1
0
Fork 0
alistair23-linux/drivers/net/ethernet/realtek/r8169_main.c

6990 lines
175 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* r8169.c: RealTek 8169/8168/8101 ethernet driver.
*
* Copyright (c) 2002 ShuChen <shuchen@realtek.com.tw>
* Copyright (c) 2003 - 2007 Francois Romieu <romieu@fr.zoreil.com>
* Copyright (c) a lot of people too. Please respect their work.
*
* See MAINTAINERS file for support contact information.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/phy.h>
#include <linux/if_vlan.h>
#include <linux/crc32.h>
#include <linux/in.h>
#include <linux/io.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/prefetch.h>
#include <linux/pci-aspm.h>
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#include "r8169_firmware.h"
#define MODULENAME "r8169"
#define FIRMWARE_8168D_1 "rtl_nic/rtl8168d-1.fw"
#define FIRMWARE_8168D_2 "rtl_nic/rtl8168d-2.fw"
#define FIRMWARE_8168E_1 "rtl_nic/rtl8168e-1.fw"
#define FIRMWARE_8168E_2 "rtl_nic/rtl8168e-2.fw"
#define FIRMWARE_8168E_3 "rtl_nic/rtl8168e-3.fw"
#define FIRMWARE_8168F_1 "rtl_nic/rtl8168f-1.fw"
#define FIRMWARE_8168F_2 "rtl_nic/rtl8168f-2.fw"
#define FIRMWARE_8105E_1 "rtl_nic/rtl8105e-1.fw"
#define FIRMWARE_8402_1 "rtl_nic/rtl8402-1.fw"
#define FIRMWARE_8411_1 "rtl_nic/rtl8411-1.fw"
#define FIRMWARE_8411_2 "rtl_nic/rtl8411-2.fw"
#define FIRMWARE_8106E_1 "rtl_nic/rtl8106e-1.fw"
#define FIRMWARE_8106E_2 "rtl_nic/rtl8106e-2.fw"
#define FIRMWARE_8168G_2 "rtl_nic/rtl8168g-2.fw"
#define FIRMWARE_8168G_3 "rtl_nic/rtl8168g-3.fw"
#define FIRMWARE_8168H_1 "rtl_nic/rtl8168h-1.fw"
#define FIRMWARE_8168H_2 "rtl_nic/rtl8168h-2.fw"
#define FIRMWARE_8107E_1 "rtl_nic/rtl8107e-1.fw"
#define FIRMWARE_8107E_2 "rtl_nic/rtl8107e-2.fw"
#define R8169_MSG_DEFAULT \
(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN)
/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
The RTL chips use a 64 element hash table based on the Ethernet CRC. */
#define MC_FILTER_LIMIT 32
r8169: use unlimited DMA burst for TX The r8169 driver currently limits the DMA burst for TX to 1024 bytes. I have a box where this prevents the interface from using the gigabit line to its full potential. This patch solves the problem by setting TX_DMA_BURST to unlimited. The box has an ASRock B75M motherboard with on-board RTL8168evl/8111evl (XID 0c900880). TSO is enabled. I used netperf (TCP_STREAM test) to measure the dependency of TX throughput on MTU. I did it for three different values of TX_DMA_BURST ('5'=512, '6'=1024, '7'=unlimited). This chart shows the results: http://michich.fedorapeople.org/r8169/r8169-effects-of-TX_DMA_BURST.png Interesting points: - With the current DMA burst limit (1024): - at the default MTU=1500 I get only 842 Mbit/s. - when going from small MTU, the performance rises monotonically with increasing MTU only up to a peak at MTU=1076 (908 MBit/s). Then there's a sudden drop to 762 MBit/s from which the throughput rises monotonically again with further MTU increases. - With a smaller DMA burst limit (512): - there's a similar peak at MTU=1076 and another one at MTU=564. - With unlimited DMA burst: - at the default MTU=1500 I get nice 940 Mbit/s. - the throughput rises monotonically with increasing MTU with no strange peaks. Notice that the peaks occur at MTU sizes that are multiples of the DMA burst limit plus 52. Why 52? Because: 20 (IP header) + 20 (TCP header) + 12 (TCP options) = 52 The Realtek-provided r8168 driver (v8.032.00) uses unlimited TX DMA burst too, except for CFG_METHOD_1 where the TX DMA burst is set to 512 bytes. CFG_METHOD_1 appears to be the oldest MAC version of "RTL8168B/8111B", i.e. RTL_GIGA_MAC_VER_11 in r8169. Not sure if this MAC version really needs the smaller burst limit, or if any other versions have similar requirements. Signed-off-by: Michal Schmidt <mschmidt@redhat.com> Acked-by: Francois Romieu <romieu@fr.zoreil.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-09 07:55:26 -06:00
#define TX_DMA_BURST 7 /* Maximum PCI burst, '7' is unlimited */
#define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */
#define R8169_REGS_SIZE 256
#define R8169_RX_BUF_SIZE (SZ_16K - 1)
#define NUM_TX_DESC 64 /* Number of Tx descriptor registers */
#define NUM_RX_DESC 256U /* Number of Rx descriptor registers */
#define R8169_TX_RING_BYTES (NUM_TX_DESC * sizeof(struct TxDesc))
#define R8169_RX_RING_BYTES (NUM_RX_DESC * sizeof(struct RxDesc))
#define RTL_CFG_NO_GBIT 1
/* write/read MMIO register */
#define RTL_W8(tp, reg, val8) writeb((val8), tp->mmio_addr + (reg))
#define RTL_W16(tp, reg, val16) writew((val16), tp->mmio_addr + (reg))
#define RTL_W32(tp, reg, val32) writel((val32), tp->mmio_addr + (reg))
#define RTL_R8(tp, reg) readb(tp->mmio_addr + (reg))
#define RTL_R16(tp, reg) readw(tp->mmio_addr + (reg))
#define RTL_R32(tp, reg) readl(tp->mmio_addr + (reg))
enum mac_version {
/* support for ancient RTL_GIGA_MAC_VER_01 has been removed */
RTL_GIGA_MAC_VER_02,
RTL_GIGA_MAC_VER_03,
RTL_GIGA_MAC_VER_04,
RTL_GIGA_MAC_VER_05,
RTL_GIGA_MAC_VER_06,
RTL_GIGA_MAC_VER_07,
RTL_GIGA_MAC_VER_08,
RTL_GIGA_MAC_VER_09,
RTL_GIGA_MAC_VER_10,
RTL_GIGA_MAC_VER_11,
RTL_GIGA_MAC_VER_12,
RTL_GIGA_MAC_VER_13,
RTL_GIGA_MAC_VER_14,
RTL_GIGA_MAC_VER_15,
RTL_GIGA_MAC_VER_16,
RTL_GIGA_MAC_VER_17,
RTL_GIGA_MAC_VER_18,
RTL_GIGA_MAC_VER_19,
RTL_GIGA_MAC_VER_20,
RTL_GIGA_MAC_VER_21,
RTL_GIGA_MAC_VER_22,
RTL_GIGA_MAC_VER_23,
RTL_GIGA_MAC_VER_24,
RTL_GIGA_MAC_VER_25,
RTL_GIGA_MAC_VER_26,
RTL_GIGA_MAC_VER_27,
RTL_GIGA_MAC_VER_28,
RTL_GIGA_MAC_VER_29,
RTL_GIGA_MAC_VER_30,
RTL_GIGA_MAC_VER_31,
RTL_GIGA_MAC_VER_32,
RTL_GIGA_MAC_VER_33,
RTL_GIGA_MAC_VER_34,
RTL_GIGA_MAC_VER_35,
RTL_GIGA_MAC_VER_36,
RTL_GIGA_MAC_VER_37,
RTL_GIGA_MAC_VER_38,
RTL_GIGA_MAC_VER_39,
RTL_GIGA_MAC_VER_40,
RTL_GIGA_MAC_VER_41,
RTL_GIGA_MAC_VER_42,
RTL_GIGA_MAC_VER_43,
RTL_GIGA_MAC_VER_44,
RTL_GIGA_MAC_VER_45,
RTL_GIGA_MAC_VER_46,
RTL_GIGA_MAC_VER_47,
RTL_GIGA_MAC_VER_48,
RTL_GIGA_MAC_VER_49,
RTL_GIGA_MAC_VER_50,
RTL_GIGA_MAC_VER_51,
RTL_GIGA_MAC_NONE
};
#define JUMBO_1K ETH_DATA_LEN
#define JUMBO_4K (4*1024 - ETH_HLEN - 2)
#define JUMBO_6K (6*1024 - ETH_HLEN - 2)
#define JUMBO_7K (7*1024 - ETH_HLEN - 2)
#define JUMBO_9K (9*1024 - ETH_HLEN - 2)
static const struct {
const char *name;
const char *fw_name;
} rtl_chip_infos[] = {
/* PCI devices. */
[RTL_GIGA_MAC_VER_02] = {"RTL8169s" },
[RTL_GIGA_MAC_VER_03] = {"RTL8110s" },
[RTL_GIGA_MAC_VER_04] = {"RTL8169sb/8110sb" },
[RTL_GIGA_MAC_VER_05] = {"RTL8169sc/8110sc" },
[RTL_GIGA_MAC_VER_06] = {"RTL8169sc/8110sc" },
/* PCI-E devices. */
[RTL_GIGA_MAC_VER_07] = {"RTL8102e" },
[RTL_GIGA_MAC_VER_08] = {"RTL8102e" },
[RTL_GIGA_MAC_VER_09] = {"RTL8102e/RTL8103e" },
[RTL_GIGA_MAC_VER_10] = {"RTL8101e" },
[RTL_GIGA_MAC_VER_11] = {"RTL8168b/8111b" },
[RTL_GIGA_MAC_VER_12] = {"RTL8168b/8111b" },
[RTL_GIGA_MAC_VER_13] = {"RTL8101e" },
[RTL_GIGA_MAC_VER_14] = {"RTL8100e" },
[RTL_GIGA_MAC_VER_15] = {"RTL8100e" },
[RTL_GIGA_MAC_VER_16] = {"RTL8101e" },
[RTL_GIGA_MAC_VER_17] = {"RTL8168b/8111b" },
[RTL_GIGA_MAC_VER_18] = {"RTL8168cp/8111cp" },
[RTL_GIGA_MAC_VER_19] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_20] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_21] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_22] = {"RTL8168c/8111c" },
[RTL_GIGA_MAC_VER_23] = {"RTL8168cp/8111cp" },
[RTL_GIGA_MAC_VER_24] = {"RTL8168cp/8111cp" },
[RTL_GIGA_MAC_VER_25] = {"RTL8168d/8111d", FIRMWARE_8168D_1},
[RTL_GIGA_MAC_VER_26] = {"RTL8168d/8111d", FIRMWARE_8168D_2},
[RTL_GIGA_MAC_VER_27] = {"RTL8168dp/8111dp" },
[RTL_GIGA_MAC_VER_28] = {"RTL8168dp/8111dp" },
[RTL_GIGA_MAC_VER_29] = {"RTL8105e", FIRMWARE_8105E_1},
[RTL_GIGA_MAC_VER_30] = {"RTL8105e", FIRMWARE_8105E_1},
[RTL_GIGA_MAC_VER_31] = {"RTL8168dp/8111dp" },
[RTL_GIGA_MAC_VER_32] = {"RTL8168e/8111e", FIRMWARE_8168E_1},
[RTL_GIGA_MAC_VER_33] = {"RTL8168e/8111e", FIRMWARE_8168E_2},
[RTL_GIGA_MAC_VER_34] = {"RTL8168evl/8111evl", FIRMWARE_8168E_3},
[RTL_GIGA_MAC_VER_35] = {"RTL8168f/8111f", FIRMWARE_8168F_1},
[RTL_GIGA_MAC_VER_36] = {"RTL8168f/8111f", FIRMWARE_8168F_2},
[RTL_GIGA_MAC_VER_37] = {"RTL8402", FIRMWARE_8402_1 },
[RTL_GIGA_MAC_VER_38] = {"RTL8411", FIRMWARE_8411_1 },
[RTL_GIGA_MAC_VER_39] = {"RTL8106e", FIRMWARE_8106E_1},
[RTL_GIGA_MAC_VER_40] = {"RTL8168g/8111g", FIRMWARE_8168G_2},
[RTL_GIGA_MAC_VER_41] = {"RTL8168g/8111g" },
[RTL_GIGA_MAC_VER_42] = {"RTL8168gu/8111gu", FIRMWARE_8168G_3},
[RTL_GIGA_MAC_VER_43] = {"RTL8106eus", FIRMWARE_8106E_2},
[RTL_GIGA_MAC_VER_44] = {"RTL8411b", FIRMWARE_8411_2 },
[RTL_GIGA_MAC_VER_45] = {"RTL8168h/8111h", FIRMWARE_8168H_1},
[RTL_GIGA_MAC_VER_46] = {"RTL8168h/8111h", FIRMWARE_8168H_2},
[RTL_GIGA_MAC_VER_47] = {"RTL8107e", FIRMWARE_8107E_1},
[RTL_GIGA_MAC_VER_48] = {"RTL8107e", FIRMWARE_8107E_2},
[RTL_GIGA_MAC_VER_49] = {"RTL8168ep/8111ep" },
[RTL_GIGA_MAC_VER_50] = {"RTL8168ep/8111ep" },
[RTL_GIGA_MAC_VER_51] = {"RTL8168ep/8111ep" },
};
static const struct pci_device_id rtl8169_pci_tbl[] = {
{ PCI_VDEVICE(REALTEK, 0x2502) },
{ PCI_VDEVICE(REALTEK, 0x2600) },
{ PCI_VDEVICE(REALTEK, 0x8129) },
{ PCI_VDEVICE(REALTEK, 0x8136), RTL_CFG_NO_GBIT },
{ PCI_VDEVICE(REALTEK, 0x8161) },
{ PCI_VDEVICE(REALTEK, 0x8167) },
{ PCI_VDEVICE(REALTEK, 0x8168) },
{ PCI_VDEVICE(NCUBE, 0x8168) },
{ PCI_VDEVICE(REALTEK, 0x8169) },
{ PCI_VENDOR_ID_DLINK, 0x4300,
PCI_VENDOR_ID_DLINK, 0x4b10, 0, 0 },
{ PCI_VDEVICE(DLINK, 0x4300) },
{ PCI_VDEVICE(DLINK, 0x4302) },
{ PCI_VDEVICE(AT, 0xc107) },
{ PCI_VDEVICE(USR, 0x0116) },
{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024 },
{ 0x0001, 0x8168, PCI_ANY_ID, 0x2410 },
{}
};
MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl);
static struct {
u32 msg_enable;
} debug = { -1 };
enum rtl_registers {
MAC0 = 0, /* Ethernet hardware address. */
MAC4 = 4,
MAR0 = 8, /* Multicast filter. */
CounterAddrLow = 0x10,
CounterAddrHigh = 0x14,
TxDescStartAddrLow = 0x20,
TxDescStartAddrHigh = 0x24,
TxHDescStartAddrLow = 0x28,
TxHDescStartAddrHigh = 0x2c,
FLASH = 0x30,
ERSR = 0x36,
ChipCmd = 0x37,
TxPoll = 0x38,
IntrMask = 0x3c,
IntrStatus = 0x3e,
TxConfig = 0x40,
#define TXCFG_AUTO_FIFO (1 << 7) /* 8111e-vl */
#define TXCFG_EMPTY (1 << 11) /* 8111e-vl */
RxConfig = 0x44,
#define RX128_INT_EN (1 << 15) /* 8111c and later */
#define RX_MULTI_EN (1 << 14) /* 8111c only */
#define RXCFG_FIFO_SHIFT 13
/* No threshold before first PCI xfer */
#define RX_FIFO_THRESH (7 << RXCFG_FIFO_SHIFT)
#define RX_EARLY_OFF (1 << 11)
#define RXCFG_DMA_SHIFT 8
/* Unlimited maximum PCI burst. */
#define RX_DMA_BURST (7 << RXCFG_DMA_SHIFT)
RxMissed = 0x4c,
Cfg9346 = 0x50,
Config0 = 0x51,
Config1 = 0x52,
Config2 = 0x53,
#define PME_SIGNAL (1 << 5) /* 8168c and later */
Config3 = 0x54,
Config4 = 0x55,
Config5 = 0x56,
MultiIntr = 0x5c,
PHYAR = 0x60,
PHYstatus = 0x6c,
RxMaxSize = 0xda,
CPlusCmd = 0xe0,
IntrMitigate = 0xe2,
r8169: Add support for interrupt coalesce tuning (ethtool -C) Kirr: In particular with ethtool -C <ifname> rx-usecs 0 rx-frames 0 now it is possible to disable RX delays when NIC usage requires low-latency. See this thread for context: https://www.spinics.net/lists/netdev/msg217665.html My specific case is that: We have many computers with gigabit Realtek NICs. For 2 such computers connected to a gigabit store-and-forward switch the minimum round-trip time for small pings (`ping -i 0 -w 3 -s 56 -q peer`) is ~ 30μs. However it turned out that when Ethernet frame length transitions 127 -> 128 bytes (`ping -i 0 -w 3 -s {81 -> 82} -q peer`) the lowest RTT transitions step-wise to ~ 270μs. As David Light said this is RX interrupt mitigation done by NIC which creates the latency. For workloads when low-latency is required with e.g. Intel, BCM etc NIC drivers one just uses `ethtool -C rx-usecs ...` to reduce the time NIC delays before interrupting CPU, but it turned out `ethtool -C` is not supported by r8169 driver. Like StĂ©phane ANCELOT I've traced the problem down to IntrMitigate being hardcoded to != 0 for our chips (we have 8168 based NICs): https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n5460 static void rtl_hw_start_8169(struct net_device *dev) { ... /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n6346 static void rtl_hw_start_8168(struct net_device *dev) { ... RTL_W16(IntrMitigate, 0x5151); and then I've also found https://www.spinics.net/lists/netdev/msg217665.html and original Francois' patch: https://www.spinics.net/lists/netdev/msg217984.html https://www.spinics.net/lists/netdev/msg218207.html So could we please finally get support for tuning r8169 interrupt coalescing in tree? (so that next poor soul who hits the problem does not need to go all the way to dig into driver sources and internet wildly and finally patch locally -RTL_W16(IntrMitigate, 0x5151); +RTL_W16(IntrMitigate, 0x5100); guessing whether it is right or not and also having to care to deploy the patch everywhere it needs to be used, etc...). To do so I've took original Francois's patch from 2012 and reworked it a bit: - updated to latest net-next.git; - adjusted scaling setup based on feedback from Hayes to pick up scaling vector depending not only on link speed but also on CPlusCmd[0:1] and to adjust CPlusCmd[0:1] correspondingly when setting timings; - improved a bit (I think so) error handling. I've tested the patch on "RTL8168d/8111d" (XID 083000c0) and with it and `ethtool -C rx-usecs 0 rx-frames 0` on both ends it improves: - minimum RTT latency: ~270μs -> ~30μs (small packet), ~330μs -> ~110μs (full 1.5K ethernet frame) - average RTT latency: ~480μs -> ~50μs (small packet), ~560μs -> ~125μs (full 1.5K ethernet frame) ( before: root@neo1:# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5906 packets transmitted, 5905 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.274/0.485/0.607/0.026 ms, ipg/ewma 0.508/0.489 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5073 packets transmitted, 5073 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.330/0.566/0.710/0.028 ms, ipg/ewma 0.591/0.544 ms after: root@neo1# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 45815 packets transmitted, 45815 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.036/0.051/0.368/0.010 ms, ipg/ewma 0.065/0.053 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 21250 packets transmitted, 21250 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.112/0.125/0.390/0.007 ms, ipg/ewma 0.141/0.125 ms the small -> 1.5K latency growth is understandable as it takes ~15μs to transmit 1.5K on 1Gbps on the wire and with 2 hosts and 1 switch and ICMP ECHO + ECHO reply the packet has to travel 4 ethernet segments which is already 60μs; probably something a bit else is also there as e.g. on Linux, even with `cpupower frequency-set -g performance`, on some computers I've noticed the kernel can be spending more time in software-only mode when incoming packets go in less frequently. E.g. this program can demonstrate the effect for ICMP ECHO processing: https://lab.nexedi.com/kirr/bcc/blob/43cfc13b/tools/pinglat.py (later this was found to be partly due to C-states exit latencies) ) We have this patch running in our testing setup for 1 months already without any issues observed. It remains to be clarified whether RX and TX timers use the same base. For now I've set them equally, but Francois's original patch version suggests it could be not the same. I've got no feedback at all to my original posting of this patch and questions https://www.spinics.net/lists/netdev/msg457173.html neither from Francois, nor from any people from Realtek during one month. So I suggest we simply apply it to net-next.git now. Cc: Francois Romieu <romieu@fr.zoreil.com> Cc: Hayes Wang <hayeswang@realtek.com> Cc: Realtek linux nic maintainers <nic_swsd@realtek.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: StĂ©phane ANCELOT <sancelot@free.fr> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Kirill Smelkov <kirr@nexedi.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 04:24:49 -06:00
#define RTL_COALESCE_MASK 0x0f
#define RTL_COALESCE_SHIFT 4
#define RTL_COALESCE_T_MAX (RTL_COALESCE_MASK)
#define RTL_COALESCE_FRAME_MAX (RTL_COALESCE_MASK << 2)
RxDescAddrLow = 0xe4,
RxDescAddrHigh = 0xe8,
EarlyTxThres = 0xec, /* 8169. Unit of 32 bytes. */
#define NoEarlyTx 0x3f /* Max value : no early transmit. */
MaxTxPacketSize = 0xec, /* 8101/8168. Unit of 128 bytes. */
#define TxPacketMax (8064 >> 7)
#define EarlySize 0x27
FuncEvent = 0xf0,
FuncEventMask = 0xf4,
FuncPresetState = 0xf8,
IBCR0 = 0xf8,
IBCR2 = 0xf9,
IBIMR0 = 0xfa,
IBISR0 = 0xfb,
FuncForceEvent = 0xfc,
};
enum rtl8168_8101_registers {
CSIDR = 0x64,
CSIAR = 0x68,
#define CSIAR_FLAG 0x80000000
#define CSIAR_WRITE_CMD 0x80000000
#define CSIAR_BYTE_ENABLE 0x0000f000
#define CSIAR_ADDR_MASK 0x00000fff
PMCH = 0x6f,
EPHYAR = 0x80,
#define EPHYAR_FLAG 0x80000000
#define EPHYAR_WRITE_CMD 0x80000000
#define EPHYAR_REG_MASK 0x1f
#define EPHYAR_REG_SHIFT 16
#define EPHYAR_DATA_MASK 0xffff
DLLPR = 0xd0,
#define PFM_EN (1 << 6)
#define TX_10M_PS_EN (1 << 7)
DBG_REG = 0xd1,
#define FIX_NAK_1 (1 << 4)
#define FIX_NAK_2 (1 << 3)
TWSI = 0xd2,
MCU = 0xd3,
#define NOW_IS_OOB (1 << 7)
#define TX_EMPTY (1 << 5)
#define RX_EMPTY (1 << 4)
#define RXTX_EMPTY (TX_EMPTY | RX_EMPTY)
#define EN_NDP (1 << 3)
#define EN_OOB_RESET (1 << 2)
#define LINK_LIST_RDY (1 << 1)
EFUSEAR = 0xdc,
#define EFUSEAR_FLAG 0x80000000
#define EFUSEAR_WRITE_CMD 0x80000000
#define EFUSEAR_READ_CMD 0x00000000
#define EFUSEAR_REG_MASK 0x03ff
#define EFUSEAR_REG_SHIFT 8
#define EFUSEAR_DATA_MASK 0xff
MISC_1 = 0xf2,
#define PFM_D3COLD_EN (1 << 6)
};
enum rtl8168_registers {
LED_FREQ = 0x1a,
EEE_LED = 0x1b,
ERIDR = 0x70,
ERIAR = 0x74,
#define ERIAR_FLAG 0x80000000
#define ERIAR_WRITE_CMD 0x80000000
#define ERIAR_READ_CMD 0x00000000
#define ERIAR_ADDR_BYTE_ALIGN 4
#define ERIAR_TYPE_SHIFT 16
#define ERIAR_EXGMAC (0x00 << ERIAR_TYPE_SHIFT)
#define ERIAR_MSIX (0x01 << ERIAR_TYPE_SHIFT)
#define ERIAR_ASF (0x02 << ERIAR_TYPE_SHIFT)
#define ERIAR_OOB (0x02 << ERIAR_TYPE_SHIFT)
#define ERIAR_MASK_SHIFT 12
#define ERIAR_MASK_0001 (0x1 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0011 (0x3 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0100 (0x4 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0101 (0x5 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_1111 (0xf << ERIAR_MASK_SHIFT)
EPHY_RXER_NUM = 0x7c,
OCPDR = 0xb0, /* OCP GPHY access */
#define OCPDR_WRITE_CMD 0x80000000
#define OCPDR_READ_CMD 0x00000000
#define OCPDR_REG_MASK 0x7f
#define OCPDR_GPHY_REG_SHIFT 16
#define OCPDR_DATA_MASK 0xffff
OCPAR = 0xb4,
#define OCPAR_FLAG 0x80000000
#define OCPAR_GPHY_WRITE_CMD 0x8000f060
#define OCPAR_GPHY_READ_CMD 0x0000f060
GPHY_OCP = 0xb8,
RDSAR1 = 0xd0, /* 8168c only. Undocumented on 8168dp */
MISC = 0xf0, /* 8168e only. */
#define TXPLA_RST (1 << 29)
#define DISABLE_LAN_EN (1 << 23) /* Enable GPIO pin */
#define PWM_EN (1 << 22)
#define RXDV_GATED_EN (1 << 19)
#define EARLY_TALLY_EN (1 << 16)
};
enum rtl_register_content {
/* InterruptStatusBits */
SYSErr = 0x8000,
PCSTimeout = 0x4000,
SWInt = 0x0100,
TxDescUnavail = 0x0080,
RxFIFOOver = 0x0040,
LinkChg = 0x0020,
RxOverflow = 0x0010,
TxErr = 0x0008,
TxOK = 0x0004,
RxErr = 0x0002,
RxOK = 0x0001,
/* RxStatusDesc */
RxRWT = (1 << 22),
RxRES = (1 << 21),
RxRUNT = (1 << 20),
RxCRC = (1 << 19),
/* ChipCmdBits */
StopReq = 0x80,
CmdReset = 0x10,
CmdRxEnb = 0x08,
CmdTxEnb = 0x04,
RxBufEmpty = 0x01,
/* TXPoll register p.5 */
HPQ = 0x80, /* Poll cmd on the high prio queue */
NPQ = 0x40, /* Poll cmd on the low prio queue */
FSWInt = 0x01, /* Forced software interrupt */
/* Cfg9346Bits */
Cfg9346_Lock = 0x00,
Cfg9346_Unlock = 0xc0,
/* rx_mode_bits */
AcceptErr = 0x20,
AcceptRunt = 0x10,
AcceptBroadcast = 0x08,
AcceptMulticast = 0x04,
AcceptMyPhys = 0x02,
AcceptAllPhys = 0x01,
#define RX_CONFIG_ACCEPT_MASK 0x3f
/* TxConfigBits */
TxInterFrameGapShift = 24,
TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
/* Config1 register p.24 */
LEDS1 = (1 << 7),
LEDS0 = (1 << 6),
Speed_down = (1 << 4),
MEMMAP = (1 << 3),
IOMAP = (1 << 2),
VPD = (1 << 1),
PMEnable = (1 << 0), /* Power Management Enable */
/* Config2 register p. 25 */
ClkReqEn = (1 << 7), /* Clock Request Enable */
MSIEnable = (1 << 5), /* 8169 only. Reserved in the 8168. */
PCI_Clock_66MHz = 0x01,
PCI_Clock_33MHz = 0x00,
/* Config3 register p.25 */
MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
Jumbo_En0 = (1 << 2), /* 8168 only. Reserved in the 8168b */
Rdy_to_L23 = (1 << 1), /* L23 Enable */
Beacon_en = (1 << 0), /* 8168 only. Reserved in the 8168b */
/* Config4 register */
Jumbo_En1 = (1 << 1), /* 8168 only. Reserved in the 8168b */
/* Config5 register p.27 */
BWF = (1 << 6), /* Accept Broadcast wakeup frame */
MWF = (1 << 5), /* Accept Multicast wakeup frame */
UWF = (1 << 4), /* Accept Unicast wakeup frame */
Spi_en = (1 << 3),
LanWake = (1 << 1), /* LanWake enable/disable */
PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
ASPM_en = (1 << 0), /* ASPM enable */
/* CPlusCmd p.31 */
EnableBist = (1 << 15), // 8168 8101
Mac_dbgo_oe = (1 << 14), // 8168 8101
Normal_mode = (1 << 13), // unused
Force_half_dup = (1 << 12), // 8168 8101
Force_rxflow_en = (1 << 11), // 8168 8101
Force_txflow_en = (1 << 10), // 8168 8101
Cxpl_dbg_sel = (1 << 9), // 8168 8101
ASF = (1 << 8), // 8168 8101
PktCntrDisable = (1 << 7), // 8168 8101
Mac_dbgo_sel = 0x001c, // 8168
RxVlan = (1 << 6),
RxChkSum = (1 << 5),
PCIDAC = (1 << 4),
PCIMulRW = (1 << 3),
#define INTT_MASK GENMASK(1, 0)
#define CPCMD_MASK (Normal_mode | RxVlan | RxChkSum | INTT_MASK)
/* rtl8169_PHYstatus */
TBI_Enable = 0x80,
TxFlowCtrl = 0x40,
RxFlowCtrl = 0x20,
_1000bpsF = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LinkStatus = 0x02,
FullDup = 0x01,
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
/* ResetCounterCommand */
CounterReset = 0x1,
/* DumpCounterCommand */
CounterDump = 0x8,
/* magic enable v2 */
MagicPacket_v2 = (1 << 16), /* Wake up when receives a Magic Packet */
};
enum rtl_desc_bit {
/* First doubleword. */
DescOwn = (1 << 31), /* Descriptor is owned by NIC */
RingEnd = (1 << 30), /* End of descriptor ring */
FirstFrag = (1 << 29), /* First segment of a packet */
LastFrag = (1 << 28), /* Final segment of a packet */
};
/* Generic case. */
enum rtl_tx_desc_bit {
/* First doubleword. */
TD_LSO = (1 << 27), /* Large Send Offload */
#define TD_MSS_MAX 0x07ffu /* MSS value */
/* Second doubleword. */
TxVlanTag = (1 << 17), /* Add VLAN tag */
};
/* 8169, 8168b and 810x except 8102e. */
enum rtl_tx_desc_bit_0 {
/* First doubleword. */
#define TD0_MSS_SHIFT 16 /* MSS position (11 bits) */
TD0_TCP_CS = (1 << 16), /* Calculate TCP/IP checksum */
TD0_UDP_CS = (1 << 17), /* Calculate UDP/IP checksum */
TD0_IP_CS = (1 << 18), /* Calculate IP checksum */
};
/* 8102e, 8168c and beyond. */
enum rtl_tx_desc_bit_1 {
/* First doubleword. */
TD1_GTSENV4 = (1 << 26), /* Giant Send for IPv4 */
TD1_GTSENV6 = (1 << 25), /* Giant Send for IPv6 */
#define GTTCPHO_SHIFT 18
#define GTTCPHO_MAX 0x7fU
/* Second doubleword. */
#define TCPHO_SHIFT 18
#define TCPHO_MAX 0x3ffU
#define TD1_MSS_SHIFT 18 /* MSS position (11 bits) */
TD1_IPv6_CS = (1 << 28), /* Calculate IPv6 checksum */
TD1_IPv4_CS = (1 << 29), /* Calculate IPv4 checksum */
TD1_TCP_CS = (1 << 30), /* Calculate TCP/IP checksum */
TD1_UDP_CS = (1 << 31), /* Calculate UDP/IP checksum */
};
enum rtl_rx_desc_bit {
/* Rx private */
PID1 = (1 << 18), /* Protocol ID bit 1/2 */
PID0 = (1 << 17), /* Protocol ID bit 0/2 */
#define RxProtoUDP (PID1)
#define RxProtoTCP (PID0)
#define RxProtoIP (PID1 | PID0)
#define RxProtoMask RxProtoIP
IPFail = (1 << 16), /* IP checksum failed */
UDPFail = (1 << 15), /* UDP/IP checksum failed */
TCPFail = (1 << 14), /* TCP/IP checksum failed */
RxVlanTag = (1 << 16), /* VLAN tag available */
};
#define RsvdMask 0x3fffc000
struct TxDesc {
__le32 opts1;
__le32 opts2;
__le64 addr;
};
struct RxDesc {
__le32 opts1;
__le32 opts2;
__le64 addr;
};
struct ring_info {
struct sk_buff *skb;
u32 len;
};
struct rtl8169_counters {
__le64 tx_packets;
__le64 rx_packets;
__le64 tx_errors;
__le32 rx_errors;
__le16 rx_missed;
__le16 align_errors;
__le32 tx_one_collision;
__le32 tx_multi_collision;
__le64 rx_unicast;
__le64 rx_broadcast;
__le32 rx_multicast;
__le16 tx_aborted;
__le16 tx_underun;
};
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
struct rtl8169_tc_offsets {
bool inited;
__le64 tx_errors;
__le32 tx_multi_collision;
__le16 tx_aborted;
};
enum rtl_flag {
RTL_FLAG_TASK_ENABLED = 0,
RTL_FLAG_TASK_RESET_PENDING,
RTL_FLAG_MAX
};
struct rtl8169_stats {
u64 packets;
u64 bytes;
struct u64_stats_sync syncp;
};
struct rtl8169_private {
void __iomem *mmio_addr; /* memory map physical address */
struct pci_dev *pci_dev;
struct net_device *dev;
struct phy_device *phydev;
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 17:41:36 -06:00
struct napi_struct napi;
u32 msg_enable;
enum mac_version mac_version;
u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
u32 dirty_tx;
struct rtl8169_stats rx_stats;
struct rtl8169_stats tx_stats;
struct TxDesc *TxDescArray; /* 256-aligned Tx descriptor ring */
struct RxDesc *RxDescArray; /* 256-aligned Rx descriptor ring */
dma_addr_t TxPhyAddr;
dma_addr_t RxPhyAddr;
void *Rx_databuff[NUM_RX_DESC]; /* Rx data buffers */
struct ring_info tx_skb[NUM_TX_DESC]; /* Tx data buffers */
u16 cp_cmd;
u16 irq_mask;
struct clk *clk;
struct {
DECLARE_BITMAP(flags, RTL_FLAG_MAX);
struct mutex mutex;
struct work_struct work;
} wk;
unsigned irq_enabled:1;
unsigned supports_gmii:1;
unsigned aspm_manageable:1;
dma_addr_t counters_phys_addr;
struct rtl8169_counters *counters;
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
struct rtl8169_tc_offsets tc_offset;
u32 saved_wolopts;
const char *fw_name;
struct rtl_fw *rtl_fw;
u32 ocp_base;
};
typedef void (*rtl_generic_fct)(struct rtl8169_private *tp);
MODULE_AUTHOR("Realtek and the Linux r8169 crew <netdev@vger.kernel.org>");
MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver");
module_param_named(debug, debug.msg_enable, int, 0);
MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)");
MODULE_SOFTDEP("pre: realtek");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(FIRMWARE_8168D_1);
MODULE_FIRMWARE(FIRMWARE_8168D_2);
MODULE_FIRMWARE(FIRMWARE_8168E_1);
MODULE_FIRMWARE(FIRMWARE_8168E_2);
MODULE_FIRMWARE(FIRMWARE_8168E_3);
MODULE_FIRMWARE(FIRMWARE_8105E_1);
MODULE_FIRMWARE(FIRMWARE_8168F_1);
MODULE_FIRMWARE(FIRMWARE_8168F_2);
MODULE_FIRMWARE(FIRMWARE_8402_1);
MODULE_FIRMWARE(FIRMWARE_8411_1);
MODULE_FIRMWARE(FIRMWARE_8411_2);
MODULE_FIRMWARE(FIRMWARE_8106E_1);
MODULE_FIRMWARE(FIRMWARE_8106E_2);
MODULE_FIRMWARE(FIRMWARE_8168G_2);
MODULE_FIRMWARE(FIRMWARE_8168G_3);
MODULE_FIRMWARE(FIRMWARE_8168H_1);
MODULE_FIRMWARE(FIRMWARE_8168H_2);
MODULE_FIRMWARE(FIRMWARE_8107E_1);
MODULE_FIRMWARE(FIRMWARE_8107E_2);
static inline struct device *tp_to_dev(struct rtl8169_private *tp)
{
return &tp->pci_dev->dev;
}
static void rtl_lock_work(struct rtl8169_private *tp)
{
mutex_lock(&tp->wk.mutex);
}
static void rtl_unlock_work(struct rtl8169_private *tp)
{
mutex_unlock(&tp->wk.mutex);
}
static void rtl_lock_config_regs(struct rtl8169_private *tp)
{
RTL_W8(tp, Cfg9346, Cfg9346_Lock);
}
static void rtl_unlock_config_regs(struct rtl8169_private *tp)
{
RTL_W8(tp, Cfg9346, Cfg9346_Unlock);
}
static void rtl_tx_performance_tweak(struct rtl8169_private *tp, u16 force)
{
pcie_capability_clear_and_set_word(tp->pci_dev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_READRQ, force);
}
static bool rtl_is_8168evl_up(struct rtl8169_private *tp)
{
return tp->mac_version >= RTL_GIGA_MAC_VER_34 &&
tp->mac_version != RTL_GIGA_MAC_VER_39;
}
struct rtl_cond {
bool (*check)(struct rtl8169_private *);
const char *msg;
};
static void rtl_udelay(unsigned int d)
{
udelay(d);
}
static bool rtl_loop_wait(struct rtl8169_private *tp, const struct rtl_cond *c,
void (*delay)(unsigned int), unsigned int d, int n,
bool high)
{
int i;
for (i = 0; i < n; i++) {
if (c->check(tp) == high)
return true;
delay(d);
}
netif_err(tp, drv, tp->dev, "%s == %d (loop: %d, delay: %d).\n",
c->msg, !high, n, d);
return false;
}
static bool rtl_udelay_loop_wait_high(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, rtl_udelay, d, n, true);
}
static bool rtl_udelay_loop_wait_low(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, rtl_udelay, d, n, false);
}
static bool rtl_msleep_loop_wait_high(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, msleep, d, n, true);
}
static bool rtl_msleep_loop_wait_low(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, msleep, d, n, false);
}
#define DECLARE_RTL_COND(name) \
static bool name ## _check(struct rtl8169_private *); \
\
static const struct rtl_cond name = { \
.check = name ## _check, \
.msg = #name \
}; \
\
static bool name ## _check(struct rtl8169_private *tp)
static bool rtl_ocp_reg_failure(struct rtl8169_private *tp, u32 reg)
{
if (reg & 0xffff0001) {
netif_err(tp, drv, tp->dev, "Invalid ocp reg %x!\n", reg);
return true;
}
return false;
}
DECLARE_RTL_COND(rtl_ocp_gphy_cond)
{
return RTL_R32(tp, GPHY_OCP) & OCPAR_FLAG;
}
static void r8168_phy_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data)
{
if (rtl_ocp_reg_failure(tp, reg))
return;
RTL_W32(tp, GPHY_OCP, OCPAR_FLAG | (reg << 15) | data);
rtl_udelay_loop_wait_low(tp, &rtl_ocp_gphy_cond, 25, 10);
}
static int r8168_phy_ocp_read(struct rtl8169_private *tp, u32 reg)
{
if (rtl_ocp_reg_failure(tp, reg))
return 0;
RTL_W32(tp, GPHY_OCP, reg << 15);
return rtl_udelay_loop_wait_high(tp, &rtl_ocp_gphy_cond, 25, 10) ?
(RTL_R32(tp, GPHY_OCP) & 0xffff) : -ETIMEDOUT;
}
static void r8168_mac_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data)
{
if (rtl_ocp_reg_failure(tp, reg))
return;
RTL_W32(tp, OCPDR, OCPAR_FLAG | (reg << 15) | data);
}
static u16 r8168_mac_ocp_read(struct rtl8169_private *tp, u32 reg)
{
if (rtl_ocp_reg_failure(tp, reg))
return 0;
RTL_W32(tp, OCPDR, reg << 15);
return RTL_R32(tp, OCPDR);
}
#define OCP_STD_PHY_BASE 0xa400
static void r8168g_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
if (reg == 0x1f) {
tp->ocp_base = value ? value << 4 : OCP_STD_PHY_BASE;
return;
}
if (tp->ocp_base != OCP_STD_PHY_BASE)
reg -= 0x10;
r8168_phy_ocp_write(tp, tp->ocp_base + reg * 2, value);
}
static int r8168g_mdio_read(struct rtl8169_private *tp, int reg)
{
if (tp->ocp_base != OCP_STD_PHY_BASE)
reg -= 0x10;
return r8168_phy_ocp_read(tp, tp->ocp_base + reg * 2);
}
static void mac_mcu_write(struct rtl8169_private *tp, int reg, int value)
{
if (reg == 0x1f) {
tp->ocp_base = value << 4;
return;
}
r8168_mac_ocp_write(tp, tp->ocp_base + reg, value);
}
static int mac_mcu_read(struct rtl8169_private *tp, int reg)
{
return r8168_mac_ocp_read(tp, tp->ocp_base + reg);
}
DECLARE_RTL_COND(rtl_phyar_cond)
{
return RTL_R32(tp, PHYAR) & 0x80000000;
}
static void r8169_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
RTL_W32(tp, PHYAR, 0x80000000 | (reg & 0x1f) << 16 | (value & 0xffff));
rtl_udelay_loop_wait_low(tp, &rtl_phyar_cond, 25, 20);
/*
* According to hardware specs a 20us delay is required after write
* complete indication, but before sending next command.
*/
udelay(20);
}
static int r8169_mdio_read(struct rtl8169_private *tp, int reg)
{
int value;
RTL_W32(tp, PHYAR, 0x0 | (reg & 0x1f) << 16);
value = rtl_udelay_loop_wait_high(tp, &rtl_phyar_cond, 25, 20) ?
RTL_R32(tp, PHYAR) & 0xffff : -ETIMEDOUT;
/*
* According to hardware specs a 20us delay is required after read
* complete indication, but before sending next command.
*/
udelay(20);
return value;
}
DECLARE_RTL_COND(rtl_ocpar_cond)
{
return RTL_R32(tp, OCPAR) & OCPAR_FLAG;
}
static void r8168dp_1_mdio_access(struct rtl8169_private *tp, int reg, u32 data)
{
RTL_W32(tp, OCPDR, data | ((reg & OCPDR_REG_MASK) << OCPDR_GPHY_REG_SHIFT));
RTL_W32(tp, OCPAR, OCPAR_GPHY_WRITE_CMD);
RTL_W32(tp, EPHY_RXER_NUM, 0);
rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 1000, 100);
}
static void r8168dp_1_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
r8168dp_1_mdio_access(tp, reg,
OCPDR_WRITE_CMD | (value & OCPDR_DATA_MASK));
}
static int r8168dp_1_mdio_read(struct rtl8169_private *tp, int reg)
{
r8168dp_1_mdio_access(tp, reg, OCPDR_READ_CMD);
mdelay(1);
RTL_W32(tp, OCPAR, OCPAR_GPHY_READ_CMD);
RTL_W32(tp, EPHY_RXER_NUM, 0);
return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 1000, 100) ?
RTL_R32(tp, OCPDR) & OCPDR_DATA_MASK : -ETIMEDOUT;
}
#define R8168DP_1_MDIO_ACCESS_BIT 0x00020000
static void r8168dp_2_mdio_start(struct rtl8169_private *tp)
{
RTL_W32(tp, 0xd0, RTL_R32(tp, 0xd0) & ~R8168DP_1_MDIO_ACCESS_BIT);
}
static void r8168dp_2_mdio_stop(struct rtl8169_private *tp)
{
RTL_W32(tp, 0xd0, RTL_R32(tp, 0xd0) | R8168DP_1_MDIO_ACCESS_BIT);
}
static void r8168dp_2_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
r8168dp_2_mdio_start(tp);
r8169_mdio_write(tp, reg, value);
r8168dp_2_mdio_stop(tp);
}
static int r8168dp_2_mdio_read(struct rtl8169_private *tp, int reg)
{
int value;
r8168dp_2_mdio_start(tp);
value = r8169_mdio_read(tp, reg);
r8168dp_2_mdio_stop(tp);
return value;
}
static void rtl_writephy(struct rtl8169_private *tp, int location, int val)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
r8168dp_1_mdio_write(tp, location, val);
break;
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
r8168dp_2_mdio_write(tp, location, val);
break;
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
r8168g_mdio_write(tp, location, val);
break;
default:
r8169_mdio_write(tp, location, val);
break;
}
}
static int rtl_readphy(struct rtl8169_private *tp, int location)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
return r8168dp_1_mdio_read(tp, location);
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
return r8168dp_2_mdio_read(tp, location);
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
return r8168g_mdio_read(tp, location);
default:
return r8169_mdio_read(tp, location);
}
}
static void rtl_patchphy(struct rtl8169_private *tp, int reg_addr, int value)
{
rtl_writephy(tp, reg_addr, rtl_readphy(tp, reg_addr) | value);
}
static void rtl_w0w1_phy(struct rtl8169_private *tp, int reg_addr, int p, int m)
{
int val;
val = rtl_readphy(tp, reg_addr);
rtl_writephy(tp, reg_addr, (val & ~m) | p);
}
DECLARE_RTL_COND(rtl_ephyar_cond)
{
return RTL_R32(tp, EPHYAR) & EPHYAR_FLAG;
}
static void rtl_ephy_write(struct rtl8169_private *tp, int reg_addr, int value)
{
RTL_W32(tp, EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) |
(reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
rtl_udelay_loop_wait_low(tp, &rtl_ephyar_cond, 10, 100);
udelay(10);
}
static u16 rtl_ephy_read(struct rtl8169_private *tp, int reg_addr)
{
RTL_W32(tp, EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
return rtl_udelay_loop_wait_high(tp, &rtl_ephyar_cond, 10, 100) ?
RTL_R32(tp, EPHYAR) & EPHYAR_DATA_MASK : ~0;
}
DECLARE_RTL_COND(rtl_eriar_cond)
{
return RTL_R32(tp, ERIAR) & ERIAR_FLAG;
}
static void _rtl_eri_write(struct rtl8169_private *tp, int addr, u32 mask,
u32 val, int type)
{
BUG_ON((addr & 3) || (mask == 0));
RTL_W32(tp, ERIDR, val);
RTL_W32(tp, ERIAR, ERIAR_WRITE_CMD | type | mask | addr);
rtl_udelay_loop_wait_low(tp, &rtl_eriar_cond, 100, 100);
}
static void rtl_eri_write(struct rtl8169_private *tp, int addr, u32 mask,
u32 val)
{
_rtl_eri_write(tp, addr, mask, val, ERIAR_EXGMAC);
}
static u32 _rtl_eri_read(struct rtl8169_private *tp, int addr, int type)
{
RTL_W32(tp, ERIAR, ERIAR_READ_CMD | type | ERIAR_MASK_1111 | addr);
return rtl_udelay_loop_wait_high(tp, &rtl_eriar_cond, 100, 100) ?
RTL_R32(tp, ERIDR) : ~0;
}
static u32 rtl_eri_read(struct rtl8169_private *tp, int addr)
{
return _rtl_eri_read(tp, addr, ERIAR_EXGMAC);
}
static void rtl_w0w1_eri(struct rtl8169_private *tp, int addr, u32 mask, u32 p,
u32 m)
{
u32 val;
val = rtl_eri_read(tp, addr);
rtl_eri_write(tp, addr, mask, (val & ~m) | p);
}
static void rtl_eri_set_bits(struct rtl8169_private *tp, int addr, u32 mask,
u32 p)
{
rtl_w0w1_eri(tp, addr, mask, p, 0);
}
static void rtl_eri_clear_bits(struct rtl8169_private *tp, int addr, u32 mask,
u32 m)
{
rtl_w0w1_eri(tp, addr, mask, 0, m);
}
static u32 r8168dp_ocp_read(struct rtl8169_private *tp, u8 mask, u16 reg)
{
RTL_W32(tp, OCPAR, ((u32)mask & 0x0f) << 12 | (reg & 0x0fff));
return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 100, 20) ?
RTL_R32(tp, OCPDR) : ~0;
}
static u32 r8168ep_ocp_read(struct rtl8169_private *tp, u8 mask, u16 reg)
{
return _rtl_eri_read(tp, reg, ERIAR_OOB);
}
static void r8168dp_ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg,
u32 data)
{
RTL_W32(tp, OCPDR, data);
RTL_W32(tp, OCPAR, OCPAR_FLAG | ((u32)mask & 0x0f) << 12 | (reg & 0x0fff));
rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 100, 20);
}
static void r8168ep_ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg,
u32 data)
{
_rtl_eri_write(tp, reg, ((u32)mask & 0x0f) << ERIAR_MASK_SHIFT,
data, ERIAR_OOB);
}
static void r8168dp_oob_notify(struct rtl8169_private *tp, u8 cmd)
{
rtl_eri_write(tp, 0xe8, ERIAR_MASK_0001, cmd);
r8168dp_ocp_write(tp, 0x1, 0x30, 0x00000001);
}
#define OOB_CMD_RESET 0x00
#define OOB_CMD_DRIVER_START 0x05
#define OOB_CMD_DRIVER_STOP 0x06
static u16 rtl8168_get_ocp_reg(struct rtl8169_private *tp)
{
return (tp->mac_version == RTL_GIGA_MAC_VER_31) ? 0xb8 : 0x10;
}
DECLARE_RTL_COND(rtl_dp_ocp_read_cond)
{
u16 reg;
reg = rtl8168_get_ocp_reg(tp);
return r8168dp_ocp_read(tp, 0x0f, reg) & 0x00000800;
}
DECLARE_RTL_COND(rtl_ep_ocp_read_cond)
{
return r8168ep_ocp_read(tp, 0x0f, 0x124) & 0x00000001;
}
DECLARE_RTL_COND(rtl_ocp_tx_cond)
{
return RTL_R8(tp, IBISR0) & 0x20;
}
static void rtl8168ep_stop_cmac(struct rtl8169_private *tp)
{
RTL_W8(tp, IBCR2, RTL_R8(tp, IBCR2) & ~0x01);
rtl_msleep_loop_wait_high(tp, &rtl_ocp_tx_cond, 50, 2000);
RTL_W8(tp, IBISR0, RTL_R8(tp, IBISR0) | 0x20);
RTL_W8(tp, IBCR0, RTL_R8(tp, IBCR0) & ~0x01);
}
static void rtl8168dp_driver_start(struct rtl8169_private *tp)
{
r8168dp_oob_notify(tp, OOB_CMD_DRIVER_START);
rtl_msleep_loop_wait_high(tp, &rtl_dp_ocp_read_cond, 10, 10);
}
static void rtl8168ep_driver_start(struct rtl8169_private *tp)
{
r8168ep_ocp_write(tp, 0x01, 0x180, OOB_CMD_DRIVER_START);
r8168ep_ocp_write(tp, 0x01, 0x30,
r8168ep_ocp_read(tp, 0x01, 0x30) | 0x01);
rtl_msleep_loop_wait_high(tp, &rtl_ep_ocp_read_cond, 10, 10);
}
static void rtl8168_driver_start(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
rtl8168dp_driver_start(tp);
break;
case RTL_GIGA_MAC_VER_49:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
rtl8168ep_driver_start(tp);
break;
default:
BUG();
break;
}
}
static void rtl8168dp_driver_stop(struct rtl8169_private *tp)
{
r8168dp_oob_notify(tp, OOB_CMD_DRIVER_STOP);
rtl_msleep_loop_wait_low(tp, &rtl_dp_ocp_read_cond, 10, 10);
}
static void rtl8168ep_driver_stop(struct rtl8169_private *tp)
{
rtl8168ep_stop_cmac(tp);
r8168ep_ocp_write(tp, 0x01, 0x180, OOB_CMD_DRIVER_STOP);
r8168ep_ocp_write(tp, 0x01, 0x30,
r8168ep_ocp_read(tp, 0x01, 0x30) | 0x01);
rtl_msleep_loop_wait_low(tp, &rtl_ep_ocp_read_cond, 10, 10);
}
static void rtl8168_driver_stop(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
rtl8168dp_driver_stop(tp);
break;
case RTL_GIGA_MAC_VER_49:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
rtl8168ep_driver_stop(tp);
break;
default:
BUG();
break;
}
}
static bool r8168dp_check_dash(struct rtl8169_private *tp)
{
u16 reg = rtl8168_get_ocp_reg(tp);
return !!(r8168dp_ocp_read(tp, 0x0f, reg) & 0x00008000);
}
static bool r8168ep_check_dash(struct rtl8169_private *tp)
{
return !!(r8168ep_ocp_read(tp, 0x0f, 0x128) & 0x00000001);
}
static bool r8168_check_dash(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
return r8168dp_check_dash(tp);
case RTL_GIGA_MAC_VER_49:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
return r8168ep_check_dash(tp);
default:
return false;
}
}
static void rtl_reset_packet_filter(struct rtl8169_private *tp)
{
rtl_eri_clear_bits(tp, 0xdc, ERIAR_MASK_0001, BIT(0));
rtl_eri_set_bits(tp, 0xdc, ERIAR_MASK_0001, BIT(0));
}
DECLARE_RTL_COND(rtl_efusear_cond)
{
return RTL_R32(tp, EFUSEAR) & EFUSEAR_FLAG;
}
static u8 rtl8168d_efuse_read(struct rtl8169_private *tp, int reg_addr)
{
RTL_W32(tp, EFUSEAR, (reg_addr & EFUSEAR_REG_MASK) << EFUSEAR_REG_SHIFT);
return rtl_udelay_loop_wait_high(tp, &rtl_efusear_cond, 100, 300) ?
RTL_R32(tp, EFUSEAR) & EFUSEAR_DATA_MASK : ~0;
}
static void rtl_ack_events(struct rtl8169_private *tp, u16 bits)
{
RTL_W16(tp, IntrStatus, bits);
}
static void rtl_irq_disable(struct rtl8169_private *tp)
{
RTL_W16(tp, IntrMask, 0);
tp->irq_enabled = 0;
}
#define RTL_EVENT_NAPI_RX (RxOK | RxErr)
#define RTL_EVENT_NAPI_TX (TxOK | TxErr)
#define RTL_EVENT_NAPI (RTL_EVENT_NAPI_RX | RTL_EVENT_NAPI_TX)
static void rtl_irq_enable(struct rtl8169_private *tp)
{
tp->irq_enabled = 1;
RTL_W16(tp, IntrMask, tp->irq_mask);
}
r8169: Rx FIFO overflow fixes. Realtek has specified that the post 8168c gigabit chips and the post 8105e fast ethernet chips recover automatically from a Rx FIFO overflow. The driver does not need to clear the RxFIFOOver bit of IntrStatus and it should rather avoid messing it. The implementation deserves some explanation: 1. events outside of the intr_event bit mask are now ignored. It enforces a no-processing policy for the events that either should not be there or should be ignored. 2. RxFIFOOver was already ignored in rtl_cfg_infos[RTL_CFG_1] for the whole 8168 line of chips with two exceptions: - RTL_GIGA_MAC_VER_22 since b5ba6d12bdac21bc0620a5089e0f24e362645efd ("use RxFIFO overflow workaround for 8168c chipset."). This one should now be correctly handled. - RTL_GIGA_MAC_VER_11 (8168b) which requires a different Rx FIFO overflow processing. Though it does not conform to Realtek suggestion above, the updated driver includes no change for RTL_GIGA_MAC_VER_12 and RTL_GIGA_MAC_VER_17. Both are 8168b. RTL_GIGA_MAC_VER_12 is common and a bit old so I'd rather wait for experimental evidence that the change suggested by Realtek really helps or does not hurt in unexpected ways. Removed case statements in rtl8169_interrupt are only 8168 relevant. 3. RxFIFOOver is masked for post 8105e 810x chips, namely the sole 8105e (RTL_GIGA_MAC_VER_30) itself. Signed-off-by: Francois Romieu <romieu@fr.zoreil.com> Cc: hayeswang <hayeswang@realtek.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-04 13:30:45 -07:00
static void rtl8169_irq_mask_and_ack(struct rtl8169_private *tp)
{
rtl_irq_disable(tp);
rtl_ack_events(tp, 0xffff);
/* PCI commit */
RTL_R8(tp, ChipCmd);
}
static void rtl_link_chg_patch(struct rtl8169_private *tp)
{
struct net_device *dev = tp->dev;
struct phy_device *phydev = tp->phydev;
if (!netif_running(dev))
return;
if (tp->mac_version == RTL_GIGA_MAC_VER_34 ||
tp->mac_version == RTL_GIGA_MAC_VER_38) {
if (phydev->speed == SPEED_1000) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005);
} else if (phydev->speed == SPEED_100) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005);
} else {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f);
}
rtl_reset_packet_filter(tp);
} else if (tp->mac_version == RTL_GIGA_MAC_VER_35 ||
tp->mac_version == RTL_GIGA_MAC_VER_36) {
if (phydev->speed == SPEED_1000) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005);
} else {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f);
}
} else if (tp->mac_version == RTL_GIGA_MAC_VER_37) {
if (phydev->speed == SPEED_10) {
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x4d02);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_0011, 0x0060a);
} else {
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000);
}
}
}
#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)
static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl_lock_work(tp);
wol->supported = WAKE_ANY;
wol->wolopts = tp->saved_wolopts;
rtl_unlock_work(tp);
}
static void __rtl8169_set_wol(struct rtl8169_private *tp, u32 wolopts)
{
unsigned int i, tmp;
static const struct {
u32 opt;
u16 reg;
u8 mask;
} cfg[] = {
{ WAKE_PHY, Config3, LinkUp },
{ WAKE_UCAST, Config5, UWF },
{ WAKE_BCAST, Config5, BWF },
{ WAKE_MCAST, Config5, MWF },
{ WAKE_ANY, Config5, LanWake },
{ WAKE_MAGIC, Config3, MagicPacket }
};
u8 options;
rtl_unlock_config_regs(tp);
if (rtl_is_8168evl_up(tp)) {
tmp = ARRAY_SIZE(cfg) - 1;
if (wolopts & WAKE_MAGIC)
rtl_eri_set_bits(tp, 0x0dc, ERIAR_MASK_0100,
MagicPacket_v2);
else
rtl_eri_clear_bits(tp, 0x0dc, ERIAR_MASK_0100,
MagicPacket_v2);
} else {
tmp = ARRAY_SIZE(cfg);
}
for (i = 0; i < tmp; i++) {
options = RTL_R8(tp, cfg[i].reg) & ~cfg[i].mask;
if (wolopts & cfg[i].opt)
options |= cfg[i].mask;
RTL_W8(tp, cfg[i].reg, options);
}
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06:
options = RTL_R8(tp, Config1) & ~PMEnable;
if (wolopts)
options |= PMEnable;
RTL_W8(tp, Config1, options);
break;
case RTL_GIGA_MAC_VER_34:
case RTL_GIGA_MAC_VER_37:
case RTL_GIGA_MAC_VER_39 ... RTL_GIGA_MAC_VER_51:
options = RTL_R8(tp, Config2) & ~PME_SIGNAL;
if (wolopts)
options |= PME_SIGNAL;
RTL_W8(tp, Config2, options);
break;
default:
break;
}
rtl_lock_config_regs(tp);
device_set_wakeup_enable(tp_to_dev(tp), wolopts);
}
static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
if (wol->wolopts & ~WAKE_ANY)
return -EINVAL;
pm_runtime_get_noresume(d);
rtl_lock_work(tp);
tp->saved_wolopts = wol->wolopts;
if (pm_runtime_active(d))
__rtl8169_set_wol(tp, tp->saved_wolopts);
rtl_unlock_work(tp);
pm_runtime_put_noidle(d);
return 0;
}
static void rtl8169_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct rtl_fw *rtl_fw = tp->rtl_fw;
strlcpy(info->driver, MODULENAME, sizeof(info->driver));
strlcpy(info->bus_info, pci_name(tp->pci_dev), sizeof(info->bus_info));
BUILD_BUG_ON(sizeof(info->fw_version) < sizeof(rtl_fw->version));
if (rtl_fw)
strlcpy(info->fw_version, rtl_fw->version,
sizeof(info->fw_version));
}
static int rtl8169_get_regs_len(struct net_device *dev)
{
return R8169_REGS_SIZE;
}
static netdev_features_t rtl8169_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (dev->mtu > TD_MSS_MAX)
features &= ~NETIF_F_ALL_TSO;
if (dev->mtu > JUMBO_1K &&
tp->mac_version > RTL_GIGA_MAC_VER_06)
features &= ~NETIF_F_IP_CSUM;
return features;
}
static int rtl8169_set_features(struct net_device *dev,
netdev_features_t features)
{
struct rtl8169_private *tp = netdev_priv(dev);
u32 rx_config;
rtl_lock_work(tp);
rx_config = RTL_R32(tp, RxConfig);
if (features & NETIF_F_RXALL)
rx_config |= (AcceptErr | AcceptRunt);
else
rx_config &= ~(AcceptErr | AcceptRunt);
RTL_W32(tp, RxConfig, rx_config);
if (features & NETIF_F_RXCSUM)
tp->cp_cmd |= RxChkSum;
else
tp->cp_cmd &= ~RxChkSum;
if (features & NETIF_F_HW_VLAN_CTAG_RX)
tp->cp_cmd |= RxVlan;
else
tp->cp_cmd &= ~RxVlan;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
RTL_R16(tp, CPlusCmd);
rtl_unlock_work(tp);
return 0;
}
static inline u32 rtl8169_tx_vlan_tag(struct sk_buff *skb)
{
return (skb_vlan_tag_present(skb)) ?
TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
}
static void rtl8169_rx_vlan_tag(struct RxDesc *desc, struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->opts2);
if (opts2 & RxVlanTag)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
}
static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct rtl8169_private *tp = netdev_priv(dev);
u32 __iomem *data = tp->mmio_addr;
u32 *dw = p;
int i;
rtl_lock_work(tp);
for (i = 0; i < R8169_REGS_SIZE; i += 4)
memcpy_fromio(dw++, data++, 4);
rtl_unlock_work(tp);
}
static u32 rtl8169_get_msglevel(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
return tp->msg_enable;
}
static void rtl8169_set_msglevel(struct net_device *dev, u32 value)
{
struct rtl8169_private *tp = netdev_priv(dev);
tp->msg_enable = value;
}
static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = {
"tx_packets",
"rx_packets",
"tx_errors",
"rx_errors",
"rx_missed",
"align_errors",
"tx_single_collisions",
"tx_multi_collisions",
"unicast",
"broadcast",
"multicast",
"tx_aborted",
"tx_underrun",
};
static int rtl8169_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(rtl8169_gstrings);
default:
return -EOPNOTSUPP;
}
}
DECLARE_RTL_COND(rtl_counters_cond)
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
{
return RTL_R32(tp, CounterAddrLow) & (CounterReset | CounterDump);
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
}
static bool rtl8169_do_counters(struct rtl8169_private *tp, u32 counter_cmd)
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
{
dma_addr_t paddr = tp->counters_phys_addr;
u32 cmd;
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
RTL_W32(tp, CounterAddrHigh, (u64)paddr >> 32);
RTL_R32(tp, CounterAddrHigh);
cmd = (u64)paddr & DMA_BIT_MASK(32);
RTL_W32(tp, CounterAddrLow, cmd);
RTL_W32(tp, CounterAddrLow, cmd | counter_cmd);
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
return rtl_udelay_loop_wait_low(tp, &rtl_counters_cond, 10, 1000);
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
}
static bool rtl8169_reset_counters(struct rtl8169_private *tp)
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
{
/*
* Versions prior to RTL_GIGA_MAC_VER_19 don't support resetting the
* tally counters.
*/
if (tp->mac_version < RTL_GIGA_MAC_VER_19)
return true;
return rtl8169_do_counters(tp, CounterReset);
}
static bool rtl8169_update_counters(struct rtl8169_private *tp)
{
u8 val = RTL_R8(tp, ChipCmd);
/*
* Some chips are unable to dump tally counters when the receiver
* is disabled. If 0xff chip may be in a PCI power-save state.
*/
if (!(val & CmdRxEnb) || val == 0xff)
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
return true;
return rtl8169_do_counters(tp, CounterDump);
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
}
static bool rtl8169_init_counter_offsets(struct rtl8169_private *tp)
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
{
struct rtl8169_counters *counters = tp->counters;
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
bool ret = false;
/*
* rtl8169_init_counter_offsets is called from rtl_open. On chip
* versions prior to RTL_GIGA_MAC_VER_19 the tally counters are only
* reset by a power cycle, while the counter values collected by the
* driver are reset at every driver unload/load cycle.
*
* To make sure the HW values returned by @get_stats64 match the SW
* values, we collect the initial values at first open(*) and use them
* as offsets to normalize the values returned by @get_stats64.
*
* (*) We can't call rtl8169_init_counter_offsets from rtl_init_one
* for the reason stated in rtl8169_update_counters; CmdRxEnb is only
* set at open time by rtl_hw_start.
*/
if (tp->tc_offset.inited)
return true;
/* If both, reset and update fail, propagate to caller. */
if (rtl8169_reset_counters(tp))
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
ret = true;
if (rtl8169_update_counters(tp))
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
ret = true;
tp->tc_offset.tx_errors = counters->tx_errors;
tp->tc_offset.tx_multi_collision = counters->tx_multi_collision;
tp->tc_offset.tx_aborted = counters->tx_aborted;
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
tp->tc_offset.inited = true;
return ret;
}
static void rtl8169_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
struct rtl8169_counters *counters = tp->counters;
ASSERT_RTNL();
pm_runtime_get_noresume(d);
if (pm_runtime_active(d))
rtl8169_update_counters(tp);
pm_runtime_put_noidle(d);
data[0] = le64_to_cpu(counters->tx_packets);
data[1] = le64_to_cpu(counters->rx_packets);
data[2] = le64_to_cpu(counters->tx_errors);
data[3] = le32_to_cpu(counters->rx_errors);
data[4] = le16_to_cpu(counters->rx_missed);
data[5] = le16_to_cpu(counters->align_errors);
data[6] = le32_to_cpu(counters->tx_one_collision);
data[7] = le32_to_cpu(counters->tx_multi_collision);
data[8] = le64_to_cpu(counters->rx_unicast);
data[9] = le64_to_cpu(counters->rx_broadcast);
data[10] = le32_to_cpu(counters->rx_multicast);
data[11] = le16_to_cpu(counters->tx_aborted);
data[12] = le16_to_cpu(counters->tx_underun);
}
static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
switch(stringset) {
case ETH_SS_STATS:
memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings));
break;
}
}
r8169: Add support for interrupt coalesce tuning (ethtool -C) Kirr: In particular with ethtool -C <ifname> rx-usecs 0 rx-frames 0 now it is possible to disable RX delays when NIC usage requires low-latency. See this thread for context: https://www.spinics.net/lists/netdev/msg217665.html My specific case is that: We have many computers with gigabit Realtek NICs. For 2 such computers connected to a gigabit store-and-forward switch the minimum round-trip time for small pings (`ping -i 0 -w 3 -s 56 -q peer`) is ~ 30μs. However it turned out that when Ethernet frame length transitions 127 -> 128 bytes (`ping -i 0 -w 3 -s {81 -> 82} -q peer`) the lowest RTT transitions step-wise to ~ 270μs. As David Light said this is RX interrupt mitigation done by NIC which creates the latency. For workloads when low-latency is required with e.g. Intel, BCM etc NIC drivers one just uses `ethtool -C rx-usecs ...` to reduce the time NIC delays before interrupting CPU, but it turned out `ethtool -C` is not supported by r8169 driver. Like StĂ©phane ANCELOT I've traced the problem down to IntrMitigate being hardcoded to != 0 for our chips (we have 8168 based NICs): https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n5460 static void rtl_hw_start_8169(struct net_device *dev) { ... /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n6346 static void rtl_hw_start_8168(struct net_device *dev) { ... RTL_W16(IntrMitigate, 0x5151); and then I've also found https://www.spinics.net/lists/netdev/msg217665.html and original Francois' patch: https://www.spinics.net/lists/netdev/msg217984.html https://www.spinics.net/lists/netdev/msg218207.html So could we please finally get support for tuning r8169 interrupt coalescing in tree? (so that next poor soul who hits the problem does not need to go all the way to dig into driver sources and internet wildly and finally patch locally -RTL_W16(IntrMitigate, 0x5151); +RTL_W16(IntrMitigate, 0x5100); guessing whether it is right or not and also having to care to deploy the patch everywhere it needs to be used, etc...). To do so I've took original Francois's patch from 2012 and reworked it a bit: - updated to latest net-next.git; - adjusted scaling setup based on feedback from Hayes to pick up scaling vector depending not only on link speed but also on CPlusCmd[0:1] and to adjust CPlusCmd[0:1] correspondingly when setting timings; - improved a bit (I think so) error handling. I've tested the patch on "RTL8168d/8111d" (XID 083000c0) and with it and `ethtool -C rx-usecs 0 rx-frames 0` on both ends it improves: - minimum RTT latency: ~270μs -> ~30μs (small packet), ~330μs -> ~110μs (full 1.5K ethernet frame) - average RTT latency: ~480μs -> ~50μs (small packet), ~560μs -> ~125μs (full 1.5K ethernet frame) ( before: root@neo1:# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5906 packets transmitted, 5905 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.274/0.485/0.607/0.026 ms, ipg/ewma 0.508/0.489 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5073 packets transmitted, 5073 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.330/0.566/0.710/0.028 ms, ipg/ewma 0.591/0.544 ms after: root@neo1# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 45815 packets transmitted, 45815 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.036/0.051/0.368/0.010 ms, ipg/ewma 0.065/0.053 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 21250 packets transmitted, 21250 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.112/0.125/0.390/0.007 ms, ipg/ewma 0.141/0.125 ms the small -> 1.5K latency growth is understandable as it takes ~15μs to transmit 1.5K on 1Gbps on the wire and with 2 hosts and 1 switch and ICMP ECHO + ECHO reply the packet has to travel 4 ethernet segments which is already 60μs; probably something a bit else is also there as e.g. on Linux, even with `cpupower frequency-set -g performance`, on some computers I've noticed the kernel can be spending more time in software-only mode when incoming packets go in less frequently. E.g. this program can demonstrate the effect for ICMP ECHO processing: https://lab.nexedi.com/kirr/bcc/blob/43cfc13b/tools/pinglat.py (later this was found to be partly due to C-states exit latencies) ) We have this patch running in our testing setup for 1 months already without any issues observed. It remains to be clarified whether RX and TX timers use the same base. For now I've set them equally, but Francois's original patch version suggests it could be not the same. I've got no feedback at all to my original posting of this patch and questions https://www.spinics.net/lists/netdev/msg457173.html neither from Francois, nor from any people from Realtek during one month. So I suggest we simply apply it to net-next.git now. Cc: Francois Romieu <romieu@fr.zoreil.com> Cc: Hayes Wang <hayeswang@realtek.com> Cc: Realtek linux nic maintainers <nic_swsd@realtek.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: StĂ©phane ANCELOT <sancelot@free.fr> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Kirill Smelkov <kirr@nexedi.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 04:24:49 -06:00
/*
* Interrupt coalescing
*
* > 1 - the availability of the IntrMitigate (0xe2) register through the
* > 8169, 8168 and 810x line of chipsets
*
* 8169, 8168, and 8136(810x) serial chipsets support it.
*
* > 2 - the Tx timer unit at gigabit speed
*
* The unit of the timer depends on both the speed and the setting of CPlusCmd
* (0xe0) bit 1 and bit 0.
*
* For 8169
* bit[1:0] \ speed 1000M 100M 10M
* 0 0 320ns 2.56us 40.96us
* 0 1 2.56us 20.48us 327.7us
* 1 0 5.12us 40.96us 655.4us
* 1 1 10.24us 81.92us 1.31ms
*
* For the other
* bit[1:0] \ speed 1000M 100M 10M
* 0 0 5us 2.56us 40.96us
* 0 1 40us 20.48us 327.7us
* 1 0 80us 40.96us 655.4us
* 1 1 160us 81.92us 1.31ms
*/
/* rx/tx scale factors for one particular CPlusCmd[0:1] value */
struct rtl_coalesce_scale {
/* Rx / Tx */
u32 nsecs[2];
};
/* rx/tx scale factors for all CPlusCmd[0:1] cases */
struct rtl_coalesce_info {
u32 speed;
struct rtl_coalesce_scale scalev[4]; /* each CPlusCmd[0:1] case */
};
/* produce (r,t) pairs with each being in series of *1, *8, *8*2, *8*2*2 */
#define rxtx_x1822(r, t) { \
{{(r), (t)}}, \
{{(r)*8, (t)*8}}, \
{{(r)*8*2, (t)*8*2}}, \
{{(r)*8*2*2, (t)*8*2*2}}, \
}
static const struct rtl_coalesce_info rtl_coalesce_info_8169[] = {
/* speed delays: rx00 tx00 */
{ SPEED_10, rxtx_x1822(40960, 40960) },
{ SPEED_100, rxtx_x1822( 2560, 2560) },
{ SPEED_1000, rxtx_x1822( 320, 320) },
{ 0 },
};
static const struct rtl_coalesce_info rtl_coalesce_info_8168_8136[] = {
/* speed delays: rx00 tx00 */
{ SPEED_10, rxtx_x1822(40960, 40960) },
{ SPEED_100, rxtx_x1822( 2560, 2560) },
{ SPEED_1000, rxtx_x1822( 5000, 5000) },
{ 0 },
};
#undef rxtx_x1822
/* get rx/tx scale vector corresponding to current speed */
static const struct rtl_coalesce_info *rtl_coalesce_info(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
const struct rtl_coalesce_info *ci;
if (tp->mac_version <= RTL_GIGA_MAC_VER_06)
ci = rtl_coalesce_info_8169;
else
ci = rtl_coalesce_info_8168_8136;
r8169: Add support for interrupt coalesce tuning (ethtool -C) Kirr: In particular with ethtool -C <ifname> rx-usecs 0 rx-frames 0 now it is possible to disable RX delays when NIC usage requires low-latency. See this thread for context: https://www.spinics.net/lists/netdev/msg217665.html My specific case is that: We have many computers with gigabit Realtek NICs. For 2 such computers connected to a gigabit store-and-forward switch the minimum round-trip time for small pings (`ping -i 0 -w 3 -s 56 -q peer`) is ~ 30μs. However it turned out that when Ethernet frame length transitions 127 -> 128 bytes (`ping -i 0 -w 3 -s {81 -> 82} -q peer`) the lowest RTT transitions step-wise to ~ 270μs. As David Light said this is RX interrupt mitigation done by NIC which creates the latency. For workloads when low-latency is required with e.g. Intel, BCM etc NIC drivers one just uses `ethtool -C rx-usecs ...` to reduce the time NIC delays before interrupting CPU, but it turned out `ethtool -C` is not supported by r8169 driver. Like StĂ©phane ANCELOT I've traced the problem down to IntrMitigate being hardcoded to != 0 for our chips (we have 8168 based NICs): https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n5460 static void rtl_hw_start_8169(struct net_device *dev) { ... /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n6346 static void rtl_hw_start_8168(struct net_device *dev) { ... RTL_W16(IntrMitigate, 0x5151); and then I've also found https://www.spinics.net/lists/netdev/msg217665.html and original Francois' patch: https://www.spinics.net/lists/netdev/msg217984.html https://www.spinics.net/lists/netdev/msg218207.html So could we please finally get support for tuning r8169 interrupt coalescing in tree? (so that next poor soul who hits the problem does not need to go all the way to dig into driver sources and internet wildly and finally patch locally -RTL_W16(IntrMitigate, 0x5151); +RTL_W16(IntrMitigate, 0x5100); guessing whether it is right or not and also having to care to deploy the patch everywhere it needs to be used, etc...). To do so I've took original Francois's patch from 2012 and reworked it a bit: - updated to latest net-next.git; - adjusted scaling setup based on feedback from Hayes to pick up scaling vector depending not only on link speed but also on CPlusCmd[0:1] and to adjust CPlusCmd[0:1] correspondingly when setting timings; - improved a bit (I think so) error handling. I've tested the patch on "RTL8168d/8111d" (XID 083000c0) and with it and `ethtool -C rx-usecs 0 rx-frames 0` on both ends it improves: - minimum RTT latency: ~270μs -> ~30μs (small packet), ~330μs -> ~110μs (full 1.5K ethernet frame) - average RTT latency: ~480μs -> ~50μs (small packet), ~560μs -> ~125μs (full 1.5K ethernet frame) ( before: root@neo1:# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5906 packets transmitted, 5905 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.274/0.485/0.607/0.026 ms, ipg/ewma 0.508/0.489 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5073 packets transmitted, 5073 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.330/0.566/0.710/0.028 ms, ipg/ewma 0.591/0.544 ms after: root@neo1# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 45815 packets transmitted, 45815 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.036/0.051/0.368/0.010 ms, ipg/ewma 0.065/0.053 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 21250 packets transmitted, 21250 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.112/0.125/0.390/0.007 ms, ipg/ewma 0.141/0.125 ms the small -> 1.5K latency growth is understandable as it takes ~15μs to transmit 1.5K on 1Gbps on the wire and with 2 hosts and 1 switch and ICMP ECHO + ECHO reply the packet has to travel 4 ethernet segments which is already 60μs; probably something a bit else is also there as e.g. on Linux, even with `cpupower frequency-set -g performance`, on some computers I've noticed the kernel can be spending more time in software-only mode when incoming packets go in less frequently. E.g. this program can demonstrate the effect for ICMP ECHO processing: https://lab.nexedi.com/kirr/bcc/blob/43cfc13b/tools/pinglat.py (later this was found to be partly due to C-states exit latencies) ) We have this patch running in our testing setup for 1 months already without any issues observed. It remains to be clarified whether RX and TX timers use the same base. For now I've set them equally, but Francois's original patch version suggests it could be not the same. I've got no feedback at all to my original posting of this patch and questions https://www.spinics.net/lists/netdev/msg457173.html neither from Francois, nor from any people from Realtek during one month. So I suggest we simply apply it to net-next.git now. Cc: Francois Romieu <romieu@fr.zoreil.com> Cc: Hayes Wang <hayeswang@realtek.com> Cc: Realtek linux nic maintainers <nic_swsd@realtek.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: StĂ©phane ANCELOT <sancelot@free.fr> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Kirill Smelkov <kirr@nexedi.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 04:24:49 -06:00
for (; ci->speed; ci++) {
if (tp->phydev->speed == ci->speed)
r8169: Add support for interrupt coalesce tuning (ethtool -C) Kirr: In particular with ethtool -C <ifname> rx-usecs 0 rx-frames 0 now it is possible to disable RX delays when NIC usage requires low-latency. See this thread for context: https://www.spinics.net/lists/netdev/msg217665.html My specific case is that: We have many computers with gigabit Realtek NICs. For 2 such computers connected to a gigabit store-and-forward switch the minimum round-trip time for small pings (`ping -i 0 -w 3 -s 56 -q peer`) is ~ 30μs. However it turned out that when Ethernet frame length transitions 127 -> 128 bytes (`ping -i 0 -w 3 -s {81 -> 82} -q peer`) the lowest RTT transitions step-wise to ~ 270μs. As David Light said this is RX interrupt mitigation done by NIC which creates the latency. For workloads when low-latency is required with e.g. Intel, BCM etc NIC drivers one just uses `ethtool -C rx-usecs ...` to reduce the time NIC delays before interrupting CPU, but it turned out `ethtool -C` is not supported by r8169 driver. Like StĂ©phane ANCELOT I've traced the problem down to IntrMitigate being hardcoded to != 0 for our chips (we have 8168 based NICs): https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n5460 static void rtl_hw_start_8169(struct net_device *dev) { ... /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n6346 static void rtl_hw_start_8168(struct net_device *dev) { ... RTL_W16(IntrMitigate, 0x5151); and then I've also found https://www.spinics.net/lists/netdev/msg217665.html and original Francois' patch: https://www.spinics.net/lists/netdev/msg217984.html https://www.spinics.net/lists/netdev/msg218207.html So could we please finally get support for tuning r8169 interrupt coalescing in tree? (so that next poor soul who hits the problem does not need to go all the way to dig into driver sources and internet wildly and finally patch locally -RTL_W16(IntrMitigate, 0x5151); +RTL_W16(IntrMitigate, 0x5100); guessing whether it is right or not and also having to care to deploy the patch everywhere it needs to be used, etc...). To do so I've took original Francois's patch from 2012 and reworked it a bit: - updated to latest net-next.git; - adjusted scaling setup based on feedback from Hayes to pick up scaling vector depending not only on link speed but also on CPlusCmd[0:1] and to adjust CPlusCmd[0:1] correspondingly when setting timings; - improved a bit (I think so) error handling. I've tested the patch on "RTL8168d/8111d" (XID 083000c0) and with it and `ethtool -C rx-usecs 0 rx-frames 0` on both ends it improves: - minimum RTT latency: ~270μs -> ~30μs (small packet), ~330μs -> ~110μs (full 1.5K ethernet frame) - average RTT latency: ~480μs -> ~50μs (small packet), ~560μs -> ~125μs (full 1.5K ethernet frame) ( before: root@neo1:# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5906 packets transmitted, 5905 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.274/0.485/0.607/0.026 ms, ipg/ewma 0.508/0.489 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5073 packets transmitted, 5073 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.330/0.566/0.710/0.028 ms, ipg/ewma 0.591/0.544 ms after: root@neo1# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 45815 packets transmitted, 45815 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.036/0.051/0.368/0.010 ms, ipg/ewma 0.065/0.053 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 21250 packets transmitted, 21250 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.112/0.125/0.390/0.007 ms, ipg/ewma 0.141/0.125 ms the small -> 1.5K latency growth is understandable as it takes ~15μs to transmit 1.5K on 1Gbps on the wire and with 2 hosts and 1 switch and ICMP ECHO + ECHO reply the packet has to travel 4 ethernet segments which is already 60μs; probably something a bit else is also there as e.g. on Linux, even with `cpupower frequency-set -g performance`, on some computers I've noticed the kernel can be spending more time in software-only mode when incoming packets go in less frequently. E.g. this program can demonstrate the effect for ICMP ECHO processing: https://lab.nexedi.com/kirr/bcc/blob/43cfc13b/tools/pinglat.py (later this was found to be partly due to C-states exit latencies) ) We have this patch running in our testing setup for 1 months already without any issues observed. It remains to be clarified whether RX and TX timers use the same base. For now I've set them equally, but Francois's original patch version suggests it could be not the same. I've got no feedback at all to my original posting of this patch and questions https://www.spinics.net/lists/netdev/msg457173.html neither from Francois, nor from any people from Realtek during one month. So I suggest we simply apply it to net-next.git now. Cc: Francois Romieu <romieu@fr.zoreil.com> Cc: Hayes Wang <hayeswang@realtek.com> Cc: Realtek linux nic maintainers <nic_swsd@realtek.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: StĂ©phane ANCELOT <sancelot@free.fr> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Kirill Smelkov <kirr@nexedi.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 04:24:49 -06:00
return ci;
}
return ERR_PTR(-ELNRNG);
}
static int rtl_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct rtl8169_private *tp = netdev_priv(dev);
const struct rtl_coalesce_info *ci;
const struct rtl_coalesce_scale *scale;
struct {
u32 *max_frames;
u32 *usecs;
} coal_settings [] = {
{ &ec->rx_max_coalesced_frames, &ec->rx_coalesce_usecs },
{ &ec->tx_max_coalesced_frames, &ec->tx_coalesce_usecs }
}, *p = coal_settings;
int i;
u16 w;
memset(ec, 0, sizeof(*ec));
/* get rx/tx scale corresponding to current speed and CPlusCmd[0:1] */
ci = rtl_coalesce_info(dev);
if (IS_ERR(ci))
return PTR_ERR(ci);
scale = &ci->scalev[tp->cp_cmd & INTT_MASK];
r8169: Add support for interrupt coalesce tuning (ethtool -C) Kirr: In particular with ethtool -C <ifname> rx-usecs 0 rx-frames 0 now it is possible to disable RX delays when NIC usage requires low-latency. See this thread for context: https://www.spinics.net/lists/netdev/msg217665.html My specific case is that: We have many computers with gigabit Realtek NICs. For 2 such computers connected to a gigabit store-and-forward switch the minimum round-trip time for small pings (`ping -i 0 -w 3 -s 56 -q peer`) is ~ 30μs. However it turned out that when Ethernet frame length transitions 127 -> 128 bytes (`ping -i 0 -w 3 -s {81 -> 82} -q peer`) the lowest RTT transitions step-wise to ~ 270μs. As David Light said this is RX interrupt mitigation done by NIC which creates the latency. For workloads when low-latency is required with e.g. Intel, BCM etc NIC drivers one just uses `ethtool -C rx-usecs ...` to reduce the time NIC delays before interrupting CPU, but it turned out `ethtool -C` is not supported by r8169 driver. Like StĂ©phane ANCELOT I've traced the problem down to IntrMitigate being hardcoded to != 0 for our chips (we have 8168 based NICs): https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n5460 static void rtl_hw_start_8169(struct net_device *dev) { ... /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n6346 static void rtl_hw_start_8168(struct net_device *dev) { ... RTL_W16(IntrMitigate, 0x5151); and then I've also found https://www.spinics.net/lists/netdev/msg217665.html and original Francois' patch: https://www.spinics.net/lists/netdev/msg217984.html https://www.spinics.net/lists/netdev/msg218207.html So could we please finally get support for tuning r8169 interrupt coalescing in tree? (so that next poor soul who hits the problem does not need to go all the way to dig into driver sources and internet wildly and finally patch locally -RTL_W16(IntrMitigate, 0x5151); +RTL_W16(IntrMitigate, 0x5100); guessing whether it is right or not and also having to care to deploy the patch everywhere it needs to be used, etc...). To do so I've took original Francois's patch from 2012 and reworked it a bit: - updated to latest net-next.git; - adjusted scaling setup based on feedback from Hayes to pick up scaling vector depending not only on link speed but also on CPlusCmd[0:1] and to adjust CPlusCmd[0:1] correspondingly when setting timings; - improved a bit (I think so) error handling. I've tested the patch on "RTL8168d/8111d" (XID 083000c0) and with it and `ethtool -C rx-usecs 0 rx-frames 0` on both ends it improves: - minimum RTT latency: ~270μs -> ~30μs (small packet), ~330μs -> ~110μs (full 1.5K ethernet frame) - average RTT latency: ~480μs -> ~50μs (small packet), ~560μs -> ~125μs (full 1.5K ethernet frame) ( before: root@neo1:# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5906 packets transmitted, 5905 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.274/0.485/0.607/0.026 ms, ipg/ewma 0.508/0.489 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5073 packets transmitted, 5073 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.330/0.566/0.710/0.028 ms, ipg/ewma 0.591/0.544 ms after: root@neo1# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 45815 packets transmitted, 45815 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.036/0.051/0.368/0.010 ms, ipg/ewma 0.065/0.053 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 21250 packets transmitted, 21250 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.112/0.125/0.390/0.007 ms, ipg/ewma 0.141/0.125 ms the small -> 1.5K latency growth is understandable as it takes ~15μs to transmit 1.5K on 1Gbps on the wire and with 2 hosts and 1 switch and ICMP ECHO + ECHO reply the packet has to travel 4 ethernet segments which is already 60μs; probably something a bit else is also there as e.g. on Linux, even with `cpupower frequency-set -g performance`, on some computers I've noticed the kernel can be spending more time in software-only mode when incoming packets go in less frequently. E.g. this program can demonstrate the effect for ICMP ECHO processing: https://lab.nexedi.com/kirr/bcc/blob/43cfc13b/tools/pinglat.py (later this was found to be partly due to C-states exit latencies) ) We have this patch running in our testing setup for 1 months already without any issues observed. It remains to be clarified whether RX and TX timers use the same base. For now I've set them equally, but Francois's original patch version suggests it could be not the same. I've got no feedback at all to my original posting of this patch and questions https://www.spinics.net/lists/netdev/msg457173.html neither from Francois, nor from any people from Realtek during one month. So I suggest we simply apply it to net-next.git now. Cc: Francois Romieu <romieu@fr.zoreil.com> Cc: Hayes Wang <hayeswang@realtek.com> Cc: Realtek linux nic maintainers <nic_swsd@realtek.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: StĂ©phane ANCELOT <sancelot@free.fr> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Kirill Smelkov <kirr@nexedi.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 04:24:49 -06:00
/* read IntrMitigate and adjust according to scale */
for (w = RTL_R16(tp, IntrMitigate); w; w >>= RTL_COALESCE_SHIFT, p++) {
r8169: Add support for interrupt coalesce tuning (ethtool -C) Kirr: In particular with ethtool -C <ifname> rx-usecs 0 rx-frames 0 now it is possible to disable RX delays when NIC usage requires low-latency. See this thread for context: https://www.spinics.net/lists/netdev/msg217665.html My specific case is that: We have many computers with gigabit Realtek NICs. For 2 such computers connected to a gigabit store-and-forward switch the minimum round-trip time for small pings (`ping -i 0 -w 3 -s 56 -q peer`) is ~ 30μs. However it turned out that when Ethernet frame length transitions 127 -> 128 bytes (`ping -i 0 -w 3 -s {81 -> 82} -q peer`) the lowest RTT transitions step-wise to ~ 270μs. As David Light said this is RX interrupt mitigation done by NIC which creates the latency. For workloads when low-latency is required with e.g. Intel, BCM etc NIC drivers one just uses `ethtool -C rx-usecs ...` to reduce the time NIC delays before interrupting CPU, but it turned out `ethtool -C` is not supported by r8169 driver. Like StĂ©phane ANCELOT I've traced the problem down to IntrMitigate being hardcoded to != 0 for our chips (we have 8168 based NICs): https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n5460 static void rtl_hw_start_8169(struct net_device *dev) { ... /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n6346 static void rtl_hw_start_8168(struct net_device *dev) { ... RTL_W16(IntrMitigate, 0x5151); and then I've also found https://www.spinics.net/lists/netdev/msg217665.html and original Francois' patch: https://www.spinics.net/lists/netdev/msg217984.html https://www.spinics.net/lists/netdev/msg218207.html So could we please finally get support for tuning r8169 interrupt coalescing in tree? (so that next poor soul who hits the problem does not need to go all the way to dig into driver sources and internet wildly and finally patch locally -RTL_W16(IntrMitigate, 0x5151); +RTL_W16(IntrMitigate, 0x5100); guessing whether it is right or not and also having to care to deploy the patch everywhere it needs to be used, etc...). To do so I've took original Francois's patch from 2012 and reworked it a bit: - updated to latest net-next.git; - adjusted scaling setup based on feedback from Hayes to pick up scaling vector depending not only on link speed but also on CPlusCmd[0:1] and to adjust CPlusCmd[0:1] correspondingly when setting timings; - improved a bit (I think so) error handling. I've tested the patch on "RTL8168d/8111d" (XID 083000c0) and with it and `ethtool -C rx-usecs 0 rx-frames 0` on both ends it improves: - minimum RTT latency: ~270μs -> ~30μs (small packet), ~330μs -> ~110μs (full 1.5K ethernet frame) - average RTT latency: ~480μs -> ~50μs (small packet), ~560μs -> ~125μs (full 1.5K ethernet frame) ( before: root@neo1:# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5906 packets transmitted, 5905 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.274/0.485/0.607/0.026 ms, ipg/ewma 0.508/0.489 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5073 packets transmitted, 5073 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.330/0.566/0.710/0.028 ms, ipg/ewma 0.591/0.544 ms after: root@neo1# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 45815 packets transmitted, 45815 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.036/0.051/0.368/0.010 ms, ipg/ewma 0.065/0.053 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 21250 packets transmitted, 21250 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.112/0.125/0.390/0.007 ms, ipg/ewma 0.141/0.125 ms the small -> 1.5K latency growth is understandable as it takes ~15μs to transmit 1.5K on 1Gbps on the wire and with 2 hosts and 1 switch and ICMP ECHO + ECHO reply the packet has to travel 4 ethernet segments which is already 60μs; probably something a bit else is also there as e.g. on Linux, even with `cpupower frequency-set -g performance`, on some computers I've noticed the kernel can be spending more time in software-only mode when incoming packets go in less frequently. E.g. this program can demonstrate the effect for ICMP ECHO processing: https://lab.nexedi.com/kirr/bcc/blob/43cfc13b/tools/pinglat.py (later this was found to be partly due to C-states exit latencies) ) We have this patch running in our testing setup for 1 months already without any issues observed. It remains to be clarified whether RX and TX timers use the same base. For now I've set them equally, but Francois's original patch version suggests it could be not the same. I've got no feedback at all to my original posting of this patch and questions https://www.spinics.net/lists/netdev/msg457173.html neither from Francois, nor from any people from Realtek during one month. So I suggest we simply apply it to net-next.git now. Cc: Francois Romieu <romieu@fr.zoreil.com> Cc: Hayes Wang <hayeswang@realtek.com> Cc: Realtek linux nic maintainers <nic_swsd@realtek.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: StĂ©phane ANCELOT <sancelot@free.fr> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Kirill Smelkov <kirr@nexedi.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 04:24:49 -06:00
*p->max_frames = (w & RTL_COALESCE_MASK) << 2;
w >>= RTL_COALESCE_SHIFT;
*p->usecs = w & RTL_COALESCE_MASK;
}
for (i = 0; i < 2; i++) {
p = coal_settings + i;
*p->usecs = (*p->usecs * scale->nsecs[i]) / 1000;
/*
* ethtool_coalesce says it is illegal to set both usecs and
* max_frames to 0.
*/
if (!*p->usecs && !*p->max_frames)
*p->max_frames = 1;
}
return 0;
}
/* choose appropriate scale factor and CPlusCmd[0:1] for (speed, nsec) */
static const struct rtl_coalesce_scale *rtl_coalesce_choose_scale(
struct net_device *dev, u32 nsec, u16 *cp01)
{
const struct rtl_coalesce_info *ci;
u16 i;
ci = rtl_coalesce_info(dev);
if (IS_ERR(ci))
return ERR_CAST(ci);
for (i = 0; i < 4; i++) {
u32 rxtx_maxscale = max(ci->scalev[i].nsecs[0],
ci->scalev[i].nsecs[1]);
if (nsec <= rxtx_maxscale * RTL_COALESCE_T_MAX) {
*cp01 = i;
return &ci->scalev[i];
}
}
return ERR_PTR(-EINVAL);
}
static int rtl_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct rtl8169_private *tp = netdev_priv(dev);
const struct rtl_coalesce_scale *scale;
struct {
u32 frames;
u32 usecs;
} coal_settings [] = {
{ ec->rx_max_coalesced_frames, ec->rx_coalesce_usecs },
{ ec->tx_max_coalesced_frames, ec->tx_coalesce_usecs }
}, *p = coal_settings;
u16 w = 0, cp01;
int i;
scale = rtl_coalesce_choose_scale(dev,
max(p[0].usecs, p[1].usecs) * 1000, &cp01);
if (IS_ERR(scale))
return PTR_ERR(scale);
for (i = 0; i < 2; i++, p++) {
u32 units;
/*
* accept max_frames=1 we returned in rtl_get_coalesce.
* accept it not only when usecs=0 because of e.g. the following scenario:
*
* - both rx_usecs=0 & rx_frames=0 in hardware (no delay on RX)
* - rtl_get_coalesce returns rx_usecs=0, rx_frames=1
* - then user does `ethtool -C eth0 rx-usecs 100`
*
* since ethtool sends to kernel whole ethtool_coalesce
* settings, if we do not handle rx_usecs=!0, rx_frames=1
* we'll reject it below in `frames % 4 != 0`.
*/
if (p->frames == 1) {
p->frames = 0;
}
units = p->usecs * 1000 / scale->nsecs[i];
if (p->frames > RTL_COALESCE_FRAME_MAX || p->frames % 4)
return -EINVAL;
w <<= RTL_COALESCE_SHIFT;
w |= units;
w <<= RTL_COALESCE_SHIFT;
w |= p->frames >> 2;
}
rtl_lock_work(tp);
RTL_W16(tp, IntrMitigate, swab16(w));
r8169: Add support for interrupt coalesce tuning (ethtool -C) Kirr: In particular with ethtool -C <ifname> rx-usecs 0 rx-frames 0 now it is possible to disable RX delays when NIC usage requires low-latency. See this thread for context: https://www.spinics.net/lists/netdev/msg217665.html My specific case is that: We have many computers with gigabit Realtek NICs. For 2 such computers connected to a gigabit store-and-forward switch the minimum round-trip time for small pings (`ping -i 0 -w 3 -s 56 -q peer`) is ~ 30μs. However it turned out that when Ethernet frame length transitions 127 -> 128 bytes (`ping -i 0 -w 3 -s {81 -> 82} -q peer`) the lowest RTT transitions step-wise to ~ 270μs. As David Light said this is RX interrupt mitigation done by NIC which creates the latency. For workloads when low-latency is required with e.g. Intel, BCM etc NIC drivers one just uses `ethtool -C rx-usecs ...` to reduce the time NIC delays before interrupting CPU, but it turned out `ethtool -C` is not supported by r8169 driver. Like StĂ©phane ANCELOT I've traced the problem down to IntrMitigate being hardcoded to != 0 for our chips (we have 8168 based NICs): https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n5460 static void rtl_hw_start_8169(struct net_device *dev) { ... /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n6346 static void rtl_hw_start_8168(struct net_device *dev) { ... RTL_W16(IntrMitigate, 0x5151); and then I've also found https://www.spinics.net/lists/netdev/msg217665.html and original Francois' patch: https://www.spinics.net/lists/netdev/msg217984.html https://www.spinics.net/lists/netdev/msg218207.html So could we please finally get support for tuning r8169 interrupt coalescing in tree? (so that next poor soul who hits the problem does not need to go all the way to dig into driver sources and internet wildly and finally patch locally -RTL_W16(IntrMitigate, 0x5151); +RTL_W16(IntrMitigate, 0x5100); guessing whether it is right or not and also having to care to deploy the patch everywhere it needs to be used, etc...). To do so I've took original Francois's patch from 2012 and reworked it a bit: - updated to latest net-next.git; - adjusted scaling setup based on feedback from Hayes to pick up scaling vector depending not only on link speed but also on CPlusCmd[0:1] and to adjust CPlusCmd[0:1] correspondingly when setting timings; - improved a bit (I think so) error handling. I've tested the patch on "RTL8168d/8111d" (XID 083000c0) and with it and `ethtool -C rx-usecs 0 rx-frames 0` on both ends it improves: - minimum RTT latency: ~270μs -> ~30μs (small packet), ~330μs -> ~110μs (full 1.5K ethernet frame) - average RTT latency: ~480μs -> ~50μs (small packet), ~560μs -> ~125μs (full 1.5K ethernet frame) ( before: root@neo1:# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5906 packets transmitted, 5905 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.274/0.485/0.607/0.026 ms, ipg/ewma 0.508/0.489 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5073 packets transmitted, 5073 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.330/0.566/0.710/0.028 ms, ipg/ewma 0.591/0.544 ms after: root@neo1# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 45815 packets transmitted, 45815 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.036/0.051/0.368/0.010 ms, ipg/ewma 0.065/0.053 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 21250 packets transmitted, 21250 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.112/0.125/0.390/0.007 ms, ipg/ewma 0.141/0.125 ms the small -> 1.5K latency growth is understandable as it takes ~15μs to transmit 1.5K on 1Gbps on the wire and with 2 hosts and 1 switch and ICMP ECHO + ECHO reply the packet has to travel 4 ethernet segments which is already 60μs; probably something a bit else is also there as e.g. on Linux, even with `cpupower frequency-set -g performance`, on some computers I've noticed the kernel can be spending more time in software-only mode when incoming packets go in less frequently. E.g. this program can demonstrate the effect for ICMP ECHO processing: https://lab.nexedi.com/kirr/bcc/blob/43cfc13b/tools/pinglat.py (later this was found to be partly due to C-states exit latencies) ) We have this patch running in our testing setup for 1 months already without any issues observed. It remains to be clarified whether RX and TX timers use the same base. For now I've set them equally, but Francois's original patch version suggests it could be not the same. I've got no feedback at all to my original posting of this patch and questions https://www.spinics.net/lists/netdev/msg457173.html neither from Francois, nor from any people from Realtek during one month. So I suggest we simply apply it to net-next.git now. Cc: Francois Romieu <romieu@fr.zoreil.com> Cc: Hayes Wang <hayeswang@realtek.com> Cc: Realtek linux nic maintainers <nic_swsd@realtek.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: StĂ©phane ANCELOT <sancelot@free.fr> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Kirill Smelkov <kirr@nexedi.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 04:24:49 -06:00
tp->cp_cmd = (tp->cp_cmd & ~INTT_MASK) | cp01;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
RTL_R16(tp, CPlusCmd);
r8169: Add support for interrupt coalesce tuning (ethtool -C) Kirr: In particular with ethtool -C <ifname> rx-usecs 0 rx-frames 0 now it is possible to disable RX delays when NIC usage requires low-latency. See this thread for context: https://www.spinics.net/lists/netdev/msg217665.html My specific case is that: We have many computers with gigabit Realtek NICs. For 2 such computers connected to a gigabit store-and-forward switch the minimum round-trip time for small pings (`ping -i 0 -w 3 -s 56 -q peer`) is ~ 30μs. However it turned out that when Ethernet frame length transitions 127 -> 128 bytes (`ping -i 0 -w 3 -s {81 -> 82} -q peer`) the lowest RTT transitions step-wise to ~ 270μs. As David Light said this is RX interrupt mitigation done by NIC which creates the latency. For workloads when low-latency is required with e.g. Intel, BCM etc NIC drivers one just uses `ethtool -C rx-usecs ...` to reduce the time NIC delays before interrupting CPU, but it turned out `ethtool -C` is not supported by r8169 driver. Like StĂ©phane ANCELOT I've traced the problem down to IntrMitigate being hardcoded to != 0 for our chips (we have 8168 based NICs): https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n5460 static void rtl_hw_start_8169(struct net_device *dev) { ... /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n6346 static void rtl_hw_start_8168(struct net_device *dev) { ... RTL_W16(IntrMitigate, 0x5151); and then I've also found https://www.spinics.net/lists/netdev/msg217665.html and original Francois' patch: https://www.spinics.net/lists/netdev/msg217984.html https://www.spinics.net/lists/netdev/msg218207.html So could we please finally get support for tuning r8169 interrupt coalescing in tree? (so that next poor soul who hits the problem does not need to go all the way to dig into driver sources and internet wildly and finally patch locally -RTL_W16(IntrMitigate, 0x5151); +RTL_W16(IntrMitigate, 0x5100); guessing whether it is right or not and also having to care to deploy the patch everywhere it needs to be used, etc...). To do so I've took original Francois's patch from 2012 and reworked it a bit: - updated to latest net-next.git; - adjusted scaling setup based on feedback from Hayes to pick up scaling vector depending not only on link speed but also on CPlusCmd[0:1] and to adjust CPlusCmd[0:1] correspondingly when setting timings; - improved a bit (I think so) error handling. I've tested the patch on "RTL8168d/8111d" (XID 083000c0) and with it and `ethtool -C rx-usecs 0 rx-frames 0` on both ends it improves: - minimum RTT latency: ~270μs -> ~30μs (small packet), ~330μs -> ~110μs (full 1.5K ethernet frame) - average RTT latency: ~480μs -> ~50μs (small packet), ~560μs -> ~125μs (full 1.5K ethernet frame) ( before: root@neo1:# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5906 packets transmitted, 5905 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.274/0.485/0.607/0.026 ms, ipg/ewma 0.508/0.489 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5073 packets transmitted, 5073 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.330/0.566/0.710/0.028 ms, ipg/ewma 0.591/0.544 ms after: root@neo1# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 45815 packets transmitted, 45815 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.036/0.051/0.368/0.010 ms, ipg/ewma 0.065/0.053 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 21250 packets transmitted, 21250 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.112/0.125/0.390/0.007 ms, ipg/ewma 0.141/0.125 ms the small -> 1.5K latency growth is understandable as it takes ~15μs to transmit 1.5K on 1Gbps on the wire and with 2 hosts and 1 switch and ICMP ECHO + ECHO reply the packet has to travel 4 ethernet segments which is already 60μs; probably something a bit else is also there as e.g. on Linux, even with `cpupower frequency-set -g performance`, on some computers I've noticed the kernel can be spending more time in software-only mode when incoming packets go in less frequently. E.g. this program can demonstrate the effect for ICMP ECHO processing: https://lab.nexedi.com/kirr/bcc/blob/43cfc13b/tools/pinglat.py (later this was found to be partly due to C-states exit latencies) ) We have this patch running in our testing setup for 1 months already without any issues observed. It remains to be clarified whether RX and TX timers use the same base. For now I've set them equally, but Francois's original patch version suggests it could be not the same. I've got no feedback at all to my original posting of this patch and questions https://www.spinics.net/lists/netdev/msg457173.html neither from Francois, nor from any people from Realtek during one month. So I suggest we simply apply it to net-next.git now. Cc: Francois Romieu <romieu@fr.zoreil.com> Cc: Hayes Wang <hayeswang@realtek.com> Cc: Realtek linux nic maintainers <nic_swsd@realtek.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: StĂ©phane ANCELOT <sancelot@free.fr> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Kirill Smelkov <kirr@nexedi.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 04:24:49 -06:00
rtl_unlock_work(tp);
return 0;
}
static int rtl_get_eee_supp(struct rtl8169_private *tp)
{
struct phy_device *phydev = tp->phydev;
int ret;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_34:
case RTL_GIGA_MAC_VER_35:
case RTL_GIGA_MAC_VER_36:
case RTL_GIGA_MAC_VER_38:
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE);
break;
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
ret = phy_read_paged(phydev, 0x0a5c, 0x12);
break;
default:
ret = -EPROTONOSUPPORT;
break;
}
return ret;
}
static int rtl_get_eee_lpadv(struct rtl8169_private *tp)
{
struct phy_device *phydev = tp->phydev;
int ret;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_34:
case RTL_GIGA_MAC_VER_35:
case RTL_GIGA_MAC_VER_36:
case RTL_GIGA_MAC_VER_38:
ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_LPABLE);
break;
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
ret = phy_read_paged(phydev, 0x0a5d, 0x11);
break;
default:
ret = -EPROTONOSUPPORT;
break;
}
return ret;
}
static int rtl_get_eee_adv(struct rtl8169_private *tp)
{
struct phy_device *phydev = tp->phydev;
int ret;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_34:
case RTL_GIGA_MAC_VER_35:
case RTL_GIGA_MAC_VER_36:
case RTL_GIGA_MAC_VER_38:
ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV);
break;
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
ret = phy_read_paged(phydev, 0x0a5d, 0x10);
break;
default:
ret = -EPROTONOSUPPORT;
break;
}
return ret;
}
static int rtl_set_eee_adv(struct rtl8169_private *tp, int val)
{
struct phy_device *phydev = tp->phydev;
int ret = 0;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_34:
case RTL_GIGA_MAC_VER_35:
case RTL_GIGA_MAC_VER_36:
case RTL_GIGA_MAC_VER_38:
ret = phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, val);
break;
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
phy_write_paged(phydev, 0x0a5d, 0x10, val);
break;
default:
ret = -EPROTONOSUPPORT;
break;
}
return ret;
}
static int rtl8169_get_eee(struct net_device *dev, struct ethtool_eee *data)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
int ret;
pm_runtime_get_noresume(d);
if (!pm_runtime_active(d)) {
ret = -EOPNOTSUPP;
goto out;
}
/* Get Supported EEE */
ret = rtl_get_eee_supp(tp);
if (ret < 0)
goto out;
data->supported = mmd_eee_cap_to_ethtool_sup_t(ret);
/* Get advertisement EEE */
ret = rtl_get_eee_adv(tp);
if (ret < 0)
goto out;
data->advertised = mmd_eee_adv_to_ethtool_adv_t(ret);
data->eee_enabled = !!data->advertised;
/* Get LP advertisement EEE */
ret = rtl_get_eee_lpadv(tp);
if (ret < 0)
goto out;
data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(ret);
data->eee_active = !!(data->advertised & data->lp_advertised);
out:
pm_runtime_put_noidle(d);
return ret < 0 ? ret : 0;
}
static int rtl8169_set_eee(struct net_device *dev, struct ethtool_eee *data)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
int old_adv, adv = 0, cap, ret;
pm_runtime_get_noresume(d);
if (!dev->phydev || !pm_runtime_active(d)) {
ret = -EOPNOTSUPP;
goto out;
}
if (dev->phydev->autoneg == AUTONEG_DISABLE ||
dev->phydev->duplex != DUPLEX_FULL) {
ret = -EPROTONOSUPPORT;
goto out;
}
/* Get Supported EEE */
ret = rtl_get_eee_supp(tp);
if (ret < 0)
goto out;
cap = ret;
ret = rtl_get_eee_adv(tp);
if (ret < 0)
goto out;
old_adv = ret;
if (data->eee_enabled) {
adv = !data->advertised ? cap :
ethtool_adv_to_mmd_eee_adv_t(data->advertised) & cap;
/* Mask prohibited EEE modes */
adv &= ~dev->phydev->eee_broken_modes;
}
if (old_adv != adv) {
ret = rtl_set_eee_adv(tp, adv);
if (ret < 0)
goto out;
/* Restart autonegotiation so the new modes get sent to the
* link partner.
*/
ret = phy_restart_aneg(dev->phydev);
}
out:
pm_runtime_put_noidle(d);
return ret < 0 ? ret : 0;
}
static const struct ethtool_ops rtl8169_ethtool_ops = {
.get_drvinfo = rtl8169_get_drvinfo,
.get_regs_len = rtl8169_get_regs_len,
.get_link = ethtool_op_get_link,
r8169: Add support for interrupt coalesce tuning (ethtool -C) Kirr: In particular with ethtool -C <ifname> rx-usecs 0 rx-frames 0 now it is possible to disable RX delays when NIC usage requires low-latency. See this thread for context: https://www.spinics.net/lists/netdev/msg217665.html My specific case is that: We have many computers with gigabit Realtek NICs. For 2 such computers connected to a gigabit store-and-forward switch the minimum round-trip time for small pings (`ping -i 0 -w 3 -s 56 -q peer`) is ~ 30μs. However it turned out that when Ethernet frame length transitions 127 -> 128 bytes (`ping -i 0 -w 3 -s {81 -> 82} -q peer`) the lowest RTT transitions step-wise to ~ 270μs. As David Light said this is RX interrupt mitigation done by NIC which creates the latency. For workloads when low-latency is required with e.g. Intel, BCM etc NIC drivers one just uses `ethtool -C rx-usecs ...` to reduce the time NIC delays before interrupting CPU, but it turned out `ethtool -C` is not supported by r8169 driver. Like StĂ©phane ANCELOT I've traced the problem down to IntrMitigate being hardcoded to != 0 for our chips (we have 8168 based NICs): https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n5460 static void rtl_hw_start_8169(struct net_device *dev) { ... /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/ethernet/realtek/r8169.c#n6346 static void rtl_hw_start_8168(struct net_device *dev) { ... RTL_W16(IntrMitigate, 0x5151); and then I've also found https://www.spinics.net/lists/netdev/msg217665.html and original Francois' patch: https://www.spinics.net/lists/netdev/msg217984.html https://www.spinics.net/lists/netdev/msg218207.html So could we please finally get support for tuning r8169 interrupt coalescing in tree? (so that next poor soul who hits the problem does not need to go all the way to dig into driver sources and internet wildly and finally patch locally -RTL_W16(IntrMitigate, 0x5151); +RTL_W16(IntrMitigate, 0x5100); guessing whether it is right or not and also having to care to deploy the patch everywhere it needs to be used, etc...). To do so I've took original Francois's patch from 2012 and reworked it a bit: - updated to latest net-next.git; - adjusted scaling setup based on feedback from Hayes to pick up scaling vector depending not only on link speed but also on CPlusCmd[0:1] and to adjust CPlusCmd[0:1] correspondingly when setting timings; - improved a bit (I think so) error handling. I've tested the patch on "RTL8168d/8111d" (XID 083000c0) and with it and `ethtool -C rx-usecs 0 rx-frames 0` on both ends it improves: - minimum RTT latency: ~270μs -> ~30μs (small packet), ~330μs -> ~110μs (full 1.5K ethernet frame) - average RTT latency: ~480μs -> ~50μs (small packet), ~560μs -> ~125μs (full 1.5K ethernet frame) ( before: root@neo1:# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5906 packets transmitted, 5905 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.274/0.485/0.607/0.026 ms, ipg/ewma 0.508/0.489 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 5073 packets transmitted, 5073 received, 0% packet loss, time 2999ms rtt min/avg/max/mdev = 0.330/0.566/0.710/0.028 ms, ipg/ewma 0.591/0.544 ms after: root@neo1# ping -i 0 -w 3 -s 82 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 82(110) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 45815 packets transmitted, 45815 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.036/0.051/0.368/0.010 ms, ipg/ewma 0.065/0.053 ms root@neo1:# ping -i 0 -w 3 -s 1472 -q neo2 PING neo2.kirr.nexedi.com (192.168.102.21) 1472(1500) bytes of data. --- neo2.kirr.nexedi.com ping statistics --- 21250 packets transmitted, 21250 received, 0% packet loss, time 3000ms rtt min/avg/max/mdev = 0.112/0.125/0.390/0.007 ms, ipg/ewma 0.141/0.125 ms the small -> 1.5K latency growth is understandable as it takes ~15μs to transmit 1.5K on 1Gbps on the wire and with 2 hosts and 1 switch and ICMP ECHO + ECHO reply the packet has to travel 4 ethernet segments which is already 60μs; probably something a bit else is also there as e.g. on Linux, even with `cpupower frequency-set -g performance`, on some computers I've noticed the kernel can be spending more time in software-only mode when incoming packets go in less frequently. E.g. this program can demonstrate the effect for ICMP ECHO processing: https://lab.nexedi.com/kirr/bcc/blob/43cfc13b/tools/pinglat.py (later this was found to be partly due to C-states exit latencies) ) We have this patch running in our testing setup for 1 months already without any issues observed. It remains to be clarified whether RX and TX timers use the same base. For now I've set them equally, but Francois's original patch version suggests it could be not the same. I've got no feedback at all to my original posting of this patch and questions https://www.spinics.net/lists/netdev/msg457173.html neither from Francois, nor from any people from Realtek during one month. So I suggest we simply apply it to net-next.git now. Cc: Francois Romieu <romieu@fr.zoreil.com> Cc: Hayes Wang <hayeswang@realtek.com> Cc: Realtek linux nic maintainers <nic_swsd@realtek.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: StĂ©phane ANCELOT <sancelot@free.fr> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Kirill Smelkov <kirr@nexedi.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 04:24:49 -06:00
.get_coalesce = rtl_get_coalesce,
.set_coalesce = rtl_set_coalesce,
.get_msglevel = rtl8169_get_msglevel,
.set_msglevel = rtl8169_set_msglevel,
.get_regs = rtl8169_get_regs,
.get_wol = rtl8169_get_wol,
.set_wol = rtl8169_set_wol,
.get_strings = rtl8169_get_strings,
.get_sset_count = rtl8169_get_sset_count,
.get_ethtool_stats = rtl8169_get_ethtool_stats,
.get_ts_info = ethtool_op_get_ts_info,
.nway_reset = phy_ethtool_nway_reset,
.get_eee = rtl8169_get_eee,
.set_eee = rtl8169_set_eee,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
static void rtl_enable_eee(struct rtl8169_private *tp)
{
int supported = rtl_get_eee_supp(tp);
if (supported > 0)
rtl_set_eee_adv(tp, supported);
}
static void rtl8169_get_mac_version(struct rtl8169_private *tp)
{
/*
* The driver currently handles the 8168Bf and the 8168Be identically
* but they can be identified more specifically through the test below
* if needed:
*
* (RTL_R32(tp, TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be
*
* Same thing for the 8101Eb and the 8101Ec:
*
* (RTL_R32(tp, TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec
*/
static const struct rtl_mac_info {
u16 mask;
u16 val;
u16 mac_version;
} mac_info[] = {
/* 8168EP family. */
{ 0x7cf, 0x502, RTL_GIGA_MAC_VER_51 },
{ 0x7cf, 0x501, RTL_GIGA_MAC_VER_50 },
{ 0x7cf, 0x500, RTL_GIGA_MAC_VER_49 },
/* 8168H family. */
{ 0x7cf, 0x541, RTL_GIGA_MAC_VER_46 },
{ 0x7cf, 0x540, RTL_GIGA_MAC_VER_45 },
/* 8168G family. */
{ 0x7cf, 0x5c8, RTL_GIGA_MAC_VER_44 },
{ 0x7cf, 0x509, RTL_GIGA_MAC_VER_42 },
{ 0x7cf, 0x4c1, RTL_GIGA_MAC_VER_41 },
{ 0x7cf, 0x4c0, RTL_GIGA_MAC_VER_40 },
/* 8168F family. */
{ 0x7c8, 0x488, RTL_GIGA_MAC_VER_38 },
{ 0x7cf, 0x481, RTL_GIGA_MAC_VER_36 },
{ 0x7cf, 0x480, RTL_GIGA_MAC_VER_35 },
/* 8168E family. */
{ 0x7c8, 0x2c8, RTL_GIGA_MAC_VER_34 },
{ 0x7cf, 0x2c1, RTL_GIGA_MAC_VER_32 },
{ 0x7c8, 0x2c0, RTL_GIGA_MAC_VER_33 },
/* 8168D family. */
{ 0x7cf, 0x281, RTL_GIGA_MAC_VER_25 },
{ 0x7c8, 0x280, RTL_GIGA_MAC_VER_26 },
/* 8168DP family. */
{ 0x7cf, 0x288, RTL_GIGA_MAC_VER_27 },
{ 0x7cf, 0x28a, RTL_GIGA_MAC_VER_28 },
{ 0x7cf, 0x28b, RTL_GIGA_MAC_VER_31 },
/* 8168C family. */
{ 0x7cf, 0x3c9, RTL_GIGA_MAC_VER_23 },
{ 0x7cf, 0x3c8, RTL_GIGA_MAC_VER_18 },
{ 0x7c8, 0x3c8, RTL_GIGA_MAC_VER_24 },
{ 0x7cf, 0x3c0, RTL_GIGA_MAC_VER_19 },
{ 0x7cf, 0x3c2, RTL_GIGA_MAC_VER_20 },
{ 0x7cf, 0x3c3, RTL_GIGA_MAC_VER_21 },
{ 0x7c8, 0x3c0, RTL_GIGA_MAC_VER_22 },
/* 8168B family. */
{ 0x7cf, 0x380, RTL_GIGA_MAC_VER_12 },
{ 0x7c8, 0x380, RTL_GIGA_MAC_VER_17 },
{ 0x7c8, 0x300, RTL_GIGA_MAC_VER_11 },
/* 8101 family. */
{ 0x7c8, 0x448, RTL_GIGA_MAC_VER_39 },
{ 0x7c8, 0x440, RTL_GIGA_MAC_VER_37 },
{ 0x7cf, 0x409, RTL_GIGA_MAC_VER_29 },
{ 0x7c8, 0x408, RTL_GIGA_MAC_VER_30 },
{ 0x7cf, 0x349, RTL_GIGA_MAC_VER_08 },
{ 0x7cf, 0x249, RTL_GIGA_MAC_VER_08 },
{ 0x7cf, 0x348, RTL_GIGA_MAC_VER_07 },
{ 0x7cf, 0x248, RTL_GIGA_MAC_VER_07 },
{ 0x7cf, 0x340, RTL_GIGA_MAC_VER_13 },
{ 0x7cf, 0x343, RTL_GIGA_MAC_VER_10 },
{ 0x7cf, 0x342, RTL_GIGA_MAC_VER_16 },
{ 0x7c8, 0x348, RTL_GIGA_MAC_VER_09 },
{ 0x7c8, 0x248, RTL_GIGA_MAC_VER_09 },
{ 0x7c8, 0x340, RTL_GIGA_MAC_VER_16 },
/* FIXME: where did these entries come from ? -- FR */
{ 0xfc8, 0x388, RTL_GIGA_MAC_VER_15 },
{ 0xfc8, 0x308, RTL_GIGA_MAC_VER_14 },
/* 8110 family. */
{ 0xfc8, 0x980, RTL_GIGA_MAC_VER_06 },
{ 0xfc8, 0x180, RTL_GIGA_MAC_VER_05 },
{ 0xfc8, 0x100, RTL_GIGA_MAC_VER_04 },
{ 0xfc8, 0x040, RTL_GIGA_MAC_VER_03 },
{ 0xfc8, 0x008, RTL_GIGA_MAC_VER_02 },
/* Catch-all */
{ 0x000, 0x000, RTL_GIGA_MAC_NONE }
};
const struct rtl_mac_info *p = mac_info;
u16 reg = RTL_R32(tp, TxConfig) >> 20;
while ((reg & p->mask) != p->val)
p++;
tp->mac_version = p->mac_version;
if (tp->mac_version == RTL_GIGA_MAC_NONE) {
dev_err(tp_to_dev(tp), "unknown chip XID %03x\n", reg & 0xfcf);
} else if (!tp->supports_gmii) {
if (tp->mac_version == RTL_GIGA_MAC_VER_42)
tp->mac_version = RTL_GIGA_MAC_VER_43;
else if (tp->mac_version == RTL_GIGA_MAC_VER_45)
tp->mac_version = RTL_GIGA_MAC_VER_47;
else if (tp->mac_version == RTL_GIGA_MAC_VER_46)
tp->mac_version = RTL_GIGA_MAC_VER_48;
}
}
struct phy_reg {
u16 reg;
u16 val;
};
static void __rtl_writephy_batch(struct rtl8169_private *tp,
const struct phy_reg *regs, int len)
{
while (len-- > 0) {
rtl_writephy(tp, regs->reg, regs->val);
regs++;
}
}
#define rtl_writephy_batch(tp, a) __rtl_writephy_batch(tp, a, ARRAY_SIZE(a))
static void rtl_release_firmware(struct rtl8169_private *tp)
{
if (tp->rtl_fw) {
rtl_fw_release_firmware(tp->rtl_fw);
kfree(tp->rtl_fw);
tp->rtl_fw = NULL;
}
}
static void rtl_apply_firmware(struct rtl8169_private *tp)
{
/* TODO: release firmware if rtl_fw_write_firmware signals failure. */
if (tp->rtl_fw)
rtl_fw_write_firmware(tp, tp->rtl_fw);
}
static void rtl_apply_firmware_cond(struct rtl8169_private *tp, u8 reg, u16 val)
{
if (rtl_readphy(tp, reg) != val)
netif_warn(tp, hw, tp->dev, "chipset not ready for firmware\n");
else
rtl_apply_firmware(tp);
}
static void rtl8168_config_eee_mac(struct rtl8169_private *tp)
{
/* Adjust EEE LED frequency */
if (tp->mac_version != RTL_GIGA_MAC_VER_38)
RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07);
rtl_eri_set_bits(tp, 0x1b0, ERIAR_MASK_1111, 0x0003);
}
static void rtl8168f_config_eee_phy(struct rtl8169_private *tp)
{
struct phy_device *phydev = tp->phydev;
phy_write(phydev, 0x1f, 0x0007);
phy_write(phydev, 0x1e, 0x0020);
phy_set_bits(phydev, 0x15, BIT(8));
phy_write(phydev, 0x1f, 0x0005);
phy_write(phydev, 0x05, 0x8b85);
phy_set_bits(phydev, 0x06, BIT(13));
phy_write(phydev, 0x1f, 0x0000);
}
static void rtl8168g_config_eee_phy(struct rtl8169_private *tp)
{
phy_modify_paged(tp->phydev, 0x0a43, 0x11, 0, BIT(4));
}
static void rtl8169s_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x06, 0x006e },
{ 0x08, 0x0708 },
{ 0x15, 0x4000 },
{ 0x18, 0x65c7 },
{ 0x1f, 0x0001 },
{ 0x03, 0x00a1 },
{ 0x02, 0x0008 },
{ 0x01, 0x0120 },
{ 0x00, 0x1000 },
{ 0x04, 0x0800 },
{ 0x04, 0x0000 },
{ 0x03, 0xff41 },
{ 0x02, 0xdf60 },
{ 0x01, 0x0140 },
{ 0x00, 0x0077 },
{ 0x04, 0x7800 },
{ 0x04, 0x7000 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf0f9 },
{ 0x04, 0x9800 },
{ 0x04, 0x9000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0xff95 },
{ 0x00, 0xba00 },
{ 0x04, 0xa800 },
{ 0x04, 0xa000 },
{ 0x03, 0xff41 },
{ 0x02, 0xdf20 },
{ 0x01, 0x0140 },
{ 0x00, 0x00bb },
{ 0x04, 0xb800 },
{ 0x04, 0xb000 },
{ 0x03, 0xdf41 },
{ 0x02, 0xdc60 },
{ 0x01, 0x6340 },
{ 0x00, 0x007d },
{ 0x04, 0xd800 },
{ 0x04, 0xd000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x100a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0xf000 },
{ 0x1f, 0x0000 },
{ 0x0b, 0x0000 },
{ 0x00, 0x9200 }
};
rtl_writephy_batch(tp, phy_reg_init);
}
static void rtl8169sb_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x01, 0x90d0 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init);
}
static void rtl8169scd_hw_phy_config_quirk(struct rtl8169_private *tp)
{
struct pci_dev *pdev = tp->pci_dev;
if ((pdev->subsystem_vendor != PCI_VENDOR_ID_GIGABYTE) ||
(pdev->subsystem_device != 0xe000))
return;
rtl_writephy(tp, 0x1f, 0x0001);
rtl_writephy(tp, 0x10, 0xf01b);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8169scd_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x04, 0x0000 },
{ 0x03, 0x00a1 },
{ 0x02, 0x0008 },
{ 0x01, 0x0120 },
{ 0x00, 0x1000 },
{ 0x04, 0x0800 },
{ 0x04, 0x9000 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf099 },
{ 0x04, 0x9800 },
{ 0x04, 0xa000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0xff95 },
{ 0x00, 0xba00 },
{ 0x04, 0xa800 },
{ 0x04, 0xf000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x101a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x10, 0xf41b },
{ 0x14, 0xfb54 },
{ 0x18, 0xf5c7 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init);
rtl8169scd_hw_phy_config_quirk(tp);
}
static void rtl8169sce_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x04, 0x0000 },
{ 0x03, 0x00a1 },
{ 0x02, 0x0008 },
{ 0x01, 0x0120 },
{ 0x00, 0x1000 },
{ 0x04, 0x0800 },
{ 0x04, 0x9000 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf099 },
{ 0x04, 0x9800 },
{ 0x04, 0xa000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0xff95 },
{ 0x00, 0xba00 },
{ 0x04, 0xa800 },
{ 0x04, 0xf000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x101a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x0b, 0x8480 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x18, 0x67c7 },
{ 0x04, 0x2000 },
{ 0x03, 0x002f },
{ 0x02, 0x4360 },
{ 0x01, 0x0109 },
{ 0x00, 0x3022 },
{ 0x04, 0x2800 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init);
}
static void rtl8168bb_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x10, 0xf41b },
{ 0x1f, 0x0000 }
};
rtl_writephy(tp, 0x1f, 0x0001);
rtl_patchphy(tp, 0x16, 1 << 0);
rtl_writephy_batch(tp, phy_reg_init);
}
static void rtl8168bef_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x10, 0xf41b },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init);
}
static void rtl8168cp_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0000 },
{ 0x1d, 0x0f00 },
{ 0x1f, 0x0002 },
{ 0x0c, 0x1ec8 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init);
}
static void rtl8168cp_2_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x1d, 0x3d98 },
{ 0x1f, 0x0000 }
};
rtl_writephy(tp, 0x1f, 0x0000);
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy_batch(tp, phy_reg_init);
}
static void rtl8168c_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x12, 0x2300 },
{ 0x1f, 0x0002 },
{ 0x00, 0x88d4 },
{ 0x01, 0x82b1 },
{ 0x03, 0x7002 },
{ 0x08, 0x9e30 },
{ 0x09, 0x01f0 },
{ 0x0a, 0x5500 },
{ 0x0c, 0x00c8 },
{ 0x1f, 0x0003 },
{ 0x12, 0xc096 },
{ 0x16, 0x000a },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x09, 0x2000 },
{ 0x09, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init);
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168c_2_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x12, 0x2300 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf099 },
{ 0x04, 0x9800 },
{ 0x04, 0x9000 },
{ 0x1d, 0x3d98 },
{ 0x1f, 0x0002 },
{ 0x0c, 0x7eb8 },
{ 0x06, 0x0761 },
{ 0x1f, 0x0003 },
{ 0x16, 0x0f0a },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init);
rtl_patchphy(tp, 0x16, 1 << 0);
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168c_3_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x12, 0x2300 },
{ 0x1d, 0x3d98 },
{ 0x1f, 0x0002 },
{ 0x0c, 0x7eb8 },
{ 0x06, 0x5461 },
{ 0x1f, 0x0003 },
{ 0x16, 0x0f0a },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init);
rtl_patchphy(tp, 0x16, 1 << 0);
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168c_4_hw_phy_config(struct rtl8169_private *tp)
{
rtl8168c_3_hw_phy_config(tp);
}
static const struct phy_reg rtl8168d_1_phy_reg_init_0[] = {
/* Channel Estimation */
{ 0x1f, 0x0001 },
{ 0x06, 0x4064 },
{ 0x07, 0x2863 },
{ 0x08, 0x059c },
{ 0x09, 0x26b4 },
{ 0x0a, 0x6a19 },
{ 0x0b, 0xdcc8 },
{ 0x10, 0xf06d },
{ 0x14, 0x7f68 },
{ 0x18, 0x7fd9 },
{ 0x1c, 0xf0ff },
{ 0x1d, 0x3d9c },
{ 0x1f, 0x0003 },
{ 0x12, 0xf49f },
{ 0x13, 0x070b },
{ 0x1a, 0x05ad },
{ 0x14, 0x94c0 },
/*
* Tx Error Issue
* Enhance line driver power
*/
{ 0x1f, 0x0002 },
{ 0x06, 0x5561 },
{ 0x1f, 0x0005 },
{ 0x05, 0x8332 },
{ 0x06, 0x5561 },
/*
* Can not link to 1Gbps with bad cable
* Decrease SNR threshold form 21.07dB to 19.04dB
*/
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0000 },
{ 0x0d, 0xf880 }
};
static const struct phy_reg rtl8168d_1_phy_reg_init_1[] = {
{ 0x1f, 0x0002 },
{ 0x05, 0x669a },
{ 0x1f, 0x0005 },
{ 0x05, 0x8330 },
{ 0x06, 0x669a },
{ 0x1f, 0x0002 }
};
static void rtl8168d_1_hw_phy_config(struct rtl8169_private *tp)
{
rtl_writephy_batch(tp, rtl8168d_1_phy_reg_init_0);
/*
* Rx Error Issue
* Fine Tune Switching regulator parameter
*/
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w0w1_phy(tp, 0x0b, 0x0010, 0x00ef);
rtl_w0w1_phy(tp, 0x0c, 0xa200, 0x5d00);
if (rtl8168d_efuse_read(tp, 0x01) == 0xb1) {
int val;
rtl_writephy_batch(tp, rtl8168d_1_phy_reg_init_1);
val = rtl_readphy(tp, 0x0d);
if ((val & 0x00ff) != 0x006c) {
static const u32 set[] = {
0x0065, 0x0066, 0x0067, 0x0068,
0x0069, 0x006a, 0x006b, 0x006c
};
int i;
rtl_writephy(tp, 0x1f, 0x0002);
val &= 0xff00;
for (i = 0; i < ARRAY_SIZE(set); i++)
rtl_writephy(tp, 0x0d, val | set[i]);
}
} else {
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x05, 0x6662 },
{ 0x1f, 0x0005 },
{ 0x05, 0x8330 },
{ 0x06, 0x6662 }
};
rtl_writephy_batch(tp, phy_reg_init);
}
/* RSET couple improve */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_patchphy(tp, 0x0d, 0x0300);
rtl_patchphy(tp, 0x0f, 0x0010);
/* Fine tune PLL performance */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w0w1_phy(tp, 0x02, 0x0100, 0x0600);
rtl_w0w1_phy(tp, 0x03, 0x0000, 0xe000);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x001b);
rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xbf00);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168d_2_hw_phy_config(struct rtl8169_private *tp)
{
rtl_writephy_batch(tp, rtl8168d_1_phy_reg_init_0);
if (rtl8168d_efuse_read(tp, 0x01) == 0xb1) {
int val;
rtl_writephy_batch(tp, rtl8168d_1_phy_reg_init_1);
val = rtl_readphy(tp, 0x0d);
if ((val & 0x00ff) != 0x006c) {
static const u32 set[] = {
0x0065, 0x0066, 0x0067, 0x0068,
0x0069, 0x006a, 0x006b, 0x006c
};
int i;
rtl_writephy(tp, 0x1f, 0x0002);
val &= 0xff00;
for (i = 0; i < ARRAY_SIZE(set); i++)
rtl_writephy(tp, 0x0d, val | set[i]);
}
} else {
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x05, 0x2642 },
{ 0x1f, 0x0005 },
{ 0x05, 0x8330 },
{ 0x06, 0x2642 }
};
rtl_writephy_batch(tp, phy_reg_init);
}
/* Fine tune PLL performance */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w0w1_phy(tp, 0x02, 0x0100, 0x0600);
rtl_w0w1_phy(tp, 0x03, 0x0000, 0xe000);
/* Switching regulator Slew rate */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_patchphy(tp, 0x0f, 0x0017);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x001b);
rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xb300);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168d_3_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x10, 0x0008 },
{ 0x0d, 0x006c },
{ 0x1f, 0x0000 },
{ 0x0d, 0xf880 },
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0001 },
{ 0x0b, 0xa4d8 },
{ 0x09, 0x281c },
{ 0x07, 0x2883 },
{ 0x0a, 0x6b35 },
{ 0x1d, 0x3da4 },
{ 0x1c, 0xeffd },
{ 0x14, 0x7f52 },
{ 0x18, 0x7fc6 },
{ 0x08, 0x0601 },
{ 0x06, 0x4063 },
{ 0x10, 0xf074 },
{ 0x1f, 0x0003 },
{ 0x13, 0x0789 },
{ 0x12, 0xf4bd },
{ 0x1a, 0x04fd },
{ 0x14, 0x84b0 },
{ 0x1f, 0x0000 },
{ 0x00, 0x9200 },
{ 0x1f, 0x0005 },
{ 0x01, 0x0340 },
{ 0x1f, 0x0001 },
{ 0x04, 0x4000 },
{ 0x03, 0x1d21 },
{ 0x02, 0x0c32 },
{ 0x01, 0x0200 },
{ 0x00, 0x5554 },
{ 0x04, 0x4800 },
{ 0x04, 0x4000 },
{ 0x04, 0xf000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x101a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0xf000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x0023 },
{ 0x16, 0x0000 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init);
}
static void rtl8168d_4_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x002d },
{ 0x18, 0x0040 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init);
rtl_patchphy(tp, 0x0d, 1 << 5);
}
static void rtl8168e_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Enable Delay cap */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b80 },
{ 0x06, 0xc896 },
{ 0x1f, 0x0000 },
/* Channel estimation fine tune */
{ 0x1f, 0x0001 },
{ 0x0b, 0x6c20 },
{ 0x07, 0x2872 },
{ 0x1c, 0xefff },
{ 0x1f, 0x0003 },
{ 0x14, 0x6420 },
{ 0x1f, 0x0000 },
/* Update PFM & 10M TX idle timer */
{ 0x1f, 0x0007 },
{ 0x1e, 0x002f },
{ 0x15, 0x1919 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x00ac },
{ 0x18, 0x0006 },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init);
/* DCO enable for 10M IDLE Power */
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x0023);
rtl_w0w1_phy(tp, 0x17, 0x0006, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* For impedance matching */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w0w1_phy(tp, 0x08, 0x8000, 0x7f00);
rtl_writephy(tp, 0x1f, 0x0000);
/* PHY auto speed down */
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x002d);
rtl_w0w1_phy(tp, 0x18, 0x0050, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b86);
rtl_w0w1_phy(tp, 0x06, 0x0001, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x2000);
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x0020);
rtl_w0w1_phy(tp, 0x15, 0x0000, 0x1100);
rtl_writephy(tp, 0x1f, 0x0006);
rtl_writephy(tp, 0x00, 0x5a00);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x0d, 0x0007);
rtl_writephy(tp, 0x0e, 0x003c);
rtl_writephy(tp, 0x0d, 0x4007);
rtl_writephy(tp, 0x0e, 0x0000);
rtl_writephy(tp, 0x0d, 0x0000);
}
static void rtl_rar_exgmac_set(struct rtl8169_private *tp, u8 *addr)
{
const u16 w[] = {
addr[0] | (addr[1] << 8),
addr[2] | (addr[3] << 8),
addr[4] | (addr[5] << 8)
};
rtl_eri_write(tp, 0xe0, ERIAR_MASK_1111, w[0] | (w[1] << 16));
rtl_eri_write(tp, 0xe4, ERIAR_MASK_1111, w[2]);
rtl_eri_write(tp, 0xf0, ERIAR_MASK_1111, w[0] << 16);
rtl_eri_write(tp, 0xf4, ERIAR_MASK_1111, w[1] | (w[2] << 16));
}
static void rtl8168e_2_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Enable Delay cap */
{ 0x1f, 0x0004 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x00ac },
{ 0x18, 0x0006 },
{ 0x1f, 0x0002 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0000 },
/* Channel estimation fine tune */
{ 0x1f, 0x0003 },
{ 0x09, 0xa20f },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0000 },
/* Green Setting */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b5b },
{ 0x06, 0x9222 },
{ 0x05, 0x8b6d },
{ 0x06, 0x8000 },
{ 0x05, 0x8b76 },
{ 0x06, 0x8000 },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init);
/* For 4-corner performance improve */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b80);
rtl_w0w1_phy(tp, 0x17, 0x0006, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* PHY auto speed down */
rtl_writephy(tp, 0x1f, 0x0004);
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x002d);
rtl_w0w1_phy(tp, 0x18, 0x0010, 0x0000);
rtl_writephy(tp, 0x1f, 0x0002);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
/* improve 10M EEE waveform */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b86);
rtl_w0w1_phy(tp, 0x06, 0x0001, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Improve 2-pair detection performance */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x4000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl8168f_config_eee_phy(tp);
rtl_enable_eee(tp);
/* Green feature */
rtl_writephy(tp, 0x1f, 0x0003);
rtl_w0w1_phy(tp, 0x19, 0x0001, 0x0000);
rtl_w0w1_phy(tp, 0x10, 0x0400, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_w0w1_phy(tp, 0x01, 0x0100, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Broken BIOS workaround: feed GigaMAC registers with MAC address. */
rtl_rar_exgmac_set(tp, tp->dev->dev_addr);
}
static void rtl8168f_hw_phy_config(struct rtl8169_private *tp)
{
/* For 4-corner performance improve */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b80);
rtl_w0w1_phy(tp, 0x06, 0x0006, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* PHY auto speed down */
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x002d);
rtl_w0w1_phy(tp, 0x18, 0x0010, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
/* Improve 10M EEE waveform */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b86);
rtl_w0w1_phy(tp, 0x06, 0x0001, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl8168f_config_eee_phy(tp);
rtl_enable_eee(tp);
}
static void rtl8168f_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Channel estimation fine tune */
{ 0x1f, 0x0003 },
{ 0x09, 0xa20f },
{ 0x1f, 0x0000 },
/* Modify green table for giga & fnet */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b55 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b5e },
{ 0x06, 0x0000 },
{ 0x05, 0x8b67 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b70 },
{ 0x06, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x0078 },
{ 0x17, 0x0000 },
{ 0x19, 0x00fb },
{ 0x1f, 0x0000 },
/* Modify green table for 10M */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b79 },
{ 0x06, 0xaa00 },
{ 0x1f, 0x0000 },
/* Disable hiimpedance detection (RTCT) */
{ 0x1f, 0x0003 },
{ 0x01, 0x328a },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init);
rtl8168f_hw_phy_config(tp);
/* Improve 2-pair detection performance */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x4000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168f_2_hw_phy_config(struct rtl8169_private *tp)
{
rtl_apply_firmware(tp);
rtl8168f_hw_phy_config(tp);
}
static void rtl8411_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Channel estimation fine tune */
{ 0x1f, 0x0003 },
{ 0x09, 0xa20f },
{ 0x1f, 0x0000 },
/* Modify green table for giga & fnet */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b55 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b5e },
{ 0x06, 0x0000 },
{ 0x05, 0x8b67 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b70 },
{ 0x06, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x0078 },
{ 0x17, 0x0000 },
{ 0x19, 0x00aa },
{ 0x1f, 0x0000 },
/* Modify green table for 10M */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b79 },
{ 0x06, 0xaa00 },
{ 0x1f, 0x0000 },
/* Disable hiimpedance detection (RTCT) */
{ 0x1f, 0x0003 },
{ 0x01, 0x328a },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl8168f_hw_phy_config(tp);
/* Improve 2-pair detection performance */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x4000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy_batch(tp, phy_reg_init);
/* Modify green table for giga */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b54);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0800);
rtl_writephy(tp, 0x05, 0x8b5d);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0800);
rtl_writephy(tp, 0x05, 0x8a7c);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x05, 0x8a7f);
rtl_w0w1_phy(tp, 0x06, 0x0100, 0x0000);
rtl_writephy(tp, 0x05, 0x8a82);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x05, 0x8a85);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x05, 0x8a88);
rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x1f, 0x0000);
/* uc same-seed solution */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w0w1_phy(tp, 0x06, 0x8000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Green feature */
rtl_writephy(tp, 0x1f, 0x0003);
rtl_w0w1_phy(tp, 0x19, 0x0000, 0x0001);
rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0400);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168g_disable_aldps(struct rtl8169_private *tp)
{
phy_modify_paged(tp->phydev, 0x0a43, 0x10, BIT(2), 0);
}
static void rtl8168g_phy_adjust_10m_aldps(struct rtl8169_private *tp)
{
struct phy_device *phydev = tp->phydev;
phy_modify_paged(phydev, 0x0bcc, 0x14, BIT(8), 0);
phy_modify_paged(phydev, 0x0a44, 0x11, 0, BIT(7) | BIT(6));
phy_write(phydev, 0x1f, 0x0a43);
phy_write(phydev, 0x13, 0x8084);
phy_clear_bits(phydev, 0x14, BIT(14) | BIT(13));
phy_set_bits(phydev, 0x10, BIT(12) | BIT(1) | BIT(0));
phy_write(phydev, 0x1f, 0x0000);
}
static void rtl8168g_1_hw_phy_config(struct rtl8169_private *tp)
{
int ret;
rtl_apply_firmware(tp);
ret = phy_read_paged(tp->phydev, 0x0a46, 0x10);
if (ret & BIT(8))
phy_modify_paged(tp->phydev, 0x0bcc, 0x12, BIT(15), 0);
else
phy_modify_paged(tp->phydev, 0x0bcc, 0x12, 0, BIT(15));
ret = phy_read_paged(tp->phydev, 0x0a46, 0x13);
if (ret & BIT(8))
phy_modify_paged(tp->phydev, 0x0c41, 0x15, 0, BIT(1));
else
phy_modify_paged(tp->phydev, 0x0c41, 0x15, BIT(1), 0);
/* Enable PHY auto speed down */
phy_modify_paged(tp->phydev, 0x0a44, 0x11, 0, BIT(3) | BIT(2));
rtl8168g_phy_adjust_10m_aldps(tp);
/* EEE auto-fallback function */
phy_modify_paged(tp->phydev, 0x0a4b, 0x11, 0, BIT(2));
/* Enable UC LPF tune function */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x8012);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
phy_modify_paged(tp->phydev, 0x0c42, 0x11, BIT(13), BIT(14));
/* Improve SWR Efficiency */
rtl_writephy(tp, 0x1f, 0x0bcd);
rtl_writephy(tp, 0x14, 0x5065);
rtl_writephy(tp, 0x14, 0xd065);
rtl_writephy(tp, 0x1f, 0x0bc8);
rtl_writephy(tp, 0x11, 0x5655);
rtl_writephy(tp, 0x1f, 0x0bcd);
rtl_writephy(tp, 0x14, 0x1065);
rtl_writephy(tp, 0x14, 0x9065);
rtl_writephy(tp, 0x14, 0x1065);
rtl_writephy(tp, 0x1f, 0x0000);
rtl8168g_disable_aldps(tp);
rtl8168g_config_eee_phy(tp);
rtl_enable_eee(tp);
}
static void rtl8168g_2_hw_phy_config(struct rtl8169_private *tp)
{
rtl_apply_firmware(tp);
rtl8168g_config_eee_phy(tp);
rtl_enable_eee(tp);
}
static void rtl8168h_1_hw_phy_config(struct rtl8169_private *tp)
{
u16 dout_tapbin;
u32 data;
rtl_apply_firmware(tp);
/* CHN EST parameters adjust - giga master */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x809b);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0xf800);
rtl_writephy(tp, 0x13, 0x80a2);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0xff00);
rtl_writephy(tp, 0x13, 0x80a4);
rtl_w0w1_phy(tp, 0x14, 0x8500, 0xff00);
rtl_writephy(tp, 0x13, 0x809c);
rtl_w0w1_phy(tp, 0x14, 0xbd00, 0xff00);
rtl_writephy(tp, 0x1f, 0x0000);
/* CHN EST parameters adjust - giga slave */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x80ad);
rtl_w0w1_phy(tp, 0x14, 0x7000, 0xf800);
rtl_writephy(tp, 0x13, 0x80b4);
rtl_w0w1_phy(tp, 0x14, 0x5000, 0xff00);
rtl_writephy(tp, 0x13, 0x80ac);
rtl_w0w1_phy(tp, 0x14, 0x4000, 0xff00);
rtl_writephy(tp, 0x1f, 0x0000);
/* CHN EST parameters adjust - fnet */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x808e);
rtl_w0w1_phy(tp, 0x14, 0x1200, 0xff00);
rtl_writephy(tp, 0x13, 0x8090);
rtl_w0w1_phy(tp, 0x14, 0xe500, 0xff00);
rtl_writephy(tp, 0x13, 0x8092);
rtl_w0w1_phy(tp, 0x14, 0x9f00, 0xff00);
rtl_writephy(tp, 0x1f, 0x0000);
/* enable R-tune & PGA-retune function */
dout_tapbin = 0;
rtl_writephy(tp, 0x1f, 0x0a46);
data = rtl_readphy(tp, 0x13);
data &= 3;
data <<= 2;
dout_tapbin |= data;
data = rtl_readphy(tp, 0x12);
data &= 0xc000;
data >>= 14;
dout_tapbin |= data;
dout_tapbin = ~(dout_tapbin^0x08);
dout_tapbin <<= 12;
dout_tapbin &= 0xf000;
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x827a);
rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000);
rtl_writephy(tp, 0x13, 0x827b);
rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000);
rtl_writephy(tp, 0x13, 0x827c);
rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000);
rtl_writephy(tp, 0x13, 0x827d);
rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000);
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x0811);
rtl_w0w1_phy(tp, 0x14, 0x0800, 0x0000);
rtl_writephy(tp, 0x1f, 0x0a42);
rtl_w0w1_phy(tp, 0x16, 0x0002, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* enable GPHY 10M */
phy_modify_paged(tp->phydev, 0x0a44, 0x11, 0, BIT(11));
/* SAR ADC performance */
phy_modify_paged(tp->phydev, 0x0bca, 0x17, BIT(12) | BIT(13), BIT(14));
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x803f);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x8047);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x804f);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x8057);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x805f);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x8067);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x13, 0x806f);
rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000);
rtl_writephy(tp, 0x1f, 0x0000);
/* disable phy pfm mode */
phy_modify_paged(tp->phydev, 0x0a44, 0x11, BIT(7), 0);
rtl8168g_disable_aldps(tp);
rtl8168g_config_eee_phy(tp);
rtl_enable_eee(tp);
}
static void rtl8168h_2_hw_phy_config(struct rtl8169_private *tp)
{
u16 ioffset_p3, ioffset_p2, ioffset_p1, ioffset_p0;
u16 rlen;
u32 data;
rtl_apply_firmware(tp);
/* CHIN EST parameter update */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x808a);
rtl_w0w1_phy(tp, 0x14, 0x000a, 0x003f);
rtl_writephy(tp, 0x1f, 0x0000);
/* enable R-tune & PGA-retune function */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x0811);
rtl_w0w1_phy(tp, 0x14, 0x0800, 0x0000);
rtl_writephy(tp, 0x1f, 0x0a42);
rtl_w0w1_phy(tp, 0x16, 0x0002, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* enable GPHY 10M */
phy_modify_paged(tp->phydev, 0x0a44, 0x11, 0, BIT(11));
r8168_mac_ocp_write(tp, 0xdd02, 0x807d);
data = r8168_mac_ocp_read(tp, 0xdd02);
ioffset_p3 = ((data & 0x80)>>7);
ioffset_p3 <<= 3;
data = r8168_mac_ocp_read(tp, 0xdd00);
ioffset_p3 |= ((data & (0xe000))>>13);
ioffset_p2 = ((data & (0x1e00))>>9);
ioffset_p1 = ((data & (0x01e0))>>5);
ioffset_p0 = ((data & 0x0010)>>4);
ioffset_p0 <<= 3;
ioffset_p0 |= (data & (0x07));
data = (ioffset_p3<<12)|(ioffset_p2<<8)|(ioffset_p1<<4)|(ioffset_p0);
if ((ioffset_p3 != 0x0f) || (ioffset_p2 != 0x0f) ||
(ioffset_p1 != 0x0f) || (ioffset_p0 != 0x0f)) {
rtl_writephy(tp, 0x1f, 0x0bcf);
rtl_writephy(tp, 0x16, data);
rtl_writephy(tp, 0x1f, 0x0000);
}
/* Modify rlen (TX LPF corner frequency) level */
rtl_writephy(tp, 0x1f, 0x0bcd);
data = rtl_readphy(tp, 0x16);
data &= 0x000f;
rlen = 0;
if (data > 3)
rlen = data - 3;
data = rlen | (rlen<<4) | (rlen<<8) | (rlen<<12);
rtl_writephy(tp, 0x17, data);
rtl_writephy(tp, 0x1f, 0x0bcd);
rtl_writephy(tp, 0x1f, 0x0000);
/* disable phy pfm mode */
phy_modify_paged(tp->phydev, 0x0a44, 0x11, BIT(7), 0);
rtl8168g_disable_aldps(tp);
rtl8168g_config_eee_phy(tp);
rtl_enable_eee(tp);
}
static void rtl8168ep_1_hw_phy_config(struct rtl8169_private *tp)
{
/* Enable PHY auto speed down */
phy_modify_paged(tp->phydev, 0x0a44, 0x11, 0, BIT(3) | BIT(2));
rtl8168g_phy_adjust_10m_aldps(tp);
/* Enable EEE auto-fallback function */
phy_modify_paged(tp->phydev, 0x0a4b, 0x11, 0, BIT(2));
/* Enable UC LPF tune function */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x8012);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* set rg_sel_sdm_rate */
phy_modify_paged(tp->phydev, 0x0c42, 0x11, BIT(13), BIT(14));
rtl8168g_disable_aldps(tp);
rtl8168g_config_eee_phy(tp);
rtl_enable_eee(tp);
}
static void rtl8168ep_2_hw_phy_config(struct rtl8169_private *tp)
{
rtl8168g_phy_adjust_10m_aldps(tp);
/* Enable UC LPF tune function */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x8012);
rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Set rg_sel_sdm_rate */
phy_modify_paged(tp->phydev, 0x0c42, 0x11, BIT(13), BIT(14));
/* Channel estimation parameters */
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x80f3);
rtl_w0w1_phy(tp, 0x14, 0x8b00, ~0x8bff);
rtl_writephy(tp, 0x13, 0x80f0);
rtl_w0w1_phy(tp, 0x14, 0x3a00, ~0x3aff);
rtl_writephy(tp, 0x13, 0x80ef);
rtl_w0w1_phy(tp, 0x14, 0x0500, ~0x05ff);
rtl_writephy(tp, 0x13, 0x80f6);
rtl_w0w1_phy(tp, 0x14, 0x6e00, ~0x6eff);
rtl_writephy(tp, 0x13, 0x80ec);
rtl_w0w1_phy(tp, 0x14, 0x6800, ~0x68ff);
rtl_writephy(tp, 0x13, 0x80ed);
rtl_w0w1_phy(tp, 0x14, 0x7c00, ~0x7cff);
rtl_writephy(tp, 0x13, 0x80f2);
rtl_w0w1_phy(tp, 0x14, 0xf400, ~0xf4ff);
rtl_writephy(tp, 0x13, 0x80f4);
rtl_w0w1_phy(tp, 0x14, 0x8500, ~0x85ff);
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x8110);
rtl_w0w1_phy(tp, 0x14, 0xa800, ~0xa8ff);
rtl_writephy(tp, 0x13, 0x810f);
rtl_w0w1_phy(tp, 0x14, 0x1d00, ~0x1dff);
rtl_writephy(tp, 0x13, 0x8111);
rtl_w0w1_phy(tp, 0x14, 0xf500, ~0xf5ff);
rtl_writephy(tp, 0x13, 0x8113);
rtl_w0w1_phy(tp, 0x14, 0x6100, ~0x61ff);
rtl_writephy(tp, 0x13, 0x8115);
rtl_w0w1_phy(tp, 0x14, 0x9200, ~0x92ff);
rtl_writephy(tp, 0x13, 0x810e);
rtl_w0w1_phy(tp, 0x14, 0x0400, ~0x04ff);
rtl_writephy(tp, 0x13, 0x810c);
rtl_w0w1_phy(tp, 0x14, 0x7c00, ~0x7cff);
rtl_writephy(tp, 0x13, 0x810b);
rtl_w0w1_phy(tp, 0x14, 0x5a00, ~0x5aff);
rtl_writephy(tp, 0x1f, 0x0a43);
rtl_writephy(tp, 0x13, 0x80d1);
rtl_w0w1_phy(tp, 0x14, 0xff00, ~0xffff);
rtl_writephy(tp, 0x13, 0x80cd);
rtl_w0w1_phy(tp, 0x14, 0x9e00, ~0x9eff);
rtl_writephy(tp, 0x13, 0x80d3);
rtl_w0w1_phy(tp, 0x14, 0x0e00, ~0x0eff);
rtl_writephy(tp, 0x13, 0x80d5);
rtl_w0w1_phy(tp, 0x14, 0xca00, ~0xcaff);
rtl_writephy(tp, 0x13, 0x80d7);
rtl_w0w1_phy(tp, 0x14, 0x8400, ~0x84ff);
/* Force PWM-mode */
rtl_writephy(tp, 0x1f, 0x0bcd);
rtl_writephy(tp, 0x14, 0x5065);
rtl_writephy(tp, 0x14, 0xd065);
rtl_writephy(tp, 0x1f, 0x0bc8);
rtl_writephy(tp, 0x12, 0x00ed);
rtl_writephy(tp, 0x1f, 0x0bcd);
rtl_writephy(tp, 0x14, 0x1065);
rtl_writephy(tp, 0x14, 0x9065);
rtl_writephy(tp, 0x14, 0x1065);
rtl_writephy(tp, 0x1f, 0x0000);
rtl8168g_disable_aldps(tp);
rtl8168g_config_eee_phy(tp);
rtl_enable_eee(tp);
}
static void rtl8102e_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0003 },
{ 0x08, 0x441d },
{ 0x01, 0x9100 },
{ 0x1f, 0x0000 }
};
rtl_writephy(tp, 0x1f, 0x0000);
rtl_patchphy(tp, 0x11, 1 << 12);
rtl_patchphy(tp, 0x19, 1 << 13);
rtl_patchphy(tp, 0x10, 1 << 15);
rtl_writephy_batch(tp, phy_reg_init);
}
static void rtl8105e_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0005 },
{ 0x1a, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0004 },
{ 0x1c, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x15, 0x7701 },
{ 0x1f, 0x0000 }
};
/* Disable ALDPS before ram code */
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x18, 0x0310);
msleep(100);
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init);
}
static void rtl8402_hw_phy_config(struct rtl8169_private *tp)
{
/* Disable ALDPS before setting firmware */
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x18, 0x0310);
msleep(20);
rtl_apply_firmware(tp);
/* EEE setting */
rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000);
rtl_writephy(tp, 0x1f, 0x0004);
rtl_writephy(tp, 0x10, 0x401f);
rtl_writephy(tp, 0x19, 0x7030);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8106e_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0004 },
{ 0x10, 0xc07f },
{ 0x19, 0x7030 },
{ 0x1f, 0x0000 }
};
/* Disable ALDPS before ram code */
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x18, 0x0310);
msleep(100);
rtl_apply_firmware(tp);
rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000);
rtl_writephy_batch(tp, phy_reg_init);
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000);
}
static void rtl_hw_phy_config(struct net_device *dev)
{
static const rtl_generic_fct phy_configs[] = {
/* PCI devices. */
[RTL_GIGA_MAC_VER_02] = rtl8169s_hw_phy_config,
[RTL_GIGA_MAC_VER_03] = rtl8169s_hw_phy_config,
[RTL_GIGA_MAC_VER_04] = rtl8169sb_hw_phy_config,
[RTL_GIGA_MAC_VER_05] = rtl8169scd_hw_phy_config,
[RTL_GIGA_MAC_VER_06] = rtl8169sce_hw_phy_config,
/* PCI-E devices. */
[RTL_GIGA_MAC_VER_07] = rtl8102e_hw_phy_config,
[RTL_GIGA_MAC_VER_08] = rtl8102e_hw_phy_config,
[RTL_GIGA_MAC_VER_09] = rtl8102e_hw_phy_config,
[RTL_GIGA_MAC_VER_10] = NULL,
[RTL_GIGA_MAC_VER_11] = rtl8168bb_hw_phy_config,
[RTL_GIGA_MAC_VER_12] = rtl8168bef_hw_phy_config,
[RTL_GIGA_MAC_VER_13] = NULL,
[RTL_GIGA_MAC_VER_14] = NULL,
[RTL_GIGA_MAC_VER_15] = NULL,
[RTL_GIGA_MAC_VER_16] = NULL,
[RTL_GIGA_MAC_VER_17] = rtl8168bef_hw_phy_config,
[RTL_GIGA_MAC_VER_18] = rtl8168cp_1_hw_phy_config,
[RTL_GIGA_MAC_VER_19] = rtl8168c_1_hw_phy_config,
[RTL_GIGA_MAC_VER_20] = rtl8168c_2_hw_phy_config,
[RTL_GIGA_MAC_VER_21] = rtl8168c_3_hw_phy_config,
[RTL_GIGA_MAC_VER_22] = rtl8168c_4_hw_phy_config,
[RTL_GIGA_MAC_VER_23] = rtl8168cp_2_hw_phy_config,
[RTL_GIGA_MAC_VER_24] = rtl8168cp_2_hw_phy_config,
[RTL_GIGA_MAC_VER_25] = rtl8168d_1_hw_phy_config,
[RTL_GIGA_MAC_VER_26] = rtl8168d_2_hw_phy_config,
[RTL_GIGA_MAC_VER_27] = rtl8168d_3_hw_phy_config,
[RTL_GIGA_MAC_VER_28] = rtl8168d_4_hw_phy_config,
[RTL_GIGA_MAC_VER_29] = rtl8105e_hw_phy_config,
[RTL_GIGA_MAC_VER_30] = rtl8105e_hw_phy_config,
[RTL_GIGA_MAC_VER_31] = NULL,
[RTL_GIGA_MAC_VER_32] = rtl8168e_1_hw_phy_config,
[RTL_GIGA_MAC_VER_33] = rtl8168e_1_hw_phy_config,
[RTL_GIGA_MAC_VER_34] = rtl8168e_2_hw_phy_config,
[RTL_GIGA_MAC_VER_35] = rtl8168f_1_hw_phy_config,
[RTL_GIGA_MAC_VER_36] = rtl8168f_2_hw_phy_config,
[RTL_GIGA_MAC_VER_37] = rtl8402_hw_phy_config,
[RTL_GIGA_MAC_VER_38] = rtl8411_hw_phy_config,
[RTL_GIGA_MAC_VER_39] = rtl8106e_hw_phy_config,
[RTL_GIGA_MAC_VER_40] = rtl8168g_1_hw_phy_config,
[RTL_GIGA_MAC_VER_41] = NULL,
[RTL_GIGA_MAC_VER_42] = rtl8168g_2_hw_phy_config,
[RTL_GIGA_MAC_VER_43] = rtl8168g_2_hw_phy_config,
[RTL_GIGA_MAC_VER_44] = rtl8168g_2_hw_phy_config,
[RTL_GIGA_MAC_VER_45] = rtl8168h_1_hw_phy_config,
[RTL_GIGA_MAC_VER_46] = rtl8168h_2_hw_phy_config,
[RTL_GIGA_MAC_VER_47] = rtl8168h_1_hw_phy_config,
[RTL_GIGA_MAC_VER_48] = rtl8168h_2_hw_phy_config,
[RTL_GIGA_MAC_VER_49] = rtl8168ep_1_hw_phy_config,
[RTL_GIGA_MAC_VER_50] = rtl8168ep_2_hw_phy_config,
[RTL_GIGA_MAC_VER_51] = rtl8168ep_2_hw_phy_config,
};
struct rtl8169_private *tp = netdev_priv(dev);
if (phy_configs[tp->mac_version])
phy_configs[tp->mac_version](tp);
}
static void rtl_schedule_task(struct rtl8169_private *tp, enum rtl_flag flag)
{
if (!test_and_set_bit(flag, tp->wk.flags))
schedule_work(&tp->wk.work);
}
static void rtl8169_init_phy(struct net_device *dev, struct rtl8169_private *tp)
{
rtl_hw_phy_config(dev);
if (tp->mac_version <= RTL_GIGA_MAC_VER_06) {
pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40);
pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08);
netif_dbg(tp, drv, dev,
"Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
RTL_W8(tp, 0x82, 0x01);
}
/* We may have called phy_speed_down before */
phy_speed_up(tp->phydev);
genphy_soft_reset(tp->phydev);
}
static void rtl_rar_set(struct rtl8169_private *tp, u8 *addr)
{
rtl_lock_work(tp);
rtl_unlock_config_regs(tp);
RTL_W32(tp, MAC4, addr[4] | addr[5] << 8);
RTL_R32(tp, MAC4);
RTL_W32(tp, MAC0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
RTL_R32(tp, MAC0);
if (tp->mac_version == RTL_GIGA_MAC_VER_34)
rtl_rar_exgmac_set(tp, addr);
rtl_lock_config_regs(tp);
rtl_unlock_work(tp);
}
static int rtl_set_mac_address(struct net_device *dev, void *p)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = tp_to_dev(tp);
int ret;
ret = eth_mac_addr(dev, p);
if (ret)
return ret;
pm_runtime_get_noresume(d);
if (pm_runtime_active(d))
rtl_rar_set(tp, dev->dev_addr);
pm_runtime_put_noidle(d);
return 0;
}
static int rtl8169_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (!netif_running(dev))
return -ENODEV;
return phy_mii_ioctl(tp->phydev, ifr, cmd);
}
static void rtl_wol_suspend_quirk(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
case RTL_GIGA_MAC_VER_29:
case RTL_GIGA_MAC_VER_30:
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_34:
case RTL_GIGA_MAC_VER_37 ... RTL_GIGA_MAC_VER_51:
RTL_W32(tp, RxConfig, RTL_R32(tp, RxConfig) |
AcceptBroadcast | AcceptMulticast | AcceptMyPhys);
break;
default:
break;
}
}
static void rtl_pll_power_down(struct rtl8169_private *tp)
{
if (r8168_check_dash(tp))
return;
if (tp->mac_version == RTL_GIGA_MAC_VER_32 ||
tp->mac_version == RTL_GIGA_MAC_VER_33)
rtl_ephy_write(tp, 0x19, 0xff64);
if (device_may_wakeup(tp_to_dev(tp))) {
phy_speed_down(tp->phydev, false);
rtl_wol_suspend_quirk(tp);
return;
}
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25 ... RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_37:
case RTL_GIGA_MAC_VER_39:
case RTL_GIGA_MAC_VER_43:
case RTL_GIGA_MAC_VER_44:
case RTL_GIGA_MAC_VER_45:
case RTL_GIGA_MAC_VER_46:
case RTL_GIGA_MAC_VER_47:
case RTL_GIGA_MAC_VER_48:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) & ~0x80);
break;
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
case RTL_GIGA_MAC_VER_49:
rtl_eri_clear_bits(tp, 0x1a8, ERIAR_MASK_1111, 0xfc000000);
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) & ~0x80);
break;
default:
break;
}
}
static void rtl_pll_power_up(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25 ... RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_37:
case RTL_GIGA_MAC_VER_39:
case RTL_GIGA_MAC_VER_43:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0x80);
break;
case RTL_GIGA_MAC_VER_44:
case RTL_GIGA_MAC_VER_45:
case RTL_GIGA_MAC_VER_46:
case RTL_GIGA_MAC_VER_47:
case RTL_GIGA_MAC_VER_48:
case RTL_GIGA_MAC_VER_50:
case RTL_GIGA_MAC_VER_51:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0xc0);
break;
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
case RTL_GIGA_MAC_VER_49:
RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0xc0);
rtl_eri_set_bits(tp, 0x1a8, ERIAR_MASK_1111, 0xfc000000);
break;
default:
break;
}
phy_resume(tp->phydev);
/* give MAC/PHY some time to resume */
msleep(20);
}
static void rtl_init_rxcfg(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06:
case RTL_GIGA_MAC_VER_10 ... RTL_GIGA_MAC_VER_17:
RTL_W32(tp, RxConfig, RX_FIFO_THRESH | RX_DMA_BURST);
break;
case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_24:
case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_36:
case RTL_GIGA_MAC_VER_38:
RTL_W32(tp, RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST);
break;
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
RTL_W32(tp, RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST | RX_EARLY_OFF);
break;
default:
RTL_W32(tp, RxConfig, RX128_INT_EN | RX_DMA_BURST);
break;
}
}
static void rtl8169_init_ring_indexes(struct rtl8169_private *tp)
{
tp->dirty_tx = tp->cur_tx = tp->cur_rx = 0;
}
static void r8168c_hw_jumbo_enable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) | Jumbo_En1);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_512B);
}
static void r8168c_hw_jumbo_disable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~Jumbo_En1);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
}
static void r8168dp_hw_jumbo_enable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0);
}
static void r8168dp_hw_jumbo_disable(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0);
}
static void r8168e_hw_jumbo_enable(struct rtl8169_private *tp)
{
RTL_W8(tp, MaxTxPacketSize, 0x3f);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) | 0x01);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_512B);
}
static void r8168e_hw_jumbo_disable(struct rtl8169_private *tp)
{
RTL_W8(tp, MaxTxPacketSize, 0x0c);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~0x01);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
}
static void r8168b_0_hw_jumbo_enable(struct rtl8169_private *tp)
{
rtl_tx_performance_tweak(tp,
PCI_EXP_DEVCTL_READRQ_512B | PCI_EXP_DEVCTL_NOSNOOP_EN);
}
static void r8168b_0_hw_jumbo_disable(struct rtl8169_private *tp)
{
rtl_tx_performance_tweak(tp,
PCI_EXP_DEVCTL_READRQ_4096B | PCI_EXP_DEVCTL_NOSNOOP_EN);
}
static void r8168b_1_hw_jumbo_enable(struct rtl8169_private *tp)
{
r8168b_0_hw_jumbo_enable(tp);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) | (1 << 0));
}
static void r8168b_1_hw_jumbo_disable(struct rtl8169_private *tp)
{
r8168b_0_hw_jumbo_disable(tp);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~(1 << 0));
}
static void rtl_hw_jumbo_enable(struct rtl8169_private *tp)
{
rtl_unlock_config_regs(tp);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
r8168b_0_hw_jumbo_enable(tp);
break;
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
r8168b_1_hw_jumbo_enable(tp);
break;
case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_26:
r8168c_hw_jumbo_enable(tp);
break;
case RTL_GIGA_MAC_VER_27 ... RTL_GIGA_MAC_VER_28:
r8168dp_hw_jumbo_enable(tp);
break;
case RTL_GIGA_MAC_VER_31 ... RTL_GIGA_MAC_VER_34:
r8168e_hw_jumbo_enable(tp);
break;
default:
break;
}
rtl_lock_config_regs(tp);
}
static void rtl_hw_jumbo_disable(struct rtl8169_private *tp)
{
rtl_unlock_config_regs(tp);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
r8168b_0_hw_jumbo_disable(tp);
break;
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
r8168b_1_hw_jumbo_disable(tp);
break;
case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_26:
r8168c_hw_jumbo_disable(tp);
break;
case RTL_GIGA_MAC_VER_27 ... RTL_GIGA_MAC_VER_28:
r8168dp_hw_jumbo_disable(tp);
break;
case RTL_GIGA_MAC_VER_31 ... RTL_GIGA_MAC_VER_34:
r8168e_hw_jumbo_disable(tp);
break;
default:
break;
}
rtl_lock_config_regs(tp);
}
DECLARE_RTL_COND(rtl_chipcmd_cond)
{
return RTL_R8(tp, ChipCmd) & CmdReset;
}
static void rtl_hw_reset(struct rtl8169_private *tp)
{
RTL_W8(tp, ChipCmd, CmdReset);
rtl_udelay_loop_wait_low(tp, &rtl_chipcmd_cond, 100, 100);
}
static void rtl_request_firmware(struct rtl8169_private *tp)
{
struct rtl_fw *rtl_fw;
/* firmware loaded already or no firmware available */
if (tp->rtl_fw || !tp->fw_name)
return;
rtl_fw = kzalloc(sizeof(*rtl_fw), GFP_KERNEL);
if (!rtl_fw) {
netif_warn(tp, ifup, tp->dev, "Unable to load firmware, out of memory\n");
return;
}
rtl_fw->phy_write = rtl_writephy;
rtl_fw->phy_read = rtl_readphy;
rtl_fw->mac_mcu_write = mac_mcu_write;
rtl_fw->mac_mcu_read = mac_mcu_read;
rtl_fw->fw_name = tp->fw_name;
rtl_fw->dev = tp_to_dev(tp);
if (rtl_fw_request_firmware(rtl_fw))
kfree(rtl_fw);
else
tp->rtl_fw = rtl_fw;
}
static void rtl_rx_close(struct rtl8169_private *tp)
{
RTL_W32(tp, RxConfig, RTL_R32(tp, RxConfig) & ~RX_CONFIG_ACCEPT_MASK);
}
DECLARE_RTL_COND(rtl_npq_cond)
{
return RTL_R8(tp, TxPoll) & NPQ;
}
DECLARE_RTL_COND(rtl_txcfg_empty_cond)
{
return RTL_R32(tp, TxConfig) & TXCFG_EMPTY;
}
static void rtl8169_hw_reset(struct rtl8169_private *tp)
{
/* Disable interrupts */
r8169: Rx FIFO overflow fixes. Realtek has specified that the post 8168c gigabit chips and the post 8105e fast ethernet chips recover automatically from a Rx FIFO overflow. The driver does not need to clear the RxFIFOOver bit of IntrStatus and it should rather avoid messing it. The implementation deserves some explanation: 1. events outside of the intr_event bit mask are now ignored. It enforces a no-processing policy for the events that either should not be there or should be ignored. 2. RxFIFOOver was already ignored in rtl_cfg_infos[RTL_CFG_1] for the whole 8168 line of chips with two exceptions: - RTL_GIGA_MAC_VER_22 since b5ba6d12bdac21bc0620a5089e0f24e362645efd ("use RxFIFO overflow workaround for 8168c chipset."). This one should now be correctly handled. - RTL_GIGA_MAC_VER_11 (8168b) which requires a different Rx FIFO overflow processing. Though it does not conform to Realtek suggestion above, the updated driver includes no change for RTL_GIGA_MAC_VER_12 and RTL_GIGA_MAC_VER_17. Both are 8168b. RTL_GIGA_MAC_VER_12 is common and a bit old so I'd rather wait for experimental evidence that the change suggested by Realtek really helps or does not hurt in unexpected ways. Removed case statements in rtl8169_interrupt are only 8168 relevant. 3. RxFIFOOver is masked for post 8105e 810x chips, namely the sole 8105e (RTL_GIGA_MAC_VER_30) itself. Signed-off-by: Francois Romieu <romieu@fr.zoreil.com> Cc: hayeswang <hayeswang@realtek.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-04 13:30:45 -07:00
rtl8169_irq_mask_and_ack(tp);
rtl_rx_close(tp);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
rtl_udelay_loop_wait_low(tp, &rtl_npq_cond, 20, 42*42);
break;
case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_38:
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51:
RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) | StopReq);
rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 666);
break;
default:
RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) | StopReq);
udelay(100);
break;
}
rtl_hw_reset(tp);
}
static void rtl_set_tx_config_registers(struct rtl8169_private *tp)
{
u32 val = TX_DMA_BURST << TxDMAShift |
InterFrameGap << TxInterFrameGapShift;
if (rtl_is_8168evl_up(tp))
val |= TXCFG_AUTO_FIFO;
RTL_W32(tp, TxConfig, val);
}
static void rtl_set_rx_max_size(struct rtl8169_private *tp)
{
/* Low hurts. Let's disable the filtering. */
RTL_W16(tp, RxMaxSize, R8169_RX_BUF_SIZE + 1);
}
static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp)
{
/*
* Magic spell: some iop3xx ARM board needs the TxDescAddrHigh
* register to be written before TxDescAddrLow to work.
* Switching from MMIO to I/O access fixes the issue as well.
*/
RTL_W32(tp, TxDescStartAddrHigh, ((u64) tp->TxPhyAddr) >> 32);
RTL_W32(tp, TxDescStartAddrLow, ((u64) tp->TxPhyAddr) & DMA_BIT_MASK(32));
RTL_W32(tp, RxDescAddrHigh, ((u64) tp->RxPhyAddr) >> 32);
RTL_W32(tp, RxDescAddrLow, ((u64) tp->RxPhyAddr) & DMA_BIT_MASK(32));
}
static void rtl8169_set_magic_reg(struct rtl8169_private *tp, unsigned mac_version)
{
u32 val;
if (tp->mac_version == RTL_GIGA_MAC_VER_05)
val = 0x000fff00;
else if (tp->mac_version == RTL_GIGA_MAC_VER_06)
val = 0x00ffff00;
else
return;
if (RTL_R8(tp, Config2) & PCI_Clock_66MHz)
val |= 0xff;
RTL_W32(tp, 0x7c, val);
}
static void rtl_set_rx_mode(struct net_device *dev)
{
u32 rx_mode = AcceptBroadcast | AcceptMyPhys | AcceptMulticast;
/* Multicast hash filter */
u32 mc_filter[2] = { 0xffffffff, 0xffffffff };
struct rtl8169_private *tp = netdev_priv(dev);
u32 tmp;
if (dev->flags & IFF_PROMISC) {
/* Unconditionally log net taps. */
netif_notice(tp, link, dev, "Promiscuous mode enabled\n");
rx_mode |= AcceptAllPhys;
} else if (netdev_mc_count(dev) > MC_FILTER_LIMIT ||
dev->flags & IFF_ALLMULTI ||
tp->mac_version == RTL_GIGA_MAC_VER_35) {
/* accept all multicasts */
} else if (netdev_mc_empty(dev)) {
rx_mode &= ~AcceptMulticast;
} else {
struct netdev_hw_addr *ha;
mc_filter[1] = mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, dev) {
u32 bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
mc_filter[bit_nr >> 5] |= BIT(bit_nr & 31);
}
if (tp->mac_version > RTL_GIGA_MAC_VER_06) {
tmp = mc_filter[0];
mc_filter[0] = swab32(mc_filter[1]);
mc_filter[1] = swab32(tmp);
}
}
if (dev->features & NETIF_F_RXALL)
rx_mode |= (AcceptErr | AcceptRunt);
RTL_W32(tp, MAR0 + 4, mc_filter[1]);
RTL_W32(tp, MAR0 + 0, mc_filter[0]);
tmp = RTL_R32(tp, RxConfig);
RTL_W32(tp, RxConfig, (tmp & ~RX_CONFIG_ACCEPT_MASK) | rx_mode);
}
DECLARE_RTL_COND(rtl_csiar_cond)
{
return RTL_R32(tp, CSIAR) & CSIAR_FLAG;
}
static void rtl_csi_write(struct rtl8169_private *tp, int addr, int value)
{
u32 func = PCI_FUNC(tp->pci_dev->devfn);
RTL_W32(tp, CSIDR, value);
RTL_W32(tp, CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) |
CSIAR_BYTE_ENABLE | func << 16);
rtl_udelay_loop_wait_low(tp, &rtl_csiar_cond, 10, 100);
}
static u32 rtl_csi_read(struct rtl8169_private *tp, int addr)
{
u32 func = PCI_FUNC(tp->pci_dev->devfn);
RTL_W32(tp, CSIAR, (addr & CSIAR_ADDR_MASK) | func << 16 |
CSIAR_BYTE_ENABLE);
return rtl_udelay_loop_wait_high(tp, &rtl_csiar_cond, 10, 100) ?
RTL_R32(tp, CSIDR) : ~0;
}
static void rtl_csi_access_enable(struct rtl8169_private *tp, u8 val)
{
struct pci_dev *pdev = tp->pci_dev;
u32 csi;
/* According to Realtek the value at config space address 0x070f
* controls the L0s/L1 entrance latency. We try standard ECAM access
* first and if it fails fall back to CSI.
*/
if (pdev->cfg_size > 0x070f &&
pci_write_config_byte(pdev, 0x070f, val) == PCIBIOS_SUCCESSFUL)
return;
netdev_notice_once(tp->dev,
"No native access to PCI extended config space, falling back to CSI\n");
csi = rtl_csi_read(tp, 0x070c) & 0x00ffffff;
rtl_csi_write(tp, 0x070c, csi | val << 24);
}
static void rtl_set_def_aspm_entry_latency(struct rtl8169_private *tp)
{
rtl_csi_access_enable(tp, 0x27);
}
struct ephy_info {
unsigned int offset;
u16 mask;
u16 bits;
};
static void __rtl_ephy_init(struct rtl8169_private *tp,
const struct ephy_info *e, int len)
{
u16 w;
while (len-- > 0) {
w = (rtl_ephy_read(tp, e->offset) & ~e->mask) | e->bits;
rtl_ephy_write(tp, e->offset, w);
e++;
}
}
#define rtl_ephy_init(tp, a) __rtl_ephy_init(tp, a, ARRAY_SIZE(a))
static void rtl_disable_clock_request(struct rtl8169_private *tp)
{
pcie_capability_clear_word(tp->pci_dev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN);
}
static void rtl_enable_clock_request(struct rtl8169_private *tp)
{
pcie_capability_set_word(tp->pci_dev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN);
}
static void rtl_pcie_state_l2l3_disable(struct rtl8169_private *tp)
{
/* work around an issue when PCI reset occurs during L2/L3 state */
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Rdy_to_L23);
}
static void rtl_hw_aspm_clkreq_enable(struct rtl8169_private *tp, bool enable)
{
/* Don't enable ASPM in the chip if OS can't control ASPM */
if (enable && tp->aspm_manageable) {
RTL_W8(tp, Config5, RTL_R8(tp, Config5) | ASPM_en);
RTL_W8(tp, Config2, RTL_R8(tp, Config2) | ClkReqEn);
} else {
RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~ClkReqEn);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~ASPM_en);
}
udelay(10);
}
static void rtl_set_fifo_size(struct rtl8169_private *tp, u16 rx_stat,
u16 tx_stat, u16 rx_dyn, u16 tx_dyn)
{
/* Usage of dynamic vs. static FIFO is controlled by bit
* TXCFG_AUTO_FIFO. Exact meaning of FIFO values isn't known.
*/
rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, (rx_stat << 16) | rx_dyn);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, (tx_stat << 16) | tx_dyn);
}
static void rtl8168g_set_pause_thresholds(struct rtl8169_private *tp,
u8 low, u8 high)
{
/* FIFO thresholds for pause flow control */
rtl_eri_write(tp, 0xcc, ERIAR_MASK_0001, low);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_0001, high);
}
static void rtl_hw_start_8168bb(struct rtl8169_private *tp)
{
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
if (tp->dev->mtu <= ETH_DATA_LEN) {
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B |
PCI_EXP_DEVCTL_NOSNOOP_EN);
}
}
static void rtl_hw_start_8168bef(struct rtl8169_private *tp)
{
rtl_hw_start_8168bb(tp);
RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~(1 << 0));
}
static void __rtl_hw_start_8168cp(struct rtl8169_private *tp)
{
RTL_W8(tp, Config1, RTL_R8(tp, Config1) | Speed_down);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_disable_clock_request(tp);
}
static void rtl_hw_start_8168cp_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168cp[] = {
{ 0x01, 0, 0x0001 },
{ 0x02, 0x0800, 0x1000 },
{ 0x03, 0, 0x0042 },
{ 0x06, 0x0080, 0x0000 },
{ 0x07, 0, 0x2000 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168cp);
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168cp_2(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
}
static void rtl_hw_start_8168cp_3(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
/* Magic. */
RTL_W8(tp, DBG_REG, 0x20);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
}
static void rtl_hw_start_8168c_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168c_1[] = {
{ 0x02, 0x0800, 0x1000 },
{ 0x03, 0, 0x0002 },
{ 0x06, 0x0080, 0x0000 }
};
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2);
rtl_ephy_init(tp, e_info_8168c_1);
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168c_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168c_2[] = {
{ 0x01, 0, 0x0001 },
{ 0x03, 0x0400, 0x0220 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168c_2);
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168c_3(struct rtl8169_private *tp)
{
rtl_hw_start_8168c_2(tp);
}
static void rtl_hw_start_8168c_4(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168d(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
rtl_disable_clock_request(tp);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
}
static void rtl_hw_start_8168dp(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_disable_clock_request(tp);
}
static void rtl_hw_start_8168d_4(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168d_4[] = {
{ 0x0b, 0x0000, 0x0048 },
{ 0x19, 0x0020, 0x0050 },
{ 0x0c, 0x0100, 0x0020 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_ephy_init(tp, e_info_8168d_4);
rtl_enable_clock_request(tp);
}
static void rtl_hw_start_8168e_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168e_1[] = {
{ 0x00, 0x0200, 0x0100 },
{ 0x00, 0x0000, 0x0004 },
{ 0x06, 0x0002, 0x0001 },
{ 0x06, 0x0000, 0x0030 },
{ 0x07, 0x0000, 0x2000 },
{ 0x00, 0x0000, 0x0020 },
{ 0x03, 0x5800, 0x2000 },
{ 0x03, 0x0000, 0x0001 },
{ 0x01, 0x0800, 0x1000 },
{ 0x07, 0x0000, 0x4000 },
{ 0x1e, 0x0000, 0x2000 },
{ 0x19, 0xffff, 0xfe6c },
{ 0x0a, 0x0000, 0x0040 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168e_1);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_disable_clock_request(tp);
/* Reset tx FIFO pointer */
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | TXPLA_RST);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~TXPLA_RST);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en);
}
static void rtl_hw_start_8168e_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168e_2[] = {
{ 0x09, 0x0000, 0x0080 },
{ 0x19, 0x0000, 0x0224 }
};
rtl_set_def_aspm_entry_latency(tp);
rtl_ephy_init(tp, e_info_8168e_2);
if (tp->dev->mtu <= ETH_DATA_LEN)
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000);
rtl_set_fifo_size(tp, 0x10, 0x10, 0x02, 0x06);
rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x07ff0060);
rtl_eri_set_bits(tp, 0x1b0, ERIAR_MASK_0001, BIT(4));
rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00);
rtl_disable_clock_request(tp);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
rtl8168_config_eee_mac(tp);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | PWM_EN);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168f(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000);
rtl_set_fifo_size(tp, 0x10, 0x10, 0x02, 0x06);
rtl_reset_packet_filter(tp);
rtl_eri_set_bits(tp, 0x1b0, ERIAR_MASK_0001, BIT(4));
rtl_eri_set_bits(tp, 0x1d0, ERIAR_MASK_0001, BIT(4));
rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x00000060);
rtl_disable_clock_request(tp);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | PWM_EN);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en);
rtl8168_config_eee_mac(tp);
}
static void rtl_hw_start_8168f_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168f_1[] = {
{ 0x06, 0x00c0, 0x0020 },
{ 0x08, 0x0001, 0x0002 },
{ 0x09, 0x0000, 0x0080 },
{ 0x19, 0x0000, 0x0224 }
};
rtl_hw_start_8168f(tp);
rtl_ephy_init(tp, e_info_8168f_1);
rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00);
}
static void rtl_hw_start_8411(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168f_1[] = {
{ 0x06, 0x00c0, 0x0020 },
{ 0x0f, 0xffff, 0x5200 },
{ 0x1e, 0x0000, 0x4000 },
{ 0x19, 0x0000, 0x0224 }
};
rtl_hw_start_8168f(tp);
rtl_pcie_state_l2l3_disable(tp);
rtl_ephy_init(tp, e_info_8168f_1);
rtl_eri_set_bits(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00);
}
static void rtl_hw_start_8168g(struct rtl8169_private *tp)
{
rtl_set_fifo_size(tp, 0x08, 0x10, 0x02, 0x06);
rtl8168g_set_pause_thresholds(tp, 0x38, 0x48);
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_reset_packet_filter(tp);
rtl_eri_write(tp, 0x2f8, ERIAR_MASK_0011, 0x1d8f);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000);
rtl8168_config_eee_mac(tp);
rtl_w0w1_eri(tp, 0x2fc, ERIAR_MASK_0001, 0x01, 0x06);
rtl_eri_clear_bits(tp, 0x1b0, ERIAR_MASK_0011, BIT(12));
rtl_pcie_state_l2l3_disable(tp);
}
static void rtl_hw_start_8168g_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168g_1[] = {
{ 0x00, 0x0000, 0x0008 },
{ 0x0c, 0x37d0, 0x0820 },
{ 0x1e, 0x0000, 0x0001 },
{ 0x19, 0x8000, 0x0000 }
};
rtl_hw_start_8168g(tp);
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168g_1);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168g_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168g_2[] = {
{ 0x00, 0x0000, 0x0008 },
{ 0x0c, 0x3df0, 0x0200 },
{ 0x19, 0xffff, 0xfc00 },
{ 0x1e, 0xffff, 0x20eb }
};
rtl_hw_start_8168g(tp);
/* disable aspm and clock request before access ephy */
RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~ClkReqEn);
RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~ASPM_en);
rtl_ephy_init(tp, e_info_8168g_2);
}
static void rtl_hw_start_8411_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8411_2[] = {
{ 0x00, 0x0000, 0x0008 },
{ 0x0c, 0x3df0, 0x0200 },
{ 0x0f, 0xffff, 0x5200 },
{ 0x19, 0x0020, 0x0000 },
{ 0x1e, 0x0000, 0x2000 }
};
rtl_hw_start_8168g(tp);
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8411_2);
/* The following Realtek-provided magic fixes an issue with the RX unit
* getting confused after the PHY having been powered-down.
*/
r8168_mac_ocp_write(tp, 0xFC28, 0x0000);
r8168_mac_ocp_write(tp, 0xFC2A, 0x0000);
r8168_mac_ocp_write(tp, 0xFC2C, 0x0000);
r8168_mac_ocp_write(tp, 0xFC2E, 0x0000);
r8168_mac_ocp_write(tp, 0xFC30, 0x0000);
r8168_mac_ocp_write(tp, 0xFC32, 0x0000);
r8168_mac_ocp_write(tp, 0xFC34, 0x0000);
r8168_mac_ocp_write(tp, 0xFC36, 0x0000);
mdelay(3);
r8168_mac_ocp_write(tp, 0xFC26, 0x0000);
r8168_mac_ocp_write(tp, 0xF800, 0xE008);
r8168_mac_ocp_write(tp, 0xF802, 0xE00A);
r8168_mac_ocp_write(tp, 0xF804, 0xE00C);
r8168_mac_ocp_write(tp, 0xF806, 0xE00E);
r8168_mac_ocp_write(tp, 0xF808, 0xE027);
r8168_mac_ocp_write(tp, 0xF80A, 0xE04F);
r8168_mac_ocp_write(tp, 0xF80C, 0xE05E);
r8168_mac_ocp_write(tp, 0xF80E, 0xE065);
r8168_mac_ocp_write(tp, 0xF810, 0xC602);
r8168_mac_ocp_write(tp, 0xF812, 0xBE00);
r8168_mac_ocp_write(tp, 0xF814, 0x0000);
r8168_mac_ocp_write(tp, 0xF816, 0xC502);
r8168_mac_ocp_write(tp, 0xF818, 0xBD00);
r8168_mac_ocp_write(tp, 0xF81A, 0x074C);
r8168_mac_ocp_write(tp, 0xF81C, 0xC302);
r8168_mac_ocp_write(tp, 0xF81E, 0xBB00);
r8168_mac_ocp_write(tp, 0xF820, 0x080A);
r8168_mac_ocp_write(tp, 0xF822, 0x6420);
r8168_mac_ocp_write(tp, 0xF824, 0x48C2);
r8168_mac_ocp_write(tp, 0xF826, 0x8C20);
r8168_mac_ocp_write(tp, 0xF828, 0xC516);
r8168_mac_ocp_write(tp, 0xF82A, 0x64A4);
r8168_mac_ocp_write(tp, 0xF82C, 0x49C0);
r8168_mac_ocp_write(tp, 0xF82E, 0xF009);
r8168_mac_ocp_write(tp, 0xF830, 0x74A2);
r8168_mac_ocp_write(tp, 0xF832, 0x8CA5);
r8168_mac_ocp_write(tp, 0xF834, 0x74A0);
r8168_mac_ocp_write(tp, 0xF836, 0xC50E);
r8168_mac_ocp_write(tp, 0xF838, 0x9CA2);
r8168_mac_ocp_write(tp, 0xF83A, 0x1C11);
r8168_mac_ocp_write(tp, 0xF83C, 0x9CA0);
r8168_mac_ocp_write(tp, 0xF83E, 0xE006);
r8168_mac_ocp_write(tp, 0xF840, 0x74F8);
r8168_mac_ocp_write(tp, 0xF842, 0x48C4);
r8168_mac_ocp_write(tp, 0xF844, 0x8CF8);
r8168_mac_ocp_write(tp, 0xF846, 0xC404);
r8168_mac_ocp_write(tp, 0xF848, 0xBC00);
r8168_mac_ocp_write(tp, 0xF84A, 0xC403);
r8168_mac_ocp_write(tp, 0xF84C, 0xBC00);
r8168_mac_ocp_write(tp, 0xF84E, 0x0BF2);
r8168_mac_ocp_write(tp, 0xF850, 0x0C0A);
r8168_mac_ocp_write(tp, 0xF852, 0xE434);
r8168_mac_ocp_write(tp, 0xF854, 0xD3C0);
r8168_mac_ocp_write(tp, 0xF856, 0x49D9);
r8168_mac_ocp_write(tp, 0xF858, 0xF01F);
r8168_mac_ocp_write(tp, 0xF85A, 0xC526);
r8168_mac_ocp_write(tp, 0xF85C, 0x64A5);
r8168_mac_ocp_write(tp, 0xF85E, 0x1400);
r8168_mac_ocp_write(tp, 0xF860, 0xF007);
r8168_mac_ocp_write(tp, 0xF862, 0x0C01);
r8168_mac_ocp_write(tp, 0xF864, 0x8CA5);
r8168_mac_ocp_write(tp, 0xF866, 0x1C15);
r8168_mac_ocp_write(tp, 0xF868, 0xC51B);
r8168_mac_ocp_write(tp, 0xF86A, 0x9CA0);
r8168_mac_ocp_write(tp, 0xF86C, 0xE013);
r8168_mac_ocp_write(tp, 0xF86E, 0xC519);
r8168_mac_ocp_write(tp, 0xF870, 0x74A0);
r8168_mac_ocp_write(tp, 0xF872, 0x48C4);
r8168_mac_ocp_write(tp, 0xF874, 0x8CA0);
r8168_mac_ocp_write(tp, 0xF876, 0xC516);
r8168_mac_ocp_write(tp, 0xF878, 0x74A4);
r8168_mac_ocp_write(tp, 0xF87A, 0x48C8);
r8168_mac_ocp_write(tp, 0xF87C, 0x48CA);
r8168_mac_ocp_write(tp, 0xF87E, 0x9CA4);
r8168_mac_ocp_write(tp, 0xF880, 0xC512);
r8168_mac_ocp_write(tp, 0xF882, 0x1B00);
r8168_mac_ocp_write(tp, 0xF884, 0x9BA0);
r8168_mac_ocp_write(tp, 0xF886, 0x1B1C);
r8168_mac_ocp_write(tp, 0xF888, 0x483F);
r8168_mac_ocp_write(tp, 0xF88A, 0x9BA2);
r8168_mac_ocp_write(tp, 0xF88C, 0x1B04);
r8168_mac_ocp_write(tp, 0xF88E, 0xC508);
r8168_mac_ocp_write(tp, 0xF890, 0x9BA0);
r8168_mac_ocp_write(tp, 0xF892, 0xC505);
r8168_mac_ocp_write(tp, 0xF894, 0xBD00);
r8168_mac_ocp_write(tp, 0xF896, 0xC502);
r8168_mac_ocp_write(tp, 0xF898, 0xBD00);
r8168_mac_ocp_write(tp, 0xF89A, 0x0300);
r8168_mac_ocp_write(tp, 0xF89C, 0x051E);
r8168_mac_ocp_write(tp, 0xF89E, 0xE434);
r8168_mac_ocp_write(tp, 0xF8A0, 0xE018);
r8168_mac_ocp_write(tp, 0xF8A2, 0xE092);
r8168_mac_ocp_write(tp, 0xF8A4, 0xDE20);
r8168_mac_ocp_write(tp, 0xF8A6, 0xD3C0);
r8168_mac_ocp_write(tp, 0xF8A8, 0xC50F);
r8168_mac_ocp_write(tp, 0xF8AA, 0x76A4);
r8168_mac_ocp_write(tp, 0xF8AC, 0x49E3);
r8168_mac_ocp_write(tp, 0xF8AE, 0xF007);
r8168_mac_ocp_write(tp, 0xF8B0, 0x49C0);
r8168_mac_ocp_write(tp, 0xF8B2, 0xF103);
r8168_mac_ocp_write(tp, 0xF8B4, 0xC607);
r8168_mac_ocp_write(tp, 0xF8B6, 0xBE00);
r8168_mac_ocp_write(tp, 0xF8B8, 0xC606);
r8168_mac_ocp_write(tp, 0xF8BA, 0xBE00);
r8168_mac_ocp_write(tp, 0xF8BC, 0xC602);
r8168_mac_ocp_write(tp, 0xF8BE, 0xBE00);
r8168_mac_ocp_write(tp, 0xF8C0, 0x0C4C);
r8168_mac_ocp_write(tp, 0xF8C2, 0x0C28);
r8168_mac_ocp_write(tp, 0xF8C4, 0x0C2C);
r8168_mac_ocp_write(tp, 0xF8C6, 0xDC00);
r8168_mac_ocp_write(tp, 0xF8C8, 0xC707);
r8168_mac_ocp_write(tp, 0xF8CA, 0x1D00);
r8168_mac_ocp_write(tp, 0xF8CC, 0x8DE2);
r8168_mac_ocp_write(tp, 0xF8CE, 0x48C1);
r8168_mac_ocp_write(tp, 0xF8D0, 0xC502);
r8168_mac_ocp_write(tp, 0xF8D2, 0xBD00);
r8168_mac_ocp_write(tp, 0xF8D4, 0x00AA);
r8168_mac_ocp_write(tp, 0xF8D6, 0xE0C0);
r8168_mac_ocp_write(tp, 0xF8D8, 0xC502);
r8168_mac_ocp_write(tp, 0xF8DA, 0xBD00);
r8168_mac_ocp_write(tp, 0xF8DC, 0x0132);
r8168_mac_ocp_write(tp, 0xFC26, 0x8000);
r8168_mac_ocp_write(tp, 0xFC2A, 0x0743);
r8168_mac_ocp_write(tp, 0xFC2C, 0x0801);
r8168_mac_ocp_write(tp, 0xFC2E, 0x0BE9);
r8168_mac_ocp_write(tp, 0xFC30, 0x02FD);
r8168_mac_ocp_write(tp, 0xFC32, 0x0C25);
r8168_mac_ocp_write(tp, 0xFC34, 0x00A9);
r8168_mac_ocp_write(tp, 0xFC36, 0x012D);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168h_1(struct rtl8169_private *tp)
{
int rg_saw_cnt;
u32 data;
static const struct ephy_info e_info_8168h_1[] = {
{ 0x1e, 0x0800, 0x0001 },
{ 0x1d, 0x0000, 0x0800 },
{ 0x05, 0xffff, 0x2089 },
{ 0x06, 0xffff, 0x5881 },
{ 0x04, 0xffff, 0x154a },
{ 0x01, 0xffff, 0x068b }
};
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168h_1);
rtl_set_fifo_size(tp, 0x08, 0x10, 0x02, 0x06);
rtl8168g_set_pause_thresholds(tp, 0x38, 0x48);
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_reset_packet_filter(tp);
rtl_eri_set_bits(tp, 0xdc, ERIAR_MASK_1111, BIT(4));
rtl_eri_set_bits(tp, 0xd4, ERIAR_MASK_1111, 0x1f00);
rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000);
rtl8168_config_eee_mac(tp);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN);
rtl_eri_clear_bits(tp, 0x1b0, ERIAR_MASK_0011, BIT(12));
rtl_pcie_state_l2l3_disable(tp);
rtl_writephy(tp, 0x1f, 0x0c42);
rg_saw_cnt = (rtl_readphy(tp, 0x13) & 0x3fff);
rtl_writephy(tp, 0x1f, 0x0000);
if (rg_saw_cnt > 0) {
u16 sw_cnt_1ms_ini;
sw_cnt_1ms_ini = 16000000/rg_saw_cnt;
sw_cnt_1ms_ini &= 0x0fff;
data = r8168_mac_ocp_read(tp, 0xd412);
data &= ~0x0fff;
data |= sw_cnt_1ms_ini;
r8168_mac_ocp_write(tp, 0xd412, data);
}
data = r8168_mac_ocp_read(tp, 0xe056);
data &= ~0xf0;
data |= 0x70;
r8168_mac_ocp_write(tp, 0xe056, data);
data = r8168_mac_ocp_read(tp, 0xe052);
data &= ~0x6000;
data |= 0x8008;
r8168_mac_ocp_write(tp, 0xe052, data);
data = r8168_mac_ocp_read(tp, 0xe0d6);
data &= ~0x01ff;
data |= 0x017f;
r8168_mac_ocp_write(tp, 0xe0d6, data);
data = r8168_mac_ocp_read(tp, 0xd420);
data &= ~0x0fff;
data |= 0x047f;
r8168_mac_ocp_write(tp, 0xd420, data);
r8168_mac_ocp_write(tp, 0xe63e, 0x0001);
r8168_mac_ocp_write(tp, 0xe63e, 0x0000);
r8168_mac_ocp_write(tp, 0xc094, 0x0000);
r8168_mac_ocp_write(tp, 0xc09e, 0x0000);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168ep(struct rtl8169_private *tp)
{
rtl8168ep_stop_cmac(tp);
rtl_set_fifo_size(tp, 0x08, 0x10, 0x02, 0x06);
rtl8168g_set_pause_thresholds(tp, 0x2f, 0x5f);
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_reset_packet_filter(tp);
rtl_eri_set_bits(tp, 0xd4, ERIAR_MASK_1111, 0x1f80);
rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87);
RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000);
rtl8168_config_eee_mac(tp);
rtl_w0w1_eri(tp, 0x2fc, ERIAR_MASK_0001, 0x01, 0x06);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN);
rtl_pcie_state_l2l3_disable(tp);
}
static void rtl_hw_start_8168ep_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168ep_1[] = {
{ 0x00, 0xffff, 0x10ab },
{ 0x06, 0xffff, 0xf030 },
{ 0x08, 0xffff, 0x2006 },
{ 0x0d, 0xffff, 0x1666 },
{ 0x0c, 0x3ff0, 0x0000 }
};
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168ep_1);
rtl_hw_start_8168ep(tp);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168ep_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168ep_2[] = {
{ 0x00, 0xffff, 0x10a3 },
{ 0x19, 0xffff, 0xfc00 },
{ 0x1e, 0xffff, 0x20ea }
};
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168ep_2);
rtl_hw_start_8168ep(tp);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8168ep_3(struct rtl8169_private *tp)
{
u32 data;
static const struct ephy_info e_info_8168ep_3[] = {
{ 0x00, 0xffff, 0x10a3 },
{ 0x19, 0xffff, 0x7c00 },
{ 0x1e, 0xffff, 0x20eb },
{ 0x0d, 0xffff, 0x1666 }
};
/* disable aspm and clock request before access ephy */
rtl_hw_aspm_clkreq_enable(tp, false);
rtl_ephy_init(tp, e_info_8168ep_3);
rtl_hw_start_8168ep(tp);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN);
data = r8168_mac_ocp_read(tp, 0xd3e2);
data &= 0xf000;
data |= 0x0271;
r8168_mac_ocp_write(tp, 0xd3e2, data);
data = r8168_mac_ocp_read(tp, 0xd3e4);
data &= 0xff00;
r8168_mac_ocp_write(tp, 0xd3e4, data);
data = r8168_mac_ocp_read(tp, 0xe860);
data |= 0x0080;
r8168_mac_ocp_write(tp, 0xe860, data);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_start_8102e_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8102e_1[] = {
{ 0x01, 0, 0x6e65 },
{ 0x02, 0, 0x091f },
{ 0x03, 0, 0xc2f9 },
{ 0x06, 0, 0xafb5 },
{ 0x07, 0, 0x0e00 },
{ 0x19, 0, 0xec80 },
{ 0x01, 0, 0x2e65 },
{ 0x01, 0, 0x6e65 }
};
u8 cfg1;
rtl_set_def_aspm_entry_latency(tp);
RTL_W8(tp, DBG_REG, FIX_NAK_1);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
RTL_W8(tp, Config1,
LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD | PMEnable);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
cfg1 = RTL_R8(tp, Config1);
if ((cfg1 & LEDS0) && (cfg1 & LEDS1))
RTL_W8(tp, Config1, cfg1 & ~LEDS0);
rtl_ephy_init(tp, e_info_8102e_1);
}
static void rtl_hw_start_8102e_2(struct rtl8169_private *tp)
{
rtl_set_def_aspm_entry_latency(tp);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
RTL_W8(tp, Config1, MEMMAP | IOMAP | VPD | PMEnable);
RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en);
}
static void rtl_hw_start_8102e_3(struct rtl8169_private *tp)
{
rtl_hw_start_8102e_2(tp);
rtl_ephy_write(tp, 0x03, 0xc2f9);
}
static void rtl_hw_start_8105e_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8105e_1[] = {
{ 0x07, 0, 0x4000 },
{ 0x19, 0, 0x0200 },
{ 0x19, 0, 0x0020 },
{ 0x1e, 0, 0x2000 },
{ 0x03, 0, 0x0001 },
{ 0x19, 0, 0x0100 },
{ 0x19, 0, 0x0004 },
{ 0x0a, 0, 0x0020 }
};
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800);
/* Disable Early Tally Counter */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) & ~0x010000);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) | EN_NDP | EN_OOB_RESET);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN);
rtl_ephy_init(tp, e_info_8105e_1);
rtl_pcie_state_l2l3_disable(tp);
}
static void rtl_hw_start_8105e_2(struct rtl8169_private *tp)
{
rtl_hw_start_8105e_1(tp);
rtl_ephy_write(tp, 0x1e, rtl_ephy_read(tp, 0x1e) | 0x8000);
}
static void rtl_hw_start_8402(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8402[] = {
{ 0x19, 0xffff, 0xff64 },
{ 0x1e, 0, 0x4000 }
};
rtl_set_def_aspm_entry_latency(tp);
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
rtl_ephy_init(tp, e_info_8402);
rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B);
rtl_set_fifo_size(tp, 0x00, 0x00, 0x02, 0x06);
rtl_reset_packet_filter(tp);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000);
rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0e00, 0xff00);
rtl_pcie_state_l2l3_disable(tp);
}
static void rtl_hw_start_8106(struct rtl8169_private *tp)
{
rtl_hw_aspm_clkreq_enable(tp, false);
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800);
RTL_W32(tp, MISC, (RTL_R32(tp, MISC) | DISABLE_LAN_EN) & ~EARLY_TALLY_EN);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) | EN_NDP | EN_OOB_RESET);
RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN);
rtl_pcie_state_l2l3_disable(tp);
rtl_hw_aspm_clkreq_enable(tp, true);
}
static void rtl_hw_config(struct rtl8169_private *tp)
{
static const rtl_generic_fct hw_configs[] = {
[RTL_GIGA_MAC_VER_07] = rtl_hw_start_8102e_1,
[RTL_GIGA_MAC_VER_08] = rtl_hw_start_8102e_3,
[RTL_GIGA_MAC_VER_09] = rtl_hw_start_8102e_2,
[RTL_GIGA_MAC_VER_10] = NULL,
[RTL_GIGA_MAC_VER_11] = rtl_hw_start_8168bb,
[RTL_GIGA_MAC_VER_12] = rtl_hw_start_8168bef,
[RTL_GIGA_MAC_VER_13] = NULL,
[RTL_GIGA_MAC_VER_14] = NULL,
[RTL_GIGA_MAC_VER_15] = NULL,
[RTL_GIGA_MAC_VER_16] = NULL,
[RTL_GIGA_MAC_VER_17] = rtl_hw_start_8168bef,
[RTL_GIGA_MAC_VER_18] = rtl_hw_start_8168cp_1,
[RTL_GIGA_MAC_VER_19] = rtl_hw_start_8168c_1,
[RTL_GIGA_MAC_VER_20] = rtl_hw_start_8168c_2,
[RTL_GIGA_MAC_VER_21] = rtl_hw_start_8168c_3,
[RTL_GIGA_MAC_VER_22] = rtl_hw_start_8168c_4,
[RTL_GIGA_MAC_VER_23] = rtl_hw_start_8168cp_2,
[RTL_GIGA_MAC_VER_24] = rtl_hw_start_8168cp_3,
[RTL_GIGA_MAC_VER_25] = rtl_hw_start_8168d,
[RTL_GIGA_MAC_VER_26] = rtl_hw_start_8168d,
[RTL_GIGA_MAC_VER_27] = rtl_hw_start_8168d,
[RTL_GIGA_MAC_VER_28] = rtl_hw_start_8168d_4,
[RTL_GIGA_MAC_VER_29] = rtl_hw_start_8105e_1,
[RTL_GIGA_MAC_VER_30] = rtl_hw_start_8105e_2,
[RTL_GIGA_MAC_VER_31] = rtl_hw_start_8168dp,
[RTL_GIGA_MAC_VER_32] = rtl_hw_start_8168e_1,
[RTL_GIGA_MAC_VER_33] = rtl_hw_start_8168e_1,
[RTL_GIGA_MAC_VER_34] = rtl_hw_start_8168e_2,
[RTL_GIGA_MAC_VER_35] = rtl_hw_start_8168f_1,
[RTL_GIGA_MAC_VER_36] = rtl_hw_start_8168f_1,
[RTL_GIGA_MAC_VER_37] = rtl_hw_start_8402,
[RTL_GIGA_MAC_VER_38] = rtl_hw_start_8411,
[RTL_GIGA_MAC_VER_39] = rtl_hw_start_8106,
[RTL_GIGA_MAC_VER_40] = rtl_hw_start_8168g_1,
[RTL_GIGA_MAC_VER_41] = rtl_hw_start_8168g_1,
[RTL_GIGA_MAC_VER_42] = rtl_hw_start_8168g_2,
[RTL_GIGA_MAC_VER_43] = rtl_hw_start_8168g_2,
[RTL_GIGA_MAC_VER_44] = rtl_hw_start_8411_2,
[RTL_GIGA_MAC_VER_45] = rtl_hw_start_8168h_1,
[RTL_GIGA_MAC_VER_46] = rtl_hw_start_8168h_1,
[RTL_GIGA_MAC_VER_47] = rtl_hw_start_8168h_1,
[RTL_GIGA_MAC_VER_48] = rtl_hw_start_8168h_1,
[RTL_GIGA_MAC_VER_49] = rtl_hw_start_8168ep_1,
[RTL_GIGA_MAC_VER_50] = rtl_hw_start_8168ep_2,
[RTL_GIGA_MAC_VER_51] = rtl_hw_start_8168ep_3,
};
if (hw_configs[tp->mac_version])
hw_configs[tp->mac_version](tp);
}
static void rtl_hw_start_8168(struct rtl8169_private *tp)
{
if (tp->mac_version == RTL_GIGA_MAC_VER_13 ||
tp->mac_version == RTL_GIGA_MAC_VER_16)
pcie_capability_set_word(tp->pci_dev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_NOSNOOP_EN);
if (rtl_is_8168evl_up(tp))
RTL_W8(tp, MaxTxPacketSize, EarlySize);
else
RTL_W8(tp, MaxTxPacketSize, TxPacketMax);
rtl_hw_config(tp);
}
static void rtl_hw_start_8169(struct rtl8169_private *tp)
{
if (tp->mac_version == RTL_GIGA_MAC_VER_05)
pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08);
RTL_W8(tp, EarlyTxThres, NoEarlyTx);
tp->cp_cmd |= PCIMulRW;
if (tp->mac_version == RTL_GIGA_MAC_VER_02 ||
tp->mac_version == RTL_GIGA_MAC_VER_03) {
netif_dbg(tp, drv, tp->dev,
"Set MAC Reg C+CR Offset 0xe0. Bit 3 and Bit 14 MUST be 1\n");
tp->cp_cmd |= (1 << 14);
}
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
rtl8169_set_magic_reg(tp, tp->mac_version);
RTL_W32(tp, RxMissed, 0);
}
static void rtl_hw_start(struct rtl8169_private *tp)
{
rtl_unlock_config_regs(tp);
tp->cp_cmd &= CPCMD_MASK;
RTL_W16(tp, CPlusCmd, tp->cp_cmd);
if (tp->mac_version <= RTL_GIGA_MAC_VER_06)
rtl_hw_start_8169(tp);
else
rtl_hw_start_8168(tp);
rtl_set_rx_max_size(tp);
rtl_set_rx_tx_desc_registers(tp);
rtl_lock_config_regs(tp);
/* disable interrupt coalescing */
RTL_W16(tp, IntrMitigate, 0x0000);
/* Initially a 10 us delay. Turned it into a PCI commit. - FR */
RTL_R8(tp, IntrMask);
RTL_W8(tp, ChipCmd, CmdTxEnb | CmdRxEnb);
rtl_init_rxcfg(tp);
rtl_set_tx_config_registers(tp);
rtl_set_rx_mode(tp->dev);
/* no early-rx interrupts */
RTL_W16(tp, MultiIntr, RTL_R16(tp, MultiIntr) & 0xf000);
rtl_irq_enable(tp);
}
static int rtl8169_change_mtu(struct net_device *dev, int new_mtu)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (new_mtu > ETH_DATA_LEN)
rtl_hw_jumbo_enable(tp);
else
rtl_hw_jumbo_disable(tp);
dev->mtu = new_mtu;
netdev_update_features(dev);
return 0;
}
static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc)
{
desc->addr = cpu_to_le64(0x0badbadbadbadbadull);
desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask);
}
static void rtl8169_free_rx_databuff(struct rtl8169_private *tp,
void **data_buff, struct RxDesc *desc)
{
dma_unmap_single(tp_to_dev(tp), le64_to_cpu(desc->addr),
R8169_RX_BUF_SIZE, DMA_FROM_DEVICE);
kfree(*data_buff);
*data_buff = NULL;
rtl8169_make_unusable_by_asic(desc);
}
static inline void rtl8169_mark_to_asic(struct RxDesc *desc)
{
u32 eor = le32_to_cpu(desc->opts1) & RingEnd;
/* Force memory writes to complete before releasing descriptor */
dma_wmb();
desc->opts1 = cpu_to_le32(DescOwn | eor | R8169_RX_BUF_SIZE);
}
static struct sk_buff *rtl8169_alloc_rx_data(struct rtl8169_private *tp,
struct RxDesc *desc)
{
void *data;
dma_addr_t mapping;
struct device *d = tp_to_dev(tp);
int node = dev_to_node(d);
data = kmalloc_node(R8169_RX_BUF_SIZE, GFP_KERNEL, node);
if (!data)
return NULL;
/* Memory should be properly aligned, but better check. */
if (!IS_ALIGNED((unsigned long)data, 8)) {
netdev_err_once(tp->dev, "RX buffer not 8-byte-aligned\n");
goto err_out;
}
mapping = dma_map_single(d, data, R8169_RX_BUF_SIZE, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(d, mapping))) {
if (net_ratelimit())
netif_err(tp, drv, tp->dev, "Failed to map RX DMA!\n");
goto err_out;
}
desc->addr = cpu_to_le64(mapping);
rtl8169_mark_to_asic(desc);
return data;
err_out:
kfree(data);
return NULL;
}
static void rtl8169_rx_clear(struct rtl8169_private *tp)
{
unsigned int i;
for (i = 0; i < NUM_RX_DESC; i++) {
if (tp->Rx_databuff[i]) {
rtl8169_free_rx_databuff(tp, tp->Rx_databuff + i,
tp->RxDescArray + i);
}
}
}
static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc)
{
desc->opts1 |= cpu_to_le32(RingEnd);
}
static int rtl8169_rx_fill(struct rtl8169_private *tp)
{
unsigned int i;
for (i = 0; i < NUM_RX_DESC; i++) {
void *data;
data = rtl8169_alloc_rx_data(tp, tp->RxDescArray + i);
if (!data) {
rtl8169_make_unusable_by_asic(tp->RxDescArray + i);
goto err_out;
}
tp->Rx_databuff[i] = data;
}
rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1);
return 0;
err_out:
rtl8169_rx_clear(tp);
return -ENOMEM;
}
static int rtl8169_init_ring(struct rtl8169_private *tp)
{
rtl8169_init_ring_indexes(tp);
memset(tp->tx_skb, 0, sizeof(tp->tx_skb));
memset(tp->Rx_databuff, 0, sizeof(tp->Rx_databuff));
return rtl8169_rx_fill(tp);
}
static void rtl8169_unmap_tx_skb(struct device *d, struct ring_info *tx_skb,
struct TxDesc *desc)
{
unsigned int len = tx_skb->len;
dma_unmap_single(d, le64_to_cpu(desc->addr), len, DMA_TO_DEVICE);
desc->opts1 = 0x00;
desc->opts2 = 0x00;
desc->addr = 0x00;
tx_skb->len = 0;
}
static void rtl8169_tx_clear_range(struct rtl8169_private *tp, u32 start,
unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++) {
unsigned int entry = (start + i) % NUM_TX_DESC;
struct ring_info *tx_skb = tp->tx_skb + entry;
unsigned int len = tx_skb->len;
if (len) {
struct sk_buff *skb = tx_skb->skb;
rtl8169_unmap_tx_skb(tp_to_dev(tp), tx_skb,
tp->TxDescArray + entry);
if (skb) {
dev_consume_skb_any(skb);
tx_skb->skb = NULL;
}
}
}
}
static void rtl8169_tx_clear(struct rtl8169_private *tp)
{
rtl8169_tx_clear_range(tp, tp->dirty_tx, NUM_TX_DESC);
tp->cur_tx = tp->dirty_tx = 0;
netdev_reset_queue(tp->dev);
}
static void rtl_reset_work(struct rtl8169_private *tp)
{
struct net_device *dev = tp->dev;
int i;
napi_disable(&tp->napi);
netif_stop_queue(dev);
synchronize_rcu();
rtl8169_hw_reset(tp);
for (i = 0; i < NUM_RX_DESC; i++)
rtl8169_mark_to_asic(tp->RxDescArray + i);
rtl8169_tx_clear(tp);
rtl8169_init_ring_indexes(tp);
napi_enable(&tp->napi);
rtl_hw_start(tp);
netif_wake_queue(dev);
}
static void rtl8169_tx_timeout(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
static __le32 rtl8169_get_txd_opts1(u32 opts0, u32 len, unsigned int entry)
{
u32 status = opts0 | len;
if (entry == NUM_TX_DESC - 1)
status |= RingEnd;
return cpu_to_le32(status);
}
static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb,
u32 *opts)
{
struct skb_shared_info *info = skb_shinfo(skb);
unsigned int cur_frag, entry;
struct TxDesc *uninitialized_var(txd);
struct device *d = tp_to_dev(tp);
entry = tp->cur_tx;
for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) {
const skb_frag_t *frag = info->frags + cur_frag;
dma_addr_t mapping;
u32 len;
void *addr;
entry = (entry + 1) % NUM_TX_DESC;
txd = tp->TxDescArray + entry;
len = skb_frag_size(frag);
addr = skb_frag_address(frag);
mapping = dma_map_single(d, addr, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(d, mapping))) {
if (net_ratelimit())
netif_err(tp, drv, tp->dev,
"Failed to map TX fragments DMA!\n");
goto err_out;
}
txd->opts1 = rtl8169_get_txd_opts1(opts[0], len, entry);
txd->opts2 = cpu_to_le32(opts[1]);
txd->addr = cpu_to_le64(mapping);
tp->tx_skb[entry].len = len;
}
if (cur_frag) {
tp->tx_skb[entry].skb = skb;
txd->opts1 |= cpu_to_le32(LastFrag);
}
return cur_frag;
err_out:
rtl8169_tx_clear_range(tp, tp->cur_tx + 1, cur_frag);
return -EIO;
}
static bool rtl_test_hw_pad_bug(struct rtl8169_private *tp, struct sk_buff *skb)
{
return skb->len < ETH_ZLEN && tp->mac_version == RTL_GIGA_MAC_VER_34;
}
static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,
struct net_device *dev);
/* r8169_csum_workaround()
* The hw limites the value the transport offset. When the offset is out of the
* range, calculate the checksum by sw.
*/
static void r8169_csum_workaround(struct rtl8169_private *tp,
struct sk_buff *skb)
{
if (skb_is_gso(skb)) {
netdev_features_t features = tp->dev->features;
struct sk_buff *segs, *nskb;
features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6);
segs = skb_gso_segment(skb, features);
if (IS_ERR(segs) || !segs)
goto drop;
do {
nskb = segs;
segs = segs->next;
nskb->next = NULL;
rtl8169_start_xmit(nskb, tp->dev);
} while (segs);
dev_consume_skb_any(skb);
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (skb_checksum_help(skb) < 0)
goto drop;
rtl8169_start_xmit(skb, tp->dev);
} else {
drop:
tp->dev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
}
}
/* msdn_giant_send_check()
* According to the document of microsoft, the TCP Pseudo Header excludes the
* packet length for IPv6 TCP large packets.
*/
static int msdn_giant_send_check(struct sk_buff *skb)
{
const struct ipv6hdr *ipv6h;
struct tcphdr *th;
int ret;
ret = skb_cow_head(skb, 0);
if (ret)
return ret;
ipv6h = ipv6_hdr(skb);
th = tcp_hdr(skb);
th->check = 0;
th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0);
return ret;
}
static void rtl8169_tso_csum_v1(struct sk_buff *skb, u32 *opts)
{
u32 mss = skb_shinfo(skb)->gso_size;
if (mss) {
opts[0] |= TD_LSO;
opts[0] |= min(mss, TD_MSS_MAX) << TD0_MSS_SHIFT;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
const struct iphdr *ip = ip_hdr(skb);
if (ip->protocol == IPPROTO_TCP)
opts[0] |= TD0_IP_CS | TD0_TCP_CS;
else if (ip->protocol == IPPROTO_UDP)
opts[0] |= TD0_IP_CS | TD0_UDP_CS;
else
WARN_ON_ONCE(1);
}
}
static bool rtl8169_tso_csum_v2(struct rtl8169_private *tp,
struct sk_buff *skb, u32 *opts)
{
u32 transport_offset = (u32)skb_transport_offset(skb);
u32 mss = skb_shinfo(skb)->gso_size;
if (mss) {
if (transport_offset > GTTCPHO_MAX) {
netif_warn(tp, tx_err, tp->dev,
"Invalid transport offset 0x%x for TSO\n",
transport_offset);
return false;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts[0] |= TD1_GTSENV4;
break;
case htons(ETH_P_IPV6):
if (msdn_giant_send_check(skb))
return false;
opts[0] |= TD1_GTSENV6;
break;
default:
WARN_ON_ONCE(1);
break;
}
opts[0] |= transport_offset << GTTCPHO_SHIFT;
opts[1] |= min(mss, TD_MSS_MAX) << TD1_MSS_SHIFT;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 ip_protocol;
if (unlikely(rtl_test_hw_pad_bug(tp, skb)))
return !(skb_checksum_help(skb) || eth_skb_pad(skb));
if (transport_offset > TCPHO_MAX) {
netif_warn(tp, tx_err, tp->dev,
"Invalid transport offset 0x%x\n",
transport_offset);
return false;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts[1] |= TD1_IPv4_CS;
ip_protocol = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
opts[1] |= TD1_IPv6_CS;
ip_protocol = ipv6_hdr(skb)->nexthdr;
break;
default:
ip_protocol = IPPROTO_RAW;
break;
}
if (ip_protocol == IPPROTO_TCP)
opts[1] |= TD1_TCP_CS;
else if (ip_protocol == IPPROTO_UDP)
opts[1] |= TD1_UDP_CS;
else
WARN_ON_ONCE(1);
opts[1] |= transport_offset << TCPHO_SHIFT;
} else {
if (unlikely(rtl_test_hw_pad_bug(tp, skb)))
return !eth_skb_pad(skb);
}
return true;
}
static bool rtl_tx_slots_avail(struct rtl8169_private *tp,
unsigned int nr_frags)
{
unsigned int slots_avail = tp->dirty_tx + NUM_TX_DESC - tp->cur_tx;
/* A skbuff with nr_frags needs nr_frags+1 entries in the tx queue */
return slots_avail > nr_frags;
}
/* Versions RTL8102e and from RTL8168c onwards support csum_v2 */
static bool rtl_chip_supports_csum_v2(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06:
case RTL_GIGA_MAC_VER_10 ... RTL_GIGA_MAC_VER_17:
return false;
default:
return true;
}
}
static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
unsigned int entry = tp->cur_tx % NUM_TX_DESC;
struct TxDesc *txd = tp->TxDescArray + entry;
struct device *d = tp_to_dev(tp);
dma_addr_t mapping;
u32 opts[2], len;
int frags;
if (unlikely(!rtl_tx_slots_avail(tp, skb_shinfo(skb)->nr_frags))) {
netif_err(tp, drv, dev, "BUG! Tx Ring full when queue awake!\n");
goto err_stop_0;
}
if (unlikely(le32_to_cpu(txd->opts1) & DescOwn))
goto err_stop_0;
opts[1] = rtl8169_tx_vlan_tag(skb);
opts[0] = DescOwn;
if (rtl_chip_supports_csum_v2(tp)) {
if (!rtl8169_tso_csum_v2(tp, skb, opts)) {
r8169_csum_workaround(tp, skb);
return NETDEV_TX_OK;
}
} else {
rtl8169_tso_csum_v1(skb, opts);
}
len = skb_headlen(skb);
mapping = dma_map_single(d, skb->data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(d, mapping))) {
if (net_ratelimit())
netif_err(tp, drv, dev, "Failed to map TX DMA!\n");
goto err_dma_0;
}
tp->tx_skb[entry].len = len;
txd->addr = cpu_to_le64(mapping);
frags = rtl8169_xmit_frags(tp, skb, opts);
if (frags < 0)
goto err_dma_1;
else if (frags)
opts[0] |= FirstFrag;
else {
opts[0] |= FirstFrag | LastFrag;
tp->tx_skb[entry].skb = skb;
}
txd->opts2 = cpu_to_le32(opts[1]);
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
/* Force memory writes to complete before releasing descriptor */
dma_wmb();
txd->opts1 = rtl8169_get_txd_opts1(opts[0], len, entry);
/* Force all memory writes to complete before notifying device */
wmb();
tp->cur_tx += frags + 1;
RTL_W8(tp, TxPoll, NPQ);
if (!rtl_tx_slots_avail(tp, MAX_SKB_FRAGS)) {
/* Avoid wrongly optimistic queue wake-up: rtl_tx thread must
* not miss a ring update when it notices a stopped queue.
*/
smp_wmb();
netif_stop_queue(dev);
/* Sync with rtl_tx:
* - publish queue status and cur_tx ring index (write barrier)
* - refresh dirty_tx ring index (read barrier).
* May the current thread have a pessimistic view of the ring
* status and forget to wake up queue, a racing rtl_tx thread
* can't.
*/
smp_mb();
if (rtl_tx_slots_avail(tp, MAX_SKB_FRAGS))
netif_start_queue(dev);
}
return NETDEV_TX_OK;
err_dma_1:
rtl8169_unmap_tx_skb(d, tp->tx_skb + entry, txd);
err_dma_0:
dev_kfree_skb_any(skb);
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
err_stop_0:
netif_stop_queue(dev);
dev->stats.tx_dropped++;
return NETDEV_TX_BUSY;
}
static void rtl8169_pcierr_interrupt(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
u16 pci_status, pci_cmd;
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
pci_read_config_word(pdev, PCI_STATUS, &pci_status);
netif_err(tp, intr, dev, "PCI error (cmd = 0x%04x, status = 0x%04x)\n",
pci_cmd, pci_status);
/*
* The recovery sequence below admits a very elaborated explanation:
* - it seems to work;
* - I did not see what else could be done;
* - it makes iop3xx happy.
*
* Feel free to adjust to your needs.
*/
if (pdev->broken_parity_status)
pci_cmd &= ~PCI_COMMAND_PARITY;
else
pci_cmd |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY;
pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
pci_write_config_word(pdev, PCI_STATUS,
pci_status & (PCI_STATUS_DETECTED_PARITY |
PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT));
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
static void rtl_tx(struct net_device *dev, struct rtl8169_private *tp,
int budget)
{
unsigned int dirty_tx, tx_left, bytes_compl = 0, pkts_compl = 0;
dirty_tx = tp->dirty_tx;
smp_rmb();
tx_left = tp->cur_tx - dirty_tx;
while (tx_left > 0) {
unsigned int entry = dirty_tx % NUM_TX_DESC;
struct ring_info *tx_skb = tp->tx_skb + entry;
u32 status;
status = le32_to_cpu(tp->TxDescArray[entry].opts1);
if (status & DescOwn)
break;
/* This barrier is needed to keep us from reading
* any other fields out of the Tx descriptor until
* we know the status of DescOwn
*/
dma_rmb();
rtl8169_unmap_tx_skb(tp_to_dev(tp), tx_skb,
tp->TxDescArray + entry);
if (status & LastFrag) {
pkts_compl++;
bytes_compl += tx_skb->skb->len;
napi_consume_skb(tx_skb->skb, budget);
tx_skb->skb = NULL;
}
dirty_tx++;
tx_left--;
}
if (tp->dirty_tx != dirty_tx) {
netdev_completed_queue(dev, pkts_compl, bytes_compl);
u64_stats_update_begin(&tp->tx_stats.syncp);
tp->tx_stats.packets += pkts_compl;
tp->tx_stats.bytes += bytes_compl;
u64_stats_update_end(&tp->tx_stats.syncp);
tp->dirty_tx = dirty_tx;
/* Sync with rtl8169_start_xmit:
* - publish dirty_tx ring index (write barrier)
* - refresh cur_tx ring index and queue status (read barrier)
* May the current thread miss the stopped queue condition,
* a racing xmit thread can only have a right view of the
* ring status.
*/
smp_mb();
if (netif_queue_stopped(dev) &&
rtl_tx_slots_avail(tp, MAX_SKB_FRAGS)) {
netif_wake_queue(dev);
}
/*
* 8168 hack: TxPoll requests are lost when the Tx packets are
* too close. Let's kick an extra TxPoll request when a burst
* of start_xmit activity is detected (if it is not detected,
* it is slow enough). -- FR
*/
if (tp->cur_tx != dirty_tx)
RTL_W8(tp, TxPoll, NPQ);
}
}
static inline int rtl8169_fragmented_frame(u32 status)
{
return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag);
}
static inline void rtl8169_rx_csum(struct sk_buff *skb, u32 opts1)
{
u32 status = opts1 & RxProtoMask;
if (((status == RxProtoTCP) && !(opts1 & TCPFail)) ||
((status == RxProtoUDP) && !(opts1 & UDPFail)))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
}
static int rtl_rx(struct net_device *dev, struct rtl8169_private *tp, u32 budget)
{
unsigned int cur_rx, rx_left;
unsigned int count;
cur_rx = tp->cur_rx;
for (rx_left = min(budget, NUM_RX_DESC); rx_left > 0; rx_left--, cur_rx++) {
unsigned int entry = cur_rx % NUM_RX_DESC;
struct RxDesc *desc = tp->RxDescArray + entry;
u32 status;
status = le32_to_cpu(desc->opts1);
if (status & DescOwn)
break;
/* This barrier is needed to keep us from reading
* any other fields out of the Rx descriptor until
* we know the status of DescOwn
*/
dma_rmb();
if (unlikely(status & RxRES)) {
netif_info(tp, rx_err, dev, "Rx ERROR. status = %08x\n",
status);
dev->stats.rx_errors++;
if (status & (RxRWT | RxRUNT))
dev->stats.rx_length_errors++;
if (status & RxCRC)
dev->stats.rx_crc_errors++;
if (status & (RxRUNT | RxCRC) && !(status & RxRWT) &&
dev->features & NETIF_F_RXALL) {
goto process_pkt;
}
} else {
unsigned int pkt_size;
struct sk_buff *skb;
process_pkt:
pkt_size = status & GENMASK(13, 0);
if (likely(!(dev->features & NETIF_F_RXFCS)))
pkt_size -= ETH_FCS_LEN;
/*
* The driver does not support incoming fragmented
* frames. They are seen as a symptom of over-mtu
* sized frames.
*/
if (unlikely(rtl8169_fragmented_frame(status))) {
dev->stats.rx_dropped++;
dev->stats.rx_length_errors++;
goto release_descriptor;
}
dma_sync_single_for_cpu(tp_to_dev(tp),
le64_to_cpu(desc->addr),
pkt_size, DMA_FROM_DEVICE);
skb = napi_alloc_skb(&tp->napi, pkt_size);
if (unlikely(!skb)) {
dev->stats.rx_dropped++;
goto release_descriptor;
}
prefetch(tp->Rx_databuff[entry]);
skb_copy_to_linear_data(skb, tp->Rx_databuff[entry],
pkt_size);
skb->tail += pkt_size;
skb->len = pkt_size;
rtl8169_rx_csum(skb, status);
skb->protocol = eth_type_trans(skb, dev);
rtl8169_rx_vlan_tag(desc, skb);
if (skb->pkt_type == PACKET_MULTICAST)
dev->stats.multicast++;
napi_gro_receive(&tp->napi, skb);
u64_stats_update_begin(&tp->rx_stats.syncp);
tp->rx_stats.packets++;
tp->rx_stats.bytes += pkt_size;
u64_stats_update_end(&tp->rx_stats.syncp);
}
release_descriptor:
desc->opts2 = 0;
rtl8169_mark_to_asic(desc);
}
count = cur_rx - tp->cur_rx;
tp->cur_rx = cur_rx;
return count;
}
static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance)
{
struct rtl8169_private *tp = dev_instance;
u16 status = RTL_R16(tp, IntrStatus);
if (!tp->irq_enabled || status == 0xffff || !(status & tp->irq_mask))
return IRQ_NONE;
if (unlikely(status & SYSErr)) {
rtl8169_pcierr_interrupt(tp->dev);
goto out;
}
if (status & LinkChg)
phy_mac_interrupt(tp->phydev);
if (unlikely(status & RxFIFOOver &&
tp->mac_version == RTL_GIGA_MAC_VER_11)) {
netif_stop_queue(tp->dev);
/* XXX - Hack alert. See rtl_task(). */
set_bit(RTL_FLAG_TASK_RESET_PENDING, tp->wk.flags);
}
rtl_irq_disable(tp);
napi_schedule_irqoff(&tp->napi);
out:
rtl_ack_events(tp, status);
return IRQ_HANDLED;
}
static void rtl_task(struct work_struct *work)
{
static const struct {
int bitnr;
void (*action)(struct rtl8169_private *);
} rtl_work[] = {
{ RTL_FLAG_TASK_RESET_PENDING, rtl_reset_work },
};
struct rtl8169_private *tp =
container_of(work, struct rtl8169_private, wk.work);
struct net_device *dev = tp->dev;
int i;
rtl_lock_work(tp);
if (!netif_running(dev) ||
!test_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags))
goto out_unlock;
for (i = 0; i < ARRAY_SIZE(rtl_work); i++) {
bool pending;
pending = test_and_clear_bit(rtl_work[i].bitnr, tp->wk.flags);
if (pending)
rtl_work[i].action(tp);
}
out_unlock:
rtl_unlock_work(tp);
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 17:41:36 -06:00
static int rtl8169_poll(struct napi_struct *napi, int budget)
{
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 17:41:36 -06:00
struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi);
struct net_device *dev = tp->dev;
int work_done;
work_done = rtl_rx(dev, tp, (u32) budget);
rtl_tx(dev, tp, budget);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 17:41:36 -06:00
if (work_done < budget) {
napi_complete_done(napi, work_done);
rtl_irq_enable(tp);
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 17:41:36 -06:00
return work_done;
}
static void rtl8169_rx_missed(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (tp->mac_version > RTL_GIGA_MAC_VER_06)
return;
dev->stats.rx_missed_errors += RTL_R32(tp, RxMissed) & 0xffffff;
RTL_W32(tp, RxMissed, 0);
}
static void r8169_phylink_handler(struct net_device *ndev)
{
struct rtl8169_private *tp = netdev_priv(ndev);
if (netif_carrier_ok(ndev)) {
rtl_link_chg_patch(tp);
pm_request_resume(&tp->pci_dev->dev);
} else {
pm_runtime_idle(&tp->pci_dev->dev);
}
if (net_ratelimit())
phy_print_status(tp->phydev);
}
static int r8169_phy_connect(struct rtl8169_private *tp)
{
struct phy_device *phydev = tp->phydev;
phy_interface_t phy_mode;
int ret;
phy_mode = tp->supports_gmii ? PHY_INTERFACE_MODE_GMII :
PHY_INTERFACE_MODE_MII;
ret = phy_connect_direct(tp->dev, phydev, r8169_phylink_handler,
phy_mode);
if (ret)
return ret;
if (tp->supports_gmii)
phy_remove_link_mode(phydev,
ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
else
phy_set_max_speed(phydev, SPEED_100);
phy_support_asym_pause(phydev);
phy_attached_info(phydev);
return 0;
}
static void rtl8169_down(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
phy_stop(tp->phydev);
napi_disable(&tp->napi);
netif_stop_queue(dev);
rtl8169_hw_reset(tp);
/*
* At this point device interrupts can not be enabled in any function,
* as netif_running is not true (rtl8169_interrupt, rtl8169_reset_task)
* and napi is disabled (rtl8169_poll).
*/
rtl8169_rx_missed(dev);
/* Give a racing hard_start_xmit a few cycles to complete. */
synchronize_rcu();
rtl8169_tx_clear(tp);
rtl8169_rx_clear(tp);
rtl_pll_power_down(tp);
}
static int rtl8169_close(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
pm_runtime_get_sync(&pdev->dev);
/* Update counters before going down */
rtl8169_update_counters(tp);
rtl_lock_work(tp);
/* Clear all task flags */
bitmap_zero(tp->wk.flags, RTL_FLAG_MAX);
rtl8169_down(dev);
rtl_unlock_work(tp);
cancel_work_sync(&tp->wk.work);
phy_disconnect(tp->phydev);
pci_free_irq(pdev, 0, tp);
dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray,
tp->RxPhyAddr);
dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray,
tp->TxPhyAddr);
tp->TxDescArray = NULL;
tp->RxDescArray = NULL;
pm_runtime_put_sync(&pdev->dev);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void rtl8169_netpoll(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_interrupt(pci_irq_vector(tp->pci_dev, 0), tp);
}
#endif
static int rtl_open(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
int retval = -ENOMEM;
pm_runtime_get_sync(&pdev->dev);
/*
* Rx and Tx descriptors needs 256 bytes alignment.
* dma_alloc_coherent provides more.
*/
tp->TxDescArray = dma_alloc_coherent(&pdev->dev, R8169_TX_RING_BYTES,
&tp->TxPhyAddr, GFP_KERNEL);
if (!tp->TxDescArray)
goto err_pm_runtime_put;
tp->RxDescArray = dma_alloc_coherent(&pdev->dev, R8169_RX_RING_BYTES,
&tp->RxPhyAddr, GFP_KERNEL);
if (!tp->RxDescArray)
goto err_free_tx_0;
retval = rtl8169_init_ring(tp);
if (retval < 0)
goto err_free_rx_1;
rtl_request_firmware(tp);
retval = pci_request_irq(pdev, 0, rtl8169_interrupt, NULL, tp,
dev->name);
if (retval < 0)
goto err_release_fw_2;
retval = r8169_phy_connect(tp);
if (retval)
goto err_free_irq;
rtl_lock_work(tp);
set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);
napi_enable(&tp->napi);
rtl8169_init_phy(dev, tp);
rtl_pll_power_up(tp);
rtl_hw_start(tp);
if (!rtl8169_init_counter_offsets(tp))
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
netif_warn(tp, hw, dev, "counter reset/update failed\n");
phy_start(tp->phydev);
netif_start_queue(dev);
rtl_unlock_work(tp);
pm_runtime_put_sync(&pdev->dev);
out:
return retval;
err_free_irq:
pci_free_irq(pdev, 0, tp);
err_release_fw_2:
rtl_release_firmware(tp);
rtl8169_rx_clear(tp);
err_free_rx_1:
dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray,
tp->RxPhyAddr);
tp->RxDescArray = NULL;
err_free_tx_0:
dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray,
tp->TxPhyAddr);
tp->TxDescArray = NULL;
err_pm_runtime_put:
pm_runtime_put_noidle(&pdev->dev);
goto out;
}
static void
rtl8169_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
struct rtl8169_counters *counters = tp->counters;
unsigned int start;
pm_runtime_get_noresume(&pdev->dev);
if (netif_running(dev) && pm_runtime_active(&pdev->dev))
rtl8169_rx_missed(dev);
do {
start = u64_stats_fetch_begin_irq(&tp->rx_stats.syncp);
stats->rx_packets = tp->rx_stats.packets;
stats->rx_bytes = tp->rx_stats.bytes;
} while (u64_stats_fetch_retry_irq(&tp->rx_stats.syncp, start));
do {
start = u64_stats_fetch_begin_irq(&tp->tx_stats.syncp);
stats->tx_packets = tp->tx_stats.packets;
stats->tx_bytes = tp->tx_stats.bytes;
} while (u64_stats_fetch_retry_irq(&tp->tx_stats.syncp, start));
stats->rx_dropped = dev->stats.rx_dropped;
stats->tx_dropped = dev->stats.tx_dropped;
stats->rx_length_errors = dev->stats.rx_length_errors;
stats->rx_errors = dev->stats.rx_errors;
stats->rx_crc_errors = dev->stats.rx_crc_errors;
stats->rx_fifo_errors = dev->stats.rx_fifo_errors;
stats->rx_missed_errors = dev->stats.rx_missed_errors;
stats->multicast = dev->stats.multicast;
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
/*
* Fetch additional counter values missing in stats collected by driver
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
* from tally counters.
*/
if (pm_runtime_active(&pdev->dev))
rtl8169_update_counters(tp);
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
/*
* Subtract values fetched during initalization.
* See rtl8169_init_counter_offsets for a description why we do that.
*/
stats->tx_errors = le64_to_cpu(counters->tx_errors) -
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
le64_to_cpu(tp->tc_offset.tx_errors);
stats->collisions = le32_to_cpu(counters->tx_multi_collision) -
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
le32_to_cpu(tp->tc_offset.tx_multi_collision);
stats->tx_aborted_errors = le16_to_cpu(counters->tx_aborted) -
r8169: Add values missing in @get_stats64 from HW counters The r8169 driver collects statistical information returned by @get_stats64 by counting them in the driver itself, even though many (but not all) of the values are already collected by tally counters (TCs) in the NIC. Some of these TC values are not returned by @get_stats64. Especially the received multicast packages are missing from /proc/net/dev. Rectify this by fetching the TCs and returning them from rtl8169_get_stats64. The counters collected in the driver obviously disappear as soon as the driver is unloaded so after a driver is loaded the counters always start at 0. The TCs on the other hand are only reset by a power cycle. Without further considerations the values collected by the driver would not match up against the TC values. This patch introduces a new function rtl8169_reset_counters which resets the TCs. Also, since rtl8169_reset_counters shares most of its code with rtl8169_update_counters, refactor the shared code into two new functions rtl8169_map_counters and rtl8169_unmap_counters. Unfortunately chip versions prior to RTL_GIGA_MAC_VER_19 don't allow to reset the TCs programatically. Therefore introduce an addition to the rtl8169_private struct and a function rtl8169_init_counter_offsets to store the TCs at first rtl_open. Use these values as offsets in rtl8169_get_stats64. Propagate a failure to reset *and* update the counters up to rtl_open and emit a warning message, if so. Signed-off-by: Corinna Vinschen <vinschen@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-24 04:52:39 -06:00
le16_to_cpu(tp->tc_offset.tx_aborted);
pm_runtime_put_noidle(&pdev->dev);
}
static void rtl8169_net_suspend(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (!netif_running(dev))
return;
phy_stop(tp->phydev);
netif_device_detach(dev);
rtl_lock_work(tp);
napi_disable(&tp->napi);
/* Clear all task flags */
bitmap_zero(tp->wk.flags, RTL_FLAG_MAX);
rtl_unlock_work(tp);
rtl_pll_power_down(tp);
}
#ifdef CONFIG_PM
static int rtl8169_suspend(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_net_suspend(dev);
clk_disable_unprepare(tp->clk);
return 0;
}
static void __rtl8169_resume(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
netif_device_attach(dev);
rtl_pll_power_up(tp);
rtl8169_init_phy(dev, tp);
phy_start(tp->phydev);
rtl_lock_work(tp);
napi_enable(&tp->napi);
set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);
rtl_reset_work(tp);
rtl_unlock_work(tp);
}
static int rtl8169_resume(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct rtl8169_private *tp = netdev_priv(dev);
rtl_rar_set(tp, dev->dev_addr);
clk_prepare_enable(tp->clk);
if (netif_running(dev))
__rtl8169_resume(dev);
return 0;
}
static int rtl8169_runtime_suspend(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct rtl8169_private *tp = netdev_priv(dev);
if (!tp->TxDescArray)
return 0;
rtl_lock_work(tp);
__rtl8169_set_wol(tp, WAKE_ANY);
rtl_unlock_work(tp);
rtl8169_net_suspend(dev);
/* Update counters before going runtime suspend */
rtl8169_rx_missed(dev);
rtl8169_update_counters(tp);
return 0;
}
static int rtl8169_runtime_resume(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
struct rtl8169_private *tp = netdev_priv(dev);
rtl_rar_set(tp, dev->dev_addr);
if (!tp->TxDescArray)
return 0;
rtl_lock_work(tp);
__rtl8169_set_wol(tp, tp->saved_wolopts);
rtl_unlock_work(tp);
__rtl8169_resume(dev);
return 0;
}
static int rtl8169_runtime_idle(struct device *device)
{
struct net_device *dev = dev_get_drvdata(device);
if (!netif_running(dev) || !netif_carrier_ok(dev))
pm_schedule_suspend(device, 10000);
return -EBUSY;
}
static const struct dev_pm_ops rtl8169_pm_ops = {
.suspend = rtl8169_suspend,
.resume = rtl8169_resume,
.freeze = rtl8169_suspend,
.thaw = rtl8169_resume,
.poweroff = rtl8169_suspend,
.restore = rtl8169_resume,
.runtime_suspend = rtl8169_runtime_suspend,
.runtime_resume = rtl8169_runtime_resume,
.runtime_idle = rtl8169_runtime_idle,
};
#define RTL8169_PM_OPS (&rtl8169_pm_ops)
#else /* !CONFIG_PM */
#define RTL8169_PM_OPS NULL
#endif /* !CONFIG_PM */
static void rtl_wol_shutdown_quirk(struct rtl8169_private *tp)
{
/* WoL fails with 8168b when the receiver is disabled. */
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
pci_clear_master(tp->pci_dev);
RTL_W8(tp, ChipCmd, CmdRxEnb);
/* PCI commit */
RTL_R8(tp, ChipCmd);
break;
default:
break;
}
}
static void rtl_shutdown(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_net_suspend(dev);
/* Restore original MAC address */
rtl_rar_set(tp, dev->perm_addr);
rtl8169_hw_reset(tp);
if (system_state == SYSTEM_POWER_OFF) {
if (tp->saved_wolopts) {
rtl_wol_suspend_quirk(tp);
rtl_wol_shutdown_quirk(tp);
}
pci_wake_from_d3(pdev, true);
pci_set_power_state(pdev, PCI_D3hot);
}
}
static void rtl_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
if (r8168_check_dash(tp))
rtl8168_driver_stop(tp);
netif_napi_del(&tp->napi);
unregister_netdev(dev);
mdiobus_unregister(tp->phydev->mdio.bus);
rtl_release_firmware(tp);
if (pci_dev_run_wake(pdev))
pm_runtime_get_noresume(&pdev->dev);
/* restore original MAC address */
rtl_rar_set(tp, dev->perm_addr);
}
static const struct net_device_ops rtl_netdev_ops = {
.ndo_open = rtl_open,
.ndo_stop = rtl8169_close,
.ndo_get_stats64 = rtl8169_get_stats64,
.ndo_start_xmit = rtl8169_start_xmit,
.ndo_tx_timeout = rtl8169_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = rtl8169_change_mtu,
.ndo_fix_features = rtl8169_fix_features,
.ndo_set_features = rtl8169_set_features,
.ndo_set_mac_address = rtl_set_mac_address,
.ndo_do_ioctl = rtl8169_ioctl,
.ndo_set_rx_mode = rtl_set_rx_mode,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = rtl8169_netpoll,
#endif
};
static void rtl_set_irq_mask(struct rtl8169_private *tp)
{
tp->irq_mask = RTL_EVENT_NAPI | LinkChg;
if (tp->mac_version <= RTL_GIGA_MAC_VER_06)
tp->irq_mask |= SYSErr | RxOverflow | RxFIFOOver;
else if (tp->mac_version == RTL_GIGA_MAC_VER_11)
/* special workaround needed */
tp->irq_mask |= RxFIFOOver;
else
tp->irq_mask |= RxOverflow;
}
static int rtl_alloc_irq(struct rtl8169_private *tp)
{
unsigned int flags;
r8169: Enable MSI-X on RTL8106e Originally, we have an issue where r8169 MSI-X interrupt is broken after S3 suspend/resume on RTL8106e of ASUS X441UAR. 02:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8101/2/6E PCI Express Fast/Gigabit Ethernet controller [10ec:8136] (rev 07) Subsystem: ASUSTeK Computer Inc. RTL810xE PCI Express Fast Ethernet controller [1043:200f] Flags: bus master, fast devsel, latency 0, IRQ 16 I/O ports at e000 [size=256] Memory at ef100000 (64-bit, non-prefetchable) [size=4K] Memory at e0000000 (64-bit, prefetchable) [size=16K] Capabilities: [40] Power Management version 3 Capabilities: [50] MSI: Enable- Count=1/1 Maskable- 64bit+ Capabilities: [70] Express Endpoint, MSI 01 Capabilities: [b0] MSI-X: Enable+ Count=4 Masked- Capabilities: [d0] Vital Product Data Capabilities: [100] Advanced Error Reporting Capabilities: [140] Virtual Channel Capabilities: [160] Device Serial Number 01-00-00-00-36-4c-e0-00 Capabilities: [170] Latency Tolerance Reporting Kernel driver in use: r8169 Kernel modules: r8169 We found the all of the values in PCI BAR=4 of the ethernet adapter become 0xFF after system resumes. That breaks the MSI-X interrupt. Therefore, we can only fall back to MSI interrupt to fix the issue at that time. However, there is a commit which resolves the drivers getting nothing in PCI BAR=4 after system resumes. It is 04cb3ae895d7 "PCI: Reprogram bridge prefetch registers on resume" by Daniel Drake. After apply the patch, the ethernet adapter works fine before suspend and after resume. So, we can revert the workaround after the commit "PCI: Reprogram bridge prefetch registers on resume" is merged into main tree. This patch reverts commit 7bb05b85bc2d1a1b647b91424b2ed4a18e6ecd81 "r8169: don't use MSI-X on RTL8106e". Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=201181 Fixes: 7bb05b85bc2d ("r8169: don't use MSI-X on RTL8106e") Signed-off-by: Jian-Hong Pan <jian-hong@endlessm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-26 22:09:48 -06:00
if (tp->mac_version <= RTL_GIGA_MAC_VER_06) {
rtl_unlock_config_regs(tp);
RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~MSIEnable);
rtl_lock_config_regs(tp);
flags = PCI_IRQ_LEGACY;
r8169: Enable MSI-X on RTL8106e Originally, we have an issue where r8169 MSI-X interrupt is broken after S3 suspend/resume on RTL8106e of ASUS X441UAR. 02:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8101/2/6E PCI Express Fast/Gigabit Ethernet controller [10ec:8136] (rev 07) Subsystem: ASUSTeK Computer Inc. RTL810xE PCI Express Fast Ethernet controller [1043:200f] Flags: bus master, fast devsel, latency 0, IRQ 16 I/O ports at e000 [size=256] Memory at ef100000 (64-bit, non-prefetchable) [size=4K] Memory at e0000000 (64-bit, prefetchable) [size=16K] Capabilities: [40] Power Management version 3 Capabilities: [50] MSI: Enable- Count=1/1 Maskable- 64bit+ Capabilities: [70] Express Endpoint, MSI 01 Capabilities: [b0] MSI-X: Enable+ Count=4 Masked- Capabilities: [d0] Vital Product Data Capabilities: [100] Advanced Error Reporting Capabilities: [140] Virtual Channel Capabilities: [160] Device Serial Number 01-00-00-00-36-4c-e0-00 Capabilities: [170] Latency Tolerance Reporting Kernel driver in use: r8169 Kernel modules: r8169 We found the all of the values in PCI BAR=4 of the ethernet adapter become 0xFF after system resumes. That breaks the MSI-X interrupt. Therefore, we can only fall back to MSI interrupt to fix the issue at that time. However, there is a commit which resolves the drivers getting nothing in PCI BAR=4 after system resumes. It is 04cb3ae895d7 "PCI: Reprogram bridge prefetch registers on resume" by Daniel Drake. After apply the patch, the ethernet adapter works fine before suspend and after resume. So, we can revert the workaround after the commit "PCI: Reprogram bridge prefetch registers on resume" is merged into main tree. This patch reverts commit 7bb05b85bc2d1a1b647b91424b2ed4a18e6ecd81 "r8169: don't use MSI-X on RTL8106e". Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=201181 Fixes: 7bb05b85bc2d ("r8169: don't use MSI-X on RTL8106e") Signed-off-by: Jian-Hong Pan <jian-hong@endlessm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-26 22:09:48 -06:00
} else {
flags = PCI_IRQ_ALL_TYPES;
}
return pci_alloc_irq_vectors(tp->pci_dev, 1, 1, flags);
}
static void rtl_read_mac_address(struct rtl8169_private *tp,
u8 mac_addr[ETH_ALEN])
{
/* Get MAC address */
if (rtl_is_8168evl_up(tp) && tp->mac_version != RTL_GIGA_MAC_VER_34) {
u32 value = rtl_eri_read(tp, 0xe0);
mac_addr[0] = (value >> 0) & 0xff;
mac_addr[1] = (value >> 8) & 0xff;
mac_addr[2] = (value >> 16) & 0xff;
mac_addr[3] = (value >> 24) & 0xff;
value = rtl_eri_read(tp, 0xe4);
mac_addr[4] = (value >> 0) & 0xff;
mac_addr[5] = (value >> 8) & 0xff;
}
}
DECLARE_RTL_COND(rtl_link_list_ready_cond)
{
return RTL_R8(tp, MCU) & LINK_LIST_RDY;
}
DECLARE_RTL_COND(rtl_rxtx_empty_cond)
{
return (RTL_R8(tp, MCU) & RXTX_EMPTY) == RXTX_EMPTY;
}
static int r8169_mdio_read_reg(struct mii_bus *mii_bus, int phyaddr, int phyreg)
{
struct rtl8169_private *tp = mii_bus->priv;
if (phyaddr > 0)
return -ENODEV;
return rtl_readphy(tp, phyreg);
}
static int r8169_mdio_write_reg(struct mii_bus *mii_bus, int phyaddr,
int phyreg, u16 val)
{
struct rtl8169_private *tp = mii_bus->priv;
if (phyaddr > 0)
return -ENODEV;
rtl_writephy(tp, phyreg, val);
return 0;
}
static int r8169_mdio_register(struct rtl8169_private *tp)
{
struct pci_dev *pdev = tp->pci_dev;
struct mii_bus *new_bus;
int ret;
new_bus = devm_mdiobus_alloc(&pdev->dev);
if (!new_bus)
return -ENOMEM;
new_bus->name = "r8169";
new_bus->priv = tp;
new_bus->parent = &pdev->dev;
new_bus->irq[0] = PHY_IGNORE_INTERRUPT;
snprintf(new_bus->id, MII_BUS_ID_SIZE, "r8169-%x", pci_dev_id(pdev));
new_bus->read = r8169_mdio_read_reg;
new_bus->write = r8169_mdio_write_reg;
ret = mdiobus_register(new_bus);
if (ret)
return ret;
tp->phydev = mdiobus_get_phy(new_bus, 0);
if (!tp->phydev) {
mdiobus_unregister(new_bus);
return -ENODEV;
}
/* PHY will be woken up in rtl_open() */
phy_suspend(tp->phydev);
return 0;
}
static void rtl_hw_init_8168g(struct rtl8169_private *tp)
{
u32 data;
tp->ocp_base = OCP_STD_PHY_BASE;
RTL_W32(tp, MISC, RTL_R32(tp, MISC) | RXDV_GATED_EN);
if (!rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 42))
return;
if (!rtl_udelay_loop_wait_high(tp, &rtl_rxtx_empty_cond, 100, 42))
return;
RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) & ~(CmdTxEnb | CmdRxEnb));
msleep(1);
RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB);
data = r8168_mac_ocp_read(tp, 0xe8de);
data &= ~(1 << 14);
r8168_mac_ocp_write(tp, 0xe8de, data);
if (!rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42))
return;
data = r8168_mac_ocp_read(tp, 0xe8de);
data |= (1 << 15);
r8168_mac_ocp_write(tp, 0xe8de, data);
rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42);
}
static void rtl_hw_initialize(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_49 ... RTL_GIGA_MAC_VER_51:
rtl8168ep_stop_cmac(tp);
/* fall through */
case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_48:
rtl_hw_init_8168g(tp);
break;
default:
break;
}
}
static int rtl_jumbo_max(struct rtl8169_private *tp)
{
/* Non-GBit versions don't support jumbo frames */
if (!tp->supports_gmii)
return JUMBO_1K;
switch (tp->mac_version) {
/* RTL8169 */
case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06:
return JUMBO_7K;
/* RTL8168b */
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
return JUMBO_4K;
/* RTL8168c */
case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_24:
return JUMBO_6K;
default:
return JUMBO_9K;
}
}
static void rtl_disable_clk(void *data)
{
clk_disable_unprepare(data);
}
static int rtl_get_ether_clk(struct rtl8169_private *tp)
{
struct device *d = tp_to_dev(tp);
struct clk *clk;
int rc;
clk = devm_clk_get(d, "ether_clk");
if (IS_ERR(clk)) {
rc = PTR_ERR(clk);
if (rc == -ENOENT)
/* clk-core allows NULL (for suspend / resume) */
rc = 0;
else if (rc != -EPROBE_DEFER)
dev_err(d, "failed to get clk: %d\n", rc);
} else {
tp->clk = clk;
rc = clk_prepare_enable(clk);
if (rc)
dev_err(d, "failed to enable clk: %d\n", rc);
else
rc = devm_add_action_or_reset(d, rtl_disable_clk, clk);
}
return rc;
}
static void rtl_init_mac_address(struct rtl8169_private *tp)
{
struct net_device *dev = tp->dev;
u8 *mac_addr = dev->dev_addr;
int rc, i;
rc = eth_platform_get_mac_address(tp_to_dev(tp), mac_addr);
if (!rc)
goto done;
rtl_read_mac_address(tp, mac_addr);
if (is_valid_ether_addr(mac_addr))
goto done;
for (i = 0; i < ETH_ALEN; i++)
mac_addr[i] = RTL_R8(tp, MAC0 + i);
if (is_valid_ether_addr(mac_addr))
goto done;
eth_hw_addr_random(dev);
dev_warn(tp_to_dev(tp), "can't read MAC address, setting random one\n");
done:
rtl_rar_set(tp, mac_addr);
}
static int rtl_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct rtl8169_private *tp;
struct net_device *dev;
int chipset, region;
int jumbo_max, rc;
dev = devm_alloc_etherdev(&pdev->dev, sizeof (*tp));
if (!dev)
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
dev->netdev_ops = &rtl_netdev_ops;
tp = netdev_priv(dev);
tp->dev = dev;
tp->pci_dev = pdev;
tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT);
tp->supports_gmii = ent->driver_data == RTL_CFG_NO_GBIT ? 0 : 1;
/* Get the *optional* external "ether_clk" used on some boards */
rc = rtl_get_ether_clk(tp);
if (rc)
return rc;
/* Disable ASPM completely as that cause random device stop working
* problems as well as full system hangs for some PCIe devices users.
*/
rc = pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S |
PCIE_LINK_STATE_L1);
tp->aspm_manageable = !rc;
/* enable device (incl. PCI PM wakeup and hotplug setup) */
rc = pcim_enable_device(pdev);
if (rc < 0) {
dev_err(&pdev->dev, "enable failure\n");
return rc;
}
if (pcim_set_mwi(pdev) < 0)
dev_info(&pdev->dev, "Mem-Wr-Inval unavailable\n");
/* use first MMIO region */
region = ffs(pci_select_bars(pdev, IORESOURCE_MEM)) - 1;
if (region < 0) {
dev_err(&pdev->dev, "no MMIO resource found\n");
return -ENODEV;
}
/* check for weird/broken PCI region reporting */
if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) {
dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n");
return -ENODEV;
}
rc = pcim_iomap_regions(pdev, BIT(region), MODULENAME);
if (rc < 0) {
dev_err(&pdev->dev, "cannot remap MMIO, aborting\n");
return rc;
}
tp->mmio_addr = pcim_iomap_table(pdev)[region];
/* Identify chip attached to board */
rtl8169_get_mac_version(tp);
if (tp->mac_version == RTL_GIGA_MAC_NONE)
return -ENODEV;
tp->cp_cmd = RTL_R16(tp, CPlusCmd);
if (sizeof(dma_addr_t) > 4 && tp->mac_version >= RTL_GIGA_MAC_VER_18 &&
!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)))
dev->features |= NETIF_F_HIGHDMA;
rtl_init_rxcfg(tp);
rtl8169_irq_mask_and_ack(tp);
rtl_hw_initialize(tp);
rtl_hw_reset(tp);
pci_set_master(pdev);
chipset = tp->mac_version;
rc = rtl_alloc_irq(tp);
if (rc < 0) {
dev_err(&pdev->dev, "Can't allocate interrupt\n");
return rc;
}
mutex_init(&tp->wk.mutex);
INIT_WORK(&tp->wk.work, rtl_task);
u64_stats_init(&tp->rx_stats.syncp);
u64_stats_init(&tp->tx_stats.syncp);
rtl_init_mac_address(tp);
dev->ethtool_ops = &rtl8169_ethtool_ops;
netif_napi_add(dev, &tp->napi, rtl8169_poll, NAPI_POLL_WEIGHT);
/* don't enable SG, IP_CSUM and TSO by default - it might not work
* properly for all devices */
dev->features |= NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
NETIF_F_HIGHDMA;
dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
tp->cp_cmd |= RxChkSum | RxVlan;
/*
* Pretend we are using VLANs; This bypasses a nasty bug where
* Interrupts stop flowing on high load on 8110SCd controllers.
*/
if (tp->mac_version == RTL_GIGA_MAC_VER_05)
/* Disallow toggling */
dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
if (rtl_chip_supports_csum_v2(tp))
dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
dev->hw_features |= NETIF_F_RXALL;
dev->hw_features |= NETIF_F_RXFCS;
/* MTU range: 60 - hw-specific max */
dev->min_mtu = ETH_ZLEN;
jumbo_max = rtl_jumbo_max(tp);
dev->max_mtu = jumbo_max;
rtl_set_irq_mask(tp);
tp->fw_name = rtl_chip_infos[chipset].fw_name;
tp->counters = dmam_alloc_coherent (&pdev->dev, sizeof(*tp->counters),
&tp->counters_phys_addr,
GFP_KERNEL);
if (!tp->counters)
return -ENOMEM;
pci_set_drvdata(pdev, dev);
rc = r8169_mdio_register(tp);
if (rc)
return rc;
/* chip gets powered up in rtl_open() */
rtl_pll_power_down(tp);
rc = register_netdev(dev);
if (rc)
goto err_mdio_unregister;
netif_info(tp, probe, dev, "%s, %pM, XID %03x, IRQ %d\n",
rtl_chip_infos[chipset].name, dev->dev_addr,
(RTL_R32(tp, TxConfig) >> 20) & 0xfcf,
pci_irq_vector(pdev, 0));
if (jumbo_max > JUMBO_1K)
netif_info(tp, probe, dev,
"jumbo features [frames: %d bytes, tx checksumming: %s]\n",
jumbo_max, tp->mac_version <= RTL_GIGA_MAC_VER_06 ?
"ok" : "ko");
if (r8168_check_dash(tp))
rtl8168_driver_start(tp);
if (pci_dev_run_wake(pdev))
pm_runtime_put_sync(&pdev->dev);
return 0;
err_mdio_unregister:
mdiobus_unregister(tp->phydev->mdio.bus);
return rc;
}
static struct pci_driver rtl8169_pci_driver = {
.name = MODULENAME,
.id_table = rtl8169_pci_tbl,
.probe = rtl_init_one,
.remove = rtl_remove_one,
.shutdown = rtl_shutdown,
.driver.pm = RTL8169_PM_OPS,
};
module_pci_driver(rtl8169_pci_driver);