
return 0;
err:
for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
if (cqspi->f_pdata[i].registered)
mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
return ret;
}
static int cqspi_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct cqspi_st *cqspi;
struct resource *res;
struct resource *res_ahb;
const struct cqspi_driver_platdata *ddata;
int ret;
int irq;
cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
if (!cqspi)
return -ENOMEM;
mutex_init(&cqspi->bus_mutex);
cqspi->pdev = pdev;
platform_set_drvdata(pdev, cqspi);
/* Obtain configuration from OF. */
ret = cqspi_of_get_pdata(pdev);
if (ret) {
dev_err(dev, "Cannot get mandatory OF data.\n");
return -ENODEV;
}
/* Obtain QSPI clock. */
cqspi->clk = devm_clk_get(dev, NULL);
if (IS_ERR(cqspi->clk)) {
dev_err(dev, "Cannot claim QSPI clock.\n");
return PTR_ERR(cqspi->clk);
}
/* Obtain and remap controller address. */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cqspi->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(cqspi->iobase)) {
dev_err(dev, "Cannot remap controller address.\n");
return PTR_ERR(cqspi->iobase);
}
/* Obtain and remap AHB address. */
res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
if (IS_ERR(cqspi->ahb_base)) {
dev_err(dev, "Cannot remap AHB address.\n");
return PTR_ERR(cqspi->ahb_base);
}
cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
cqspi->ahb_size = resource_size(res_ahb);
init_completion(&cqspi->transfer_complete);
/* Obtain IRQ line. */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "Cannot obtain IRQ.\n");
return -ENXIO;
}
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
return ret;
}
ret = clk_prepare_enable(cqspi->clk);
if (ret) {
dev_err(dev, "Cannot enable QSPI clock.\n");
goto probe_clk_failed;
}
cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
ddata = of_device_get_match_data(dev);
if (ddata && (ddata->quirks & CQSPI_NEEDS_WR_DELAY))
cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
cqspi->master_ref_clk_hz);
ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
pdev->name, cqspi);
if (ret) {
dev_err(dev, "Cannot request IRQ.\n");
goto probe_irq_failed;
}
cqspi_wait_idle(cqspi);
cqspi_controller_init(cqspi);
cqspi->current_cs = -1;
cqspi->sclk = 0;
ret = cqspi_setup_flash(cqspi, np);
if (ret) {
dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
goto probe_setup_failed;
}
return ret;
probe_setup_failed:
cqspi_controller_enable(cqspi, 0);
probe_irq_failed:
clk_disable_unprepare(cqspi->clk);
probe_clk_failed:
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
return ret;
}
static int cqspi_remove(struct platform_device *pdev)
{
struct cqspi_st *cqspi = platform_get_drvdata(pdev);
int i;
for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
if (cqspi->f_pdata[i].registered)
mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
cqspi_controller_enable(cqspi, 0);
if (cqspi->rx_chan)
dma_release_channel(cqspi->rx_chan);
clk_disable_unprepare(cqspi->clk);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int cqspi_suspend(struct device *dev)
{
struct cqspi_st *cqspi = dev_get_drvdata(dev);
cqspi_controller_enable(cqspi, 0);
return 0;
}
static int cqspi_resume(struct device *dev)
{
struct cqspi_st *cqspi = dev_get_drvdata(dev);
cqspi_controller_enable(cqspi, 1);
return 0;
}
static const struct dev_pm_ops cqspi__dev_pm_ops = {
.suspend = cqspi_suspend,
.resume = cqspi_resume,
};
#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
#else
#define CQSPI_DEV_PM_OPS NULL
#endif
static const struct cqspi_driver_platdata cdns_qspi = {
.hwcaps_mask = CQSPI_BASE_HWCAPS_MASK,
};
static const struct cqspi_driver_platdata k2g_qspi = {
.hwcaps_mask = CQSPI_BASE_HWCAPS_MASK,
.quirks = CQSPI_NEEDS_WR_DELAY,
};
static const struct cqspi_driver_platdata am654_ospi = {
.hwcaps_mask = CQSPI_BASE_HWCAPS_MASK | SNOR_HWCAPS_READ_1_1_8,
.quirks = CQSPI_NEEDS_WR_DELAY,
};
static const struct of_device_id cqspi_dt_ids[] = {
{
.compatible = "cdns,qspi-nor",
.data = &cdns_qspi,
},
{
.compatible = "ti,k2g-qspi",
.data = &k2g_qspi,
},
{
.compatible = "ti,am654-ospi",
.data = &am654_ospi,
},
{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
static struct platform_driver cqspi_platform_driver = {
.probe = cqspi_probe,
.remove = cqspi_remove,
.driver = {
.name = CQSPI_NAME,
.pm = CQSPI_DEV_PM_OPS,
.of_match_table = cqspi_dt_ids,
},
};
module_platform_driver(cqspi_platform_driver);
MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" CQSPI_NAME);
MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");