1
0
Fork 0
alistair23-linux/drivers/isdn/hisax/hfc_usb.c

1743 lines
48 KiB
C
Raw Normal View History

/*
* hfc_usb.c
*
* $Id: hfc_usb.c,v 2.3.2.13 2006/02/17 17:17:22 mbachem Exp $
*
* modular HiSax ISDN driver for Colognechip HFC-S USB chip
*
* Authors : Peter Sprenger (sprenger@moving-bytes.de)
* Martin Bachem (info@colognechip.com)
*
* based on the first hfc_usb driver of
* Werner Cornelius (werner@isdn-development.de)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* See Version Histroy at the bottom of this file
*
*/
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel_stat.h>
#include <linux/usb.h>
#include <linux/kernel.h>
#include "hisax.h"
#include "hisax_if.h"
#include "hfc_usb.h"
static const char *hfcusb_revision =
"$Revision: 2.3.2.13 $ $Date: 2006/02/17 17:17:22 $ ";
/* Hisax debug support
* use "modprobe debug=x" where x is bitfield of USB_DBG & ISDN_DBG
*/
#ifdef CONFIG_HISAX_DEBUG
#include <linux/moduleparam.h>
#define __debug_variable hfc_debug
#include "hisax_debug.h"
static u_int debug;
module_param(debug, uint, 0);
static int hfc_debug;
#endif
/* private vendor specific data */
typedef struct {
__u8 led_scheme; // led display scheme
signed short led_bits[8]; // array of 8 possible LED bitmask settings
char *vend_name; // device name
} hfcsusb_vdata;
/****************************************/
/* data defining the devices to be used */
/****************************************/
static struct usb_device_id hfcusb_idtab[] = {
{
USB_DEVICE(0x0959, 0x2bd0),
.driver_info = (unsigned long) &((hfcsusb_vdata)
{LED_OFF, {4, 0, 2, 1},
"ISDN USB TA (Cologne Chip HFC-S USB based)"}),
},
{
USB_DEVICE(0x0675, 0x1688),
.driver_info = (unsigned long) &((hfcsusb_vdata)
{LED_SCHEME1, {1, 2, 0, 0},
"DrayTek miniVigor 128 USB ISDN TA"}),
},
{
USB_DEVICE(0x07b0, 0x0007),
.driver_info = (unsigned long) &((hfcsusb_vdata)
{LED_SCHEME1, {0x80, -64, -32, -16},
"Billion tiny USB ISDN TA 128"}),
},
{
USB_DEVICE(0x0742, 0x2008),
.driver_info = (unsigned long) &((hfcsusb_vdata)
{LED_SCHEME1, {4, 0, 2, 1},
"Stollmann USB TA"}),
},
{
USB_DEVICE(0x0742, 0x2009),
.driver_info = (unsigned long) &((hfcsusb_vdata)
{LED_SCHEME1, {4, 0, 2, 1},
"Aceex USB ISDN TA"}),
},
{
USB_DEVICE(0x0742, 0x200A),
.driver_info = (unsigned long) &((hfcsusb_vdata)
{LED_SCHEME1, {4, 0, 2, 1},
"OEM USB ISDN TA"}),
},
{
USB_DEVICE(0x08e3, 0x0301),
.driver_info = (unsigned long) &((hfcsusb_vdata)
{LED_SCHEME1, {2, 0, 1, 4},
"Olitec USB RNIS"}),
},
{
USB_DEVICE(0x07fa, 0x0846),
.driver_info = (unsigned long) &((hfcsusb_vdata)
{LED_SCHEME1, {0x80, -64, -32, -16},
"Bewan Modem RNIS USB"}),
},
{
USB_DEVICE(0x07fa, 0x0847),
.driver_info = (unsigned long) &((hfcsusb_vdata)
{LED_SCHEME1, {0x80, -64, -32, -16},
"Djinn Numeris USB"}),
},
{
USB_DEVICE(0x07b0, 0x0006),
.driver_info = (unsigned long) &((hfcsusb_vdata)
{LED_SCHEME1, {0x80, -64, -32, -16},
"Twister ISDN TA"}),
},
{ }
};
/***************************************************************/
/* structure defining input+output fifos (interrupt/bulk mode) */
/***************************************************************/
struct usb_fifo; /* forward definition */
typedef struct iso_urb_struct {
struct urb *purb;
__u8 buffer[ISO_BUFFER_SIZE]; /* buffer incoming/outgoing data */
struct usb_fifo *owner_fifo; /* pointer to owner fifo */
} iso_urb_struct;
struct hfcusb_data; /* forward definition */
typedef struct usb_fifo {
int fifonum; /* fifo index attached to this structure */
int active; /* fifo is currently active */
struct hfcusb_data *hfc; /* pointer to main structure */
int pipe; /* address of endpoint */
__u8 usb_packet_maxlen; /* maximum length for usb transfer */
unsigned int max_size; /* maximum size of receive/send packet */
__u8 intervall; /* interrupt interval */
struct sk_buff *skbuff; /* actual used buffer */
struct urb *urb; /* transfer structure for usb routines */
__u8 buffer[128]; /* buffer incoming/outgoing data */
int bit_line; /* how much bits are in the fifo? */
volatile __u8 usb_transfer_mode; /* switched between ISO and INT */
iso_urb_struct iso[2]; /* need two urbs to have one always for pending */
struct hisax_if *hif; /* hisax interface */
int delete_flg; /* only delete skbuff once */
int last_urblen; /* remember length of last packet */
} usb_fifo;
/*********************************************/
/* structure holding all data for one device */
/*********************************************/
typedef struct hfcusb_data {
/* HiSax Interface for loadable Layer1 drivers */
struct hisax_d_if d_if; /* see hisax_if.h */
struct hisax_b_if b_if[2]; /* see hisax_if.h */
int protocol;
struct usb_device *dev; /* our device */
int if_used; /* used interface number */
int alt_used; /* used alternate config */
int ctrl_paksize; /* control pipe packet size */
int ctrl_in_pipe, ctrl_out_pipe; /* handles for control pipe */
int cfg_used; /* configuration index used */
int vend_idx; /* vendor found */
int b_mode[2]; /* B-channel mode */
int l1_activated; /* layer 1 activated */
int disc_flag; /* 'true' if device was disonnected to avoid some USB actions */
int packet_size, iso_packet_size;
/* control pipe background handling */
ctrl_buft ctrl_buff[HFC_CTRL_BUFSIZE]; /* buffer holding queued data */
volatile int ctrl_in_idx, ctrl_out_idx, ctrl_cnt; /* input/output pointer + count */
struct urb *ctrl_urb; /* transfer structure for control channel */
struct usb_ctrlrequest ctrl_write; /* buffer for control write request */
struct usb_ctrlrequest ctrl_read; /* same for read request */
__u8 old_led_state, led_state, led_new_data, led_b_active;
volatile __u8 threshold_mask; /* threshold actually reported */
volatile __u8 bch_enables; /* or mask for sctrl_r and sctrl register values */
usb_fifo fifos[HFCUSB_NUM_FIFOS]; /* structure holding all fifo data */
volatile __u8 l1_state; /* actual l1 state */
struct timer_list t3_timer; /* timer 3 for activation/deactivation */
struct timer_list t4_timer; /* timer 4 for activation/deactivation */
} hfcusb_data;
static void collect_rx_frame(usb_fifo * fifo, __u8 * data, int len,
int finish);
static inline const char *
symbolic(struct hfcusb_symbolic_list list[], const int num)
{
int i;
for (i = 0; list[i].name != NULL; i++)
if (list[i].num == num)
return (list[i].name);
return "<unknown ERROR>";
}
/******************************************************/
/* start next background transfer for control channel */
/******************************************************/
static void
ctrl_start_transfer(hfcusb_data * hfc)
{
if (hfc->ctrl_cnt) {
hfc->ctrl_urb->pipe = hfc->ctrl_out_pipe;
hfc->ctrl_urb->setup_packet = (u_char *) & hfc->ctrl_write;
hfc->ctrl_urb->transfer_buffer = NULL;
hfc->ctrl_urb->transfer_buffer_length = 0;
hfc->ctrl_write.wIndex =
cpu_to_le16(hfc->ctrl_buff[hfc->ctrl_out_idx].hfc_reg);
hfc->ctrl_write.wValue =
cpu_to_le16(hfc->ctrl_buff[hfc->ctrl_out_idx].reg_val);
usb_submit_urb(hfc->ctrl_urb, GFP_ATOMIC); /* start transfer */
}
} /* ctrl_start_transfer */
/************************************/
/* queue a control transfer request */
/* return 0 on success. */
/************************************/
static int
queue_control_request(hfcusb_data * hfc, __u8 reg, __u8 val, int action)
{
ctrl_buft *buf;
if (hfc->ctrl_cnt >= HFC_CTRL_BUFSIZE)
return (1); /* no space left */
buf = &hfc->ctrl_buff[hfc->ctrl_in_idx]; /* pointer to new index */
buf->hfc_reg = reg;
buf->reg_val = val;
buf->action = action;
if (++hfc->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
hfc->ctrl_in_idx = 0; /* pointer wrap */
if (++hfc->ctrl_cnt == 1)
ctrl_start_transfer(hfc);
return (0);
} /* queue_control_request */
static int
control_action_handler(hfcusb_data * hfc, int reg, int val, int action)
{
if (!action)
return (1); /* no action defined */
return (0);
}
/***************************************************************/
/* control completion routine handling background control cmds */
/***************************************************************/
static void
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 07:55:46 -06:00
ctrl_complete(struct urb *urb)
{
hfcusb_data *hfc = (hfcusb_data *) urb->context;
ctrl_buft *buf;
urb->dev = hfc->dev;
if (hfc->ctrl_cnt) {
buf = &hfc->ctrl_buff[hfc->ctrl_out_idx];
control_action_handler(hfc, buf->hfc_reg, buf->reg_val,
buf->action);
hfc->ctrl_cnt--; /* decrement actual count */
if (++hfc->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
hfc->ctrl_out_idx = 0; /* pointer wrap */
ctrl_start_transfer(hfc); /* start next transfer */
}
} /* ctrl_complete */
/***************************************************/
/* write led data to auxport & invert if necessary */
/***************************************************/
static void
write_led(hfcusb_data * hfc, __u8 led_state)
{
if (led_state != hfc->old_led_state) {
hfc->old_led_state = led_state;
queue_control_request(hfc, HFCUSB_P_DATA, led_state, 1);
}
}
/**************************/
/* handle LED bits */
/**************************/
static void
set_led_bit(hfcusb_data * hfc, signed short led_bits, int unset)
{
if (unset) {
if (led_bits < 0)
hfc->led_state |= abs(led_bits);
else
hfc->led_state &= ~led_bits;
} else {
if (led_bits < 0)
hfc->led_state &= ~abs(led_bits);
else
hfc->led_state |= led_bits;
}
}
/**************************/
/* handle LED requests */
/**************************/
static void
handle_led(hfcusb_data * hfc, int event)
{
hfcsusb_vdata *driver_info =
(hfcsusb_vdata *) hfcusb_idtab[hfc->vend_idx].driver_info;
/* if no scheme -> no LED action */
if (driver_info->led_scheme == LED_OFF)
return;
switch (event) {
case LED_POWER_ON:
set_led_bit(hfc, driver_info->led_bits[0],
0);
set_led_bit(hfc, driver_info->led_bits[1],
1);
set_led_bit(hfc, driver_info->led_bits[2],
1);
set_led_bit(hfc, driver_info->led_bits[3],
1);
break;
case LED_POWER_OFF: /* no Power off handling */
break;
case LED_S0_ON:
set_led_bit(hfc, driver_info->led_bits[1],
0);
break;
case LED_S0_OFF:
set_led_bit(hfc, driver_info->led_bits[1],
1);
break;
case LED_B1_ON:
set_led_bit(hfc, driver_info->led_bits[2],
0);
break;
case LED_B1_OFF:
set_led_bit(hfc, driver_info->led_bits[2],
1);
break;
case LED_B2_ON:
set_led_bit(hfc, driver_info->led_bits[3],
0);
break;
case LED_B2_OFF:
set_led_bit(hfc, driver_info->led_bits[3],
1);
break;
}
write_led(hfc, hfc->led_state);
}
/********************************/
/* called when timer t3 expires */
/********************************/
static void
l1_timer_expire_t3(hfcusb_data * hfc)
{
hfc->d_if.ifc.l1l2(&hfc->d_if.ifc, PH_DEACTIVATE | INDICATION,
NULL);
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG,
"HFC-S USB: PH_DEACTIVATE | INDICATION sent (T3 expire)");
#endif
hfc->l1_activated = false;
handle_led(hfc, LED_S0_OFF);
/* deactivate : */
queue_control_request(hfc, HFCUSB_STATES, 0x10, 1);
queue_control_request(hfc, HFCUSB_STATES, 3, 1);
}
/********************************/
/* called when timer t4 expires */
/********************************/
static void
l1_timer_expire_t4(hfcusb_data * hfc)
{
hfc->d_if.ifc.l1l2(&hfc->d_if.ifc, PH_DEACTIVATE | INDICATION,
NULL);
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG,
"HFC-S USB: PH_DEACTIVATE | INDICATION sent (T4 expire)");
#endif
hfc->l1_activated = false;
handle_led(hfc, LED_S0_OFF);
}
/*****************************/
/* handle S0 state changes */
/*****************************/
static void
state_handler(hfcusb_data * hfc, __u8 state)
{
__u8 old_state;
old_state = hfc->l1_state;
if (state == old_state || state < 1 || state > 8)
return;
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG, "HFC-S USB: new S0 state:%d old_state:%d", state,
old_state);
#endif
if (state < 4 || state == 7 || state == 8) {
if (timer_pending(&hfc->t3_timer))
del_timer(&hfc->t3_timer);
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG, "HFC-S USB: T3 deactivated");
#endif
}
if (state >= 7) {
if (timer_pending(&hfc->t4_timer))
del_timer(&hfc->t4_timer);
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG, "HFC-S USB: T4 deactivated");
#endif
}
if (state == 7 && !hfc->l1_activated) {
hfc->d_if.ifc.l1l2(&hfc->d_if.ifc,
PH_ACTIVATE | INDICATION, NULL);
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG, "HFC-S USB: PH_ACTIVATE | INDICATION sent");
#endif
hfc->l1_activated = true;
handle_led(hfc, LED_S0_ON);
} else if (state <= 3 /* && activated */ ) {
if (old_state == 7 || old_state == 8) {
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG, "HFC-S USB: T4 activated");
#endif
if (!timer_pending(&hfc->t4_timer)) {
hfc->t4_timer.expires =
jiffies + (HFC_TIMER_T4 * HZ) / 1000;
add_timer(&hfc->t4_timer);
}
} else {
hfc->d_if.ifc.l1l2(&hfc->d_if.ifc,
PH_DEACTIVATE | INDICATION,
NULL);
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG,
"HFC-S USB: PH_DEACTIVATE | INDICATION sent");
#endif
hfc->l1_activated = false;
handle_led(hfc, LED_S0_OFF);
}
}
hfc->l1_state = state;
}
/* prepare iso urb */
static void
fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
void *buf, int num_packets, int packet_size, int interval,
usb_complete_t complete, void *context)
{
int k;
urb->dev = dev;
urb->pipe = pipe;
urb->complete = complete;
urb->number_of_packets = num_packets;
urb->transfer_buffer_length = packet_size * num_packets;
urb->context = context;
urb->transfer_buffer = buf;
urb->transfer_flags = URB_ISO_ASAP;
urb->actual_length = 0;
urb->interval = interval;
for (k = 0; k < num_packets; k++) {
urb->iso_frame_desc[k].offset = packet_size * k;
urb->iso_frame_desc[k].length = packet_size;
urb->iso_frame_desc[k].actual_length = 0;
}
}
/* allocs urbs and start isoc transfer with two pending urbs to avoid
gaps in the transfer chain */
static int
start_isoc_chain(usb_fifo * fifo, int num_packets_per_urb,
usb_complete_t complete, int packet_size)
{
int i, k, errcode;
printk(KERN_INFO "HFC-S USB: starting ISO-chain for Fifo %i\n",
fifo->fifonum);
/* allocate Memory for Iso out Urbs */
for (i = 0; i < 2; i++) {
if (!(fifo->iso[i].purb)) {
fifo->iso[i].purb =
usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
if (!(fifo->iso[i].purb)) {
printk(KERN_INFO
"alloc urb for fifo %i failed!!!",
fifo->fifonum);
}
fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
/* Init the first iso */
if (ISO_BUFFER_SIZE >=
(fifo->usb_packet_maxlen *
num_packets_per_urb)) {
fill_isoc_urb(fifo->iso[i].purb,
fifo->hfc->dev, fifo->pipe,
fifo->iso[i].buffer,
num_packets_per_urb,
fifo->usb_packet_maxlen,
fifo->intervall, complete,
&fifo->iso[i]);
memset(fifo->iso[i].buffer, 0,
sizeof(fifo->iso[i].buffer));
/* defining packet delimeters in fifo->buffer */
for (k = 0; k < num_packets_per_urb; k++) {
fifo->iso[i].purb->
iso_frame_desc[k].offset =
k * packet_size;
fifo->iso[i].purb->
iso_frame_desc[k].length =
packet_size;
}
} else {
printk(KERN_INFO
"HFC-S USB: ISO Buffer size to small!\n");
}
}
fifo->bit_line = BITLINE_INF;
errcode = usb_submit_urb(fifo->iso[i].purb, GFP_KERNEL);
fifo->active = (errcode >= 0) ? 1 : 0;
if (errcode < 0) {
printk(KERN_INFO "HFC-S USB: %s URB nr:%d\n",
symbolic(urb_errlist, errcode), i);
};
}
return (fifo->active);
}
/* stops running iso chain and frees their pending urbs */
static void
stop_isoc_chain(usb_fifo * fifo)
{
int i;
for (i = 0; i < 2; i++) {
if (fifo->iso[i].purb) {
#ifdef CONFIG_HISAX_DEBUG
DBG(USB_DBG,
"HFC-S USB: Stopping iso chain for fifo %i.%i",
fifo->fifonum, i);
#endif
usb_kill_urb(fifo->iso[i].purb);
usb_free_urb(fifo->iso[i].purb);
fifo->iso[i].purb = NULL;
}
}
usb_kill_urb(fifo->urb);
usb_free_urb(fifo->urb);
fifo->urb = NULL;
fifo->active = 0;
}
/* defines how much ISO packets are handled in one URB */
static int iso_packets[8] =
{ ISOC_PACKETS_B, ISOC_PACKETS_B, ISOC_PACKETS_B, ISOC_PACKETS_B,
ISOC_PACKETS_D, ISOC_PACKETS_D, ISOC_PACKETS_D, ISOC_PACKETS_D
};
/*****************************************************/
/* transmit completion routine for all ISO tx fifos */
/*****************************************************/
static void
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 07:55:46 -06:00
tx_iso_complete(struct urb *urb)
{
iso_urb_struct *context_iso_urb = (iso_urb_struct *) urb->context;
usb_fifo *fifo = context_iso_urb->owner_fifo;
hfcusb_data *hfc = fifo->hfc;
int k, tx_offset, num_isoc_packets, sink, len, current_len,
errcode;
int frame_complete, transp_mode, fifon, status;
__u8 threshbit;
__u8 threshtable[8] = { 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80 };
fifon = fifo->fifonum;
status = urb->status;
tx_offset = 0;
if (fifo->active && !status) {
transp_mode = 0;
if (fifon < 4 && hfc->b_mode[fifon / 2] == L1_MODE_TRANS)
transp_mode = true;
/* is FifoFull-threshold set for our channel? */
threshbit = threshtable[fifon] & hfc->threshold_mask;
num_isoc_packets = iso_packets[fifon];
/* predict dataflow to avoid fifo overflow */
if (fifon >= HFCUSB_D_TX) {
sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
} else {
sink = (threshbit) ? SINK_MIN : SINK_MAX;
}
fill_isoc_urb(urb, fifo->hfc->dev, fifo->pipe,
context_iso_urb->buffer, num_isoc_packets,
fifo->usb_packet_maxlen, fifo->intervall,
tx_iso_complete, urb->context);
memset(context_iso_urb->buffer, 0,
sizeof(context_iso_urb->buffer));
frame_complete = false;
/* Generate next Iso Packets */
for (k = 0; k < num_isoc_packets; ++k) {
if (fifo->skbuff) {
len = fifo->skbuff->len;
/* we lower data margin every msec */
fifo->bit_line -= sink;
current_len = (0 - fifo->bit_line) / 8;
/* maximum 15 byte for every ISO packet makes our life easier */
if (current_len > 14)
current_len = 14;
current_len =
(len <=
current_len) ? len : current_len;
/* how much bit do we put on the line? */
fifo->bit_line += current_len * 8;
context_iso_urb->buffer[tx_offset] = 0;
if (current_len == len) {
if (!transp_mode) {
/* here frame completion */
context_iso_urb->
buffer[tx_offset] = 1;
/* add 2 byte flags and 16bit CRC at end of ISDN frame */
fifo->bit_line += 32;
}
frame_complete = true;
}
memcpy(context_iso_urb->buffer +
tx_offset + 1, fifo->skbuff->data,
current_len);
skb_pull(fifo->skbuff, current_len);
/* define packet delimeters within the URB buffer */
urb->iso_frame_desc[k].offset = tx_offset;
urb->iso_frame_desc[k].length =
current_len + 1;
tx_offset += (current_len + 1);
} else {
urb->iso_frame_desc[k].offset =
tx_offset++;
urb->iso_frame_desc[k].length = 1;
fifo->bit_line -= sink; /* we lower data margin every msec */
if (fifo->bit_line < BITLINE_INF) {
fifo->bit_line = BITLINE_INF;
}
}
if (frame_complete) {
fifo->delete_flg = true;
fifo->hif->l1l2(fifo->hif,
PH_DATA | CONFIRM,
(void *) (unsigned long) fifo->skbuff->
truesize);
if (fifo->skbuff && fifo->delete_flg) {
dev_kfree_skb_any(fifo->skbuff);
fifo->skbuff = NULL;
fifo->delete_flg = false;
}
frame_complete = false;
}
}
errcode = usb_submit_urb(urb, GFP_ATOMIC);
if (errcode < 0) {
printk(KERN_INFO
"HFC-S USB: error submitting ISO URB: %d \n",
errcode);
}
} else {
if (status && !hfc->disc_flag) {
printk(KERN_INFO
"HFC-S USB: tx_iso_complete : urb->status %s (%i), fifonum=%d\n",
symbolic(urb_errlist, status), status,
fifon);
}
}
} /* tx_iso_complete */
/*****************************************************/
/* receive completion routine for all ISO tx fifos */
/*****************************************************/
static void
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 07:55:46 -06:00
rx_iso_complete(struct urb *urb)
{
iso_urb_struct *context_iso_urb = (iso_urb_struct *) urb->context;
usb_fifo *fifo = context_iso_urb->owner_fifo;
hfcusb_data *hfc = fifo->hfc;
int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
status;
unsigned int iso_status;
__u8 *buf;
static __u8 eof[8];
#ifdef CONFIG_HISAX_DEBUG
__u8 i;
#endif
fifon = fifo->fifonum;
status = urb->status;
if (urb->status == -EOVERFLOW) {
#ifdef CONFIG_HISAX_DEBUG
DBG(USB_DBG,
"HFC-USB: ignoring USB DATAOVERRUN for fifo %i \n",
fifon);
#endif
status = 0;
}
if (fifo->active && !status) {
num_isoc_packets = iso_packets[fifon];
maxlen = fifo->usb_packet_maxlen;
for (k = 0; k < num_isoc_packets; ++k) {
len = urb->iso_frame_desc[k].actual_length;
offset = urb->iso_frame_desc[k].offset;
buf = context_iso_urb->buffer + offset;
iso_status = urb->iso_frame_desc[k].status;
#ifdef CONFIG_HISAX_DEBUG
if (iso_status && !hfc->disc_flag)
DBG(USB_DBG,
"HFC-S USB: ISO packet failure - status:%x",
iso_status);
if ((fifon == 5) && (debug > 1)) {
printk(KERN_INFO
"HFC-S USB: ISO-D-RX lst_urblen:%2d "
"act_urblen:%2d max-urblen:%2d "
"EOF:0x%0x DATA: ",
fifo->last_urblen, len, maxlen,
eof[5]);
for (i = 0; i < len; i++)
printk("%.2x ", buf[i]);
printk("\n");
}
#endif
if (fifo->last_urblen != maxlen) {
/* the threshold mask is in the 2nd status byte */
hfc->threshold_mask = buf[1];
/* care for L1 state only for D-Channel
to avoid overlapped iso completions */
if (fifon == 5) {
/* the S0 state is in the upper half
of the 1st status byte */
state_handler(hfc, buf[0] >> 4);
}
eof[fifon] = buf[0] & 1;
if (len > 2)
collect_rx_frame(fifo, buf + 2,
len - 2,
(len <
maxlen) ?
eof[fifon] : 0);
} else {
collect_rx_frame(fifo, buf, len,
(len <
maxlen) ? eof[fifon] :
0);
}
fifo->last_urblen = len;
}
fill_isoc_urb(urb, fifo->hfc->dev, fifo->pipe,
context_iso_urb->buffer, num_isoc_packets,
fifo->usb_packet_maxlen, fifo->intervall,
rx_iso_complete, urb->context);
errcode = usb_submit_urb(urb, GFP_ATOMIC);
if (errcode < 0) {
printk(KERN_INFO
"HFC-S USB: error submitting ISO URB: %d \n",
errcode);
}
} else {
if (status && !hfc->disc_flag) {
printk(KERN_INFO
"HFC-S USB: rx_iso_complete : "
"urb->status %d, fifonum %d\n",
status, fifon);
}
}
} /* rx_iso_complete */
/*****************************************************/
/* collect data from interrupt or isochron in */
/*****************************************************/
static void
collect_rx_frame(usb_fifo * fifo, __u8 * data, int len, int finish)
{
hfcusb_data *hfc = fifo->hfc;
int transp_mode, fifon;
#ifdef CONFIG_HISAX_DEBUG
int i;
#endif
fifon = fifo->fifonum;
transp_mode = 0;
if (fifon < 4 && hfc->b_mode[fifon / 2] == L1_MODE_TRANS)
transp_mode = true;
if (!fifo->skbuff) {
fifo->skbuff = dev_alloc_skb(fifo->max_size + 3);
if (!fifo->skbuff) {
printk(KERN_INFO
"HFC-S USB: cannot allocate buffer (dev_alloc_skb) fifo:%d\n",
fifon);
return;
}
}
if (len) {
if (fifo->skbuff->len + len < fifo->max_size) {
memcpy(skb_put(fifo->skbuff, len), data, len);
} else {
#ifdef CONFIG_HISAX_DEBUG
printk(KERN_INFO "HFC-S USB: ");
for (i = 0; i < 15; i++)
printk("%.2x ",
fifo->skbuff->data[fifo->skbuff->
len - 15 + i]);
printk("\n");
#endif
printk(KERN_INFO
"HCF-USB: got frame exceeded fifo->max_size:%d on fifo:%d\n",
fifo->max_size, fifon);
}
}
if (transp_mode && fifo->skbuff->len >= 128) {
fifo->hif->l1l2(fifo->hif, PH_DATA | INDICATION,
fifo->skbuff);
fifo->skbuff = NULL;
return;
}
/* we have a complete hdlc packet */
if (finish) {
if ((!fifo->skbuff->data[fifo->skbuff->len - 1])
&& (fifo->skbuff->len > 3)) {
/* remove CRC & status */
skb_trim(fifo->skbuff, fifo->skbuff->len - 3);
if (fifon == HFCUSB_PCM_RX) {
fifo->hif->l1l2(fifo->hif,
PH_DATA_E | INDICATION,
fifo->skbuff);
} else
fifo->hif->l1l2(fifo->hif,
PH_DATA | INDICATION,
fifo->skbuff);
fifo->skbuff = NULL; /* buffer was freed from upper layer */
} else {
if (fifo->skbuff->len > 3) {
printk(KERN_INFO
"HFC-S USB: got frame %d bytes but CRC ERROR on fifo:%d!!!\n",
fifo->skbuff->len, fifon);
#ifdef CONFIG_HISAX_DEBUG
if (debug > 1) {
printk(KERN_INFO "HFC-S USB: ");
for (i = 0; i < 15; i++)
printk("%.2x ",
fifo->skbuff->
data[fifo->skbuff->
len - 15 + i]);
printk("\n");
}
#endif
}
#ifdef CONFIG_HISAX_DEBUG
else {
printk(KERN_INFO
"HFC-S USB: frame to small (%d bytes)!!!\n",
fifo->skbuff->len);
}
#endif
skb_trim(fifo->skbuff, 0);
}
}
}
/***********************************************/
/* receive completion routine for all rx fifos */
/***********************************************/
static void
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 07:55:46 -06:00
rx_complete(struct urb *urb)
{
int len;
int status;
__u8 *buf, maxlen, fifon;
usb_fifo *fifo = (usb_fifo *) urb->context;
hfcusb_data *hfc = fifo->hfc;
static __u8 eof[8];
#ifdef CONFIG_HISAX_DEBUG
__u8 i;
#endif
urb->dev = hfc->dev; /* security init */
fifon = fifo->fifonum;
if ((!fifo->active) || (urb->status)) {
#ifdef CONFIG_HISAX_DEBUG
DBG(USB_DBG, "HFC-S USB: RX-Fifo %i is going down (%i)",
fifon, urb->status);
#endif
fifo->urb->interval = 0; /* cancel automatic rescheduling */
if (fifo->skbuff) {
dev_kfree_skb_any(fifo->skbuff);
fifo->skbuff = NULL;
}
return;
}
len = urb->actual_length;
buf = fifo->buffer;
maxlen = fifo->usb_packet_maxlen;
#ifdef CONFIG_HISAX_DEBUG
if ((fifon == 5) && (debug > 1)) {
printk(KERN_INFO
"HFC-S USB: INT-D-RX lst_urblen:%2d act_urblen:%2d max-urblen:%2d EOF:0x%0x DATA: ",
fifo->last_urblen, len, maxlen, eof[5]);
for (i = 0; i < len; i++)
printk("%.2x ", buf[i]);
printk("\n");
}
#endif
if (fifo->last_urblen != fifo->usb_packet_maxlen) {
/* the threshold mask is in the 2nd status byte */
hfc->threshold_mask = buf[1];
/* the S0 state is in the upper half of the 1st status byte */
state_handler(hfc, buf[0] >> 4);
eof[fifon] = buf[0] & 1;
/* if we have more than the 2 status bytes -> collect data */
if (len > 2)
collect_rx_frame(fifo, buf + 2,
urb->actual_length - 2,
(len < maxlen) ? eof[fifon] : 0);
} else {
collect_rx_frame(fifo, buf, urb->actual_length,
(len < maxlen) ? eof[fifon] : 0);
}
fifo->last_urblen = urb->actual_length;
status = usb_submit_urb(urb, GFP_ATOMIC);
if (status) {
printk(KERN_INFO
"HFC-S USB: error resubmitting URN at rx_complete...\n");
}
} /* rx_complete */
/***************************************************/
/* start the interrupt transfer for the given fifo */
/***************************************************/
static void
start_int_fifo(usb_fifo * fifo)
{
int errcode;
printk(KERN_INFO "HFC-S USB: starting intr IN fifo:%d\n",
fifo->fifonum);
if (!fifo->urb) {
fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!fifo->urb)
return;
}
usb_fill_int_urb(fifo->urb, fifo->hfc->dev, fifo->pipe,
fifo->buffer, fifo->usb_packet_maxlen,
rx_complete, fifo, fifo->intervall);
fifo->active = 1; /* must be marked active */
errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
if (errcode) {
printk(KERN_INFO
"HFC-S USB: submit URB error(start_int_info): status:%i\n",
errcode);
fifo->active = 0;
fifo->skbuff = NULL;
}
} /* start_int_fifo */
/*****************************/
/* set the B-channel mode */
/*****************************/
static void
set_hfcmode(hfcusb_data * hfc, int channel, int mode)
{
__u8 val, idx_table[2] = { 0, 2 };
if (hfc->disc_flag) {
return;
}
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG, "HFC-S USB: setting channel %d to mode %d", channel,
mode);
#endif
hfc->b_mode[channel] = mode;
/* setup CON_HDLC */
val = 0;
if (mode != L1_MODE_NULL)
val = 8; /* enable fifo? */
if (mode == L1_MODE_TRANS)
val |= 2; /* set transparent bit */
/* set FIFO to transmit register */
queue_control_request(hfc, HFCUSB_FIFO, idx_table[channel], 1);
queue_control_request(hfc, HFCUSB_CON_HDLC, val, 1);
/* reset fifo */
queue_control_request(hfc, HFCUSB_INC_RES_F, 2, 1);
/* set FIFO to receive register */
queue_control_request(hfc, HFCUSB_FIFO, idx_table[channel] + 1, 1);
queue_control_request(hfc, HFCUSB_CON_HDLC, val, 1);
/* reset fifo */
queue_control_request(hfc, HFCUSB_INC_RES_F, 2, 1);
val = 0x40;
if (hfc->b_mode[0])
val |= 1;
if (hfc->b_mode[1])
val |= 2;
queue_control_request(hfc, HFCUSB_SCTRL, val, 1);
val = 0;
if (hfc->b_mode[0])
val |= 1;
if (hfc->b_mode[1])
val |= 2;
queue_control_request(hfc, HFCUSB_SCTRL_R, val, 1);
if (mode == L1_MODE_NULL) {
if (channel)
handle_led(hfc, LED_B2_OFF);
else
handle_led(hfc, LED_B1_OFF);
} else {
if (channel)
handle_led(hfc, LED_B2_ON);
else
handle_led(hfc, LED_B1_ON);
}
}
static void
hfc_usb_l2l1(struct hisax_if *my_hisax_if, int pr, void *arg)
{
usb_fifo *fifo = my_hisax_if->priv;
hfcusb_data *hfc = fifo->hfc;
switch (pr) {
case PH_ACTIVATE | REQUEST:
if (fifo->fifonum == HFCUSB_D_TX) {
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG,
"HFC_USB: hfc_usb_d_l2l1 D-chan: PH_ACTIVATE | REQUEST");
#endif
if (hfc->l1_state != 3
&& hfc->l1_state != 7) {
hfc->d_if.ifc.l1l2(&hfc->d_if.ifc,
PH_DEACTIVATE |
INDICATION,
NULL);
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG,
"HFC-S USB: PH_DEACTIVATE | INDICATION sent (not state 3 or 7)");
#endif
} else {
if (hfc->l1_state == 7) { /* l1 already active */
hfc->d_if.ifc.l1l2(&hfc->
d_if.
ifc,
PH_ACTIVATE
|
INDICATION,
NULL);
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG,
"HFC-S USB: PH_ACTIVATE | INDICATION sent again ;)");
#endif
} else {
/* force sending sending INFO1 */
queue_control_request(hfc,
HFCUSB_STATES,
0x14,
1);
mdelay(1);
/* start l1 activation */
queue_control_request(hfc,
HFCUSB_STATES,
0x04,
1);
if (!timer_pending
(&hfc->t3_timer)) {
hfc->t3_timer.
expires =
jiffies +
(HFC_TIMER_T3 *
HZ) / 1000;
add_timer(&hfc->
t3_timer);
}
}
}
} else {
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG,
"HFC_USB: hfc_usb_d_l2l1 Bx-chan: PH_ACTIVATE | REQUEST");
#endif
set_hfcmode(hfc,
(fifo->fifonum ==
HFCUSB_B1_TX) ? 0 : 1,
(long) arg);
fifo->hif->l1l2(fifo->hif,
PH_ACTIVATE | INDICATION,
NULL);
}
break;
case PH_DEACTIVATE | REQUEST:
if (fifo->fifonum == HFCUSB_D_TX) {
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG,
"HFC_USB: hfc_usb_d_l2l1 D-chan: PH_DEACTIVATE | REQUEST");
#endif
printk(KERN_INFO
"HFC-S USB: ISDN TE device should not deativate...\n");
} else {
#ifdef CONFIG_HISAX_DEBUG
DBG(ISDN_DBG,
"HFC_USB: hfc_usb_d_l2l1 Bx-chan: PH_DEACTIVATE | REQUEST");
#endif
set_hfcmode(hfc,
(fifo->fifonum ==
HFCUSB_B1_TX) ? 0 : 1,
(int) L1_MODE_NULL);
fifo->hif->l1l2(fifo->hif,
PH_DEACTIVATE | INDICATION,
NULL);
}
break;
case PH_DATA | REQUEST:
if (fifo->skbuff && fifo->delete_flg) {
dev_kfree_skb_any(fifo->skbuff);
fifo->skbuff = NULL;
fifo->delete_flg = false;
}
fifo->skbuff = arg; /* we have a new buffer */
break;
default:
printk(KERN_INFO
"HFC_USB: hfc_usb_d_l2l1: unkown state : %#x\n",
pr);
break;
}
}
/***************************************************************************/
/* usb_init is called once when a new matching device is detected to setup */
/* main parameters. It registers the driver at the main hisax module. */
/* on success 0 is returned. */
/***************************************************************************/
static int
usb_init(hfcusb_data * hfc)
{
usb_fifo *fifo;
int i, err;
u_char b;
struct hisax_b_if *p_b_if[2];
/* check the chip id */
if (read_usb(hfc, HFCUSB_CHIP_ID, &b) != 1) {
printk(KERN_INFO "HFC-USB: cannot read chip id\n");
return (1);
}
if (b != HFCUSB_CHIPID) {
printk(KERN_INFO "HFC-S USB: Invalid chip id 0x%02x\n", b);
return (1);
}
/* first set the needed config, interface and alternate */
err = usb_set_interface(hfc->dev, hfc->if_used, hfc->alt_used);
/* do Chip reset */
write_usb(hfc, HFCUSB_CIRM, 8);
/* aux = output, reset off */
write_usb(hfc, HFCUSB_CIRM, 0x10);
/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
write_usb(hfc, HFCUSB_USB_SIZE,
(hfc->packet_size / 8) | ((hfc->packet_size / 8) << 4));
/* set USB_SIZE_I to match the wMaxPacketSize for ISO transfers */
write_usb(hfc, HFCUSB_USB_SIZE_I, hfc->iso_packet_size);
/* enable PCM/GCI master mode */
write_usb(hfc, HFCUSB_MST_MODE1, 0); /* set default values */
write_usb(hfc, HFCUSB_MST_MODE0, 1); /* enable master mode */
/* init the fifos */
write_usb(hfc, HFCUSB_F_THRES,
(HFCUSB_TX_THRESHOLD /
8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
fifo = hfc->fifos;
for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
write_usb(hfc, HFCUSB_FIFO, i); /* select the desired fifo */
fifo[i].skbuff = NULL; /* init buffer pointer */
fifo[i].max_size =
(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
fifo[i].last_urblen = 0;
/* set 2 bit for D- & E-channel */
write_usb(hfc, HFCUSB_HDLC_PAR,
((i <= HFCUSB_B2_RX) ? 0 : 2));
/* rx hdlc, enable IFF for D-channel */
write_usb(hfc, HFCUSB_CON_HDLC,
((i == HFCUSB_D_TX) ? 0x09 : 0x08));
write_usb(hfc, HFCUSB_INC_RES_F, 2); /* reset the fifo */
}
write_usb(hfc, HFCUSB_CLKDEL, 0x0f); /* clock delay value */
write_usb(hfc, HFCUSB_STATES, 3 | 0x10); /* set deactivated mode */
write_usb(hfc, HFCUSB_STATES, 3); /* enable state machine */
write_usb(hfc, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
write_usb(hfc, HFCUSB_SCTRL, 0x40); /* disable B transmitters + capacitive mode */
/* set both B-channel to not connected */
hfc->b_mode[0] = L1_MODE_NULL;
hfc->b_mode[1] = L1_MODE_NULL;
hfc->l1_activated = false;
hfc->disc_flag = false;
hfc->led_state = 0;
hfc->led_new_data = 0;
hfc->old_led_state = 0;
/* init the t3 timer */
init_timer(&hfc->t3_timer);
hfc->t3_timer.data = (long) hfc;
hfc->t3_timer.function = (void *) l1_timer_expire_t3;
/* init the t4 timer */
init_timer(&hfc->t4_timer);
hfc->t4_timer.data = (long) hfc;
hfc->t4_timer.function = (void *) l1_timer_expire_t4;
/* init the background machinery for control requests */
hfc->ctrl_read.bRequestType = 0xc0;
hfc->ctrl_read.bRequest = 1;
hfc->ctrl_read.wLength = cpu_to_le16(1);
hfc->ctrl_write.bRequestType = 0x40;
hfc->ctrl_write.bRequest = 0;
hfc->ctrl_write.wLength = 0;
usb_fill_control_urb(hfc->ctrl_urb,
hfc->dev,
hfc->ctrl_out_pipe,
(u_char *) & hfc->ctrl_write,
NULL, 0, ctrl_complete, hfc);
/* Init All Fifos */
for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
hfc->fifos[i].iso[0].purb = NULL;
hfc->fifos[i].iso[1].purb = NULL;
hfc->fifos[i].active = 0;
}
/* register Modul to upper Hisax Layers */
hfc->d_if.owner = THIS_MODULE;
hfc->d_if.ifc.priv = &hfc->fifos[HFCUSB_D_TX];
hfc->d_if.ifc.l2l1 = hfc_usb_l2l1;
for (i = 0; i < 2; i++) {
hfc->b_if[i].ifc.priv = &hfc->fifos[HFCUSB_B1_TX + i * 2];
hfc->b_if[i].ifc.l2l1 = hfc_usb_l2l1;
p_b_if[i] = &hfc->b_if[i];
}
/* default Prot: EURO ISDN, should be a module_param */
hfc->protocol = 2;
i = hisax_register(&hfc->d_if, p_b_if, "hfc_usb", hfc->protocol);
if (i) {
printk(KERN_INFO "HFC-S USB: hisax_register -> %d\n", i);
return i;
}
#ifdef CONFIG_HISAX_DEBUG
hfc_debug = debug;
#endif
for (i = 0; i < 4; i++)
hfc->fifos[i].hif = &p_b_if[i / 2]->ifc;
for (i = 4; i < 8; i++)
hfc->fifos[i].hif = &hfc->d_if.ifc;
/* 3 (+1) INT IN + 3 ISO OUT */
if (hfc->cfg_used == CNF_3INT3ISO || hfc->cfg_used == CNF_4INT3ISO) {
start_int_fifo(hfc->fifos + HFCUSB_D_RX);
if (hfc->fifos[HFCUSB_PCM_RX].pipe)
start_int_fifo(hfc->fifos + HFCUSB_PCM_RX);
start_int_fifo(hfc->fifos + HFCUSB_B1_RX);
start_int_fifo(hfc->fifos + HFCUSB_B2_RX);
}
/* 3 (+1) ISO IN + 3 ISO OUT */
if (hfc->cfg_used == CNF_3ISO3ISO || hfc->cfg_used == CNF_4ISO3ISO) {
start_isoc_chain(hfc->fifos + HFCUSB_D_RX, ISOC_PACKETS_D,
rx_iso_complete, 16);
if (hfc->fifos[HFCUSB_PCM_RX].pipe)
start_isoc_chain(hfc->fifos + HFCUSB_PCM_RX,
ISOC_PACKETS_D, rx_iso_complete,
16);
start_isoc_chain(hfc->fifos + HFCUSB_B1_RX, ISOC_PACKETS_B,
rx_iso_complete, 16);
start_isoc_chain(hfc->fifos + HFCUSB_B2_RX, ISOC_PACKETS_B,
rx_iso_complete, 16);
}
start_isoc_chain(hfc->fifos + HFCUSB_D_TX, ISOC_PACKETS_D,
tx_iso_complete, 1);
start_isoc_chain(hfc->fifos + HFCUSB_B1_TX, ISOC_PACKETS_B,
tx_iso_complete, 1);
start_isoc_chain(hfc->fifos + HFCUSB_B2_TX, ISOC_PACKETS_B,
tx_iso_complete, 1);
handle_led(hfc, LED_POWER_ON);
return (0);
} /* usb_init */
/*************************************************/
/* function called to probe a new plugged device */
/*************************************************/
static int
hfc_usb_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct usb_device *dev = interface_to_usbdev(intf);
hfcusb_data *context;
struct usb_host_interface *iface = intf->cur_altsetting;
struct usb_host_interface *iface_used = NULL;
struct usb_host_endpoint *ep;
int ifnum = iface->desc.bInterfaceNumber;
int i, idx, alt_idx, probe_alt_setting, vend_idx, cfg_used, *vcf,
attr, cfg_found, cidx, ep_addr;
int cmptbl[16], small_match, iso_packet_size, packet_size,
alt_used = 0;
hfcsusb_vdata *driver_info;
vend_idx = 0xffff;
for (i = 0; hfcusb_idtab[i].idVendor; i++) {
if ((le16_to_cpu(dev->descriptor.idVendor) == hfcusb_idtab[i].idVendor)
&& (le16_to_cpu(dev->descriptor.idProduct) == hfcusb_idtab[i].idProduct)) {
vend_idx = i;
continue;
}
}
#ifdef CONFIG_HISAX_DEBUG
DBG(USB_DBG,
"HFC-USB: probing interface(%d) actalt(%d) minor(%d)\n", ifnum,
iface->desc.bAlternateSetting, intf->minor);
#endif
printk(KERN_INFO
"HFC-S USB: probing interface(%d) actalt(%d) minor(%d)\n",
ifnum, iface->desc.bAlternateSetting, intf->minor);
if (vend_idx != 0xffff) {
/* if vendor and product ID is OK, start probing alternate settings */
alt_idx = 0;
small_match = 0xffff;
/* default settings */
iso_packet_size = 16;
packet_size = 64;
while (alt_idx < intf->num_altsetting) {
iface = intf->altsetting + alt_idx;
probe_alt_setting = iface->desc.bAlternateSetting;
cfg_used = 0;
/* check for config EOL element */
while (validconf[cfg_used][0]) {
cfg_found = true;
vcf = validconf[cfg_used];
/* first endpoint descriptor */
ep = iface->endpoint;
#ifdef CONFIG_HISAX_DEBUG
DBG(USB_DBG,
"HFC-S USB: (if=%d alt=%d cfg_used=%d)\n",
ifnum, probe_alt_setting, cfg_used);
#endif
memcpy(cmptbl, vcf, 16 * sizeof(int));
/* check for all endpoints in this alternate setting */
for (i = 0; i < iface->desc.bNumEndpoints;
i++) {
ep_addr =
ep->desc.bEndpointAddress;
/* get endpoint base */
idx = ((ep_addr & 0x7f) - 1) * 2;
if (ep_addr & 0x80)
idx++;
attr = ep->desc.bmAttributes;
if (cmptbl[idx] == EP_NUL) {
cfg_found = false;
}
if (attr == USB_ENDPOINT_XFER_INT
&& cmptbl[idx] == EP_INT)
cmptbl[idx] = EP_NUL;
if (attr == USB_ENDPOINT_XFER_BULK
&& cmptbl[idx] == EP_BLK)
cmptbl[idx] = EP_NUL;
if (attr == USB_ENDPOINT_XFER_ISOC
&& cmptbl[idx] == EP_ISO)
cmptbl[idx] = EP_NUL;
/* check if all INT endpoints match minimum interval */
if (attr == USB_ENDPOINT_XFER_INT
&& ep->desc.bInterval <
vcf[17]) {
#ifdef CONFIG_HISAX_DEBUG
if (cfg_found)
DBG(USB_DBG,
"HFC-S USB: Interrupt Endpoint interval < %d found - skipping config",
vcf[17]);
#endif
cfg_found = false;
}
ep++;
}
for (i = 0; i < 16; i++) {
/* all entries must be EP_NOP or EP_NUL for a valid config */
if (cmptbl[i] != EP_NOP
&& cmptbl[i] != EP_NUL)
cfg_found = false;
}
if (cfg_found) {
if (cfg_used < small_match) {
small_match = cfg_used;
alt_used =
probe_alt_setting;
iface_used = iface;
}
#ifdef CONFIG_HISAX_DEBUG
DBG(USB_DBG,
"HFC-USB: small_match=%x %x\n",
small_match, alt_used);
#endif
}
cfg_used++;
}
alt_idx++;
} /* (alt_idx < intf->num_altsetting) */
/* found a valid USB Ta Endpint config */
if (small_match != 0xffff) {
iface = iface_used;
if (!
(context =
kzalloc(sizeof(hfcusb_data), GFP_KERNEL)))
return (-ENOMEM); /* got no mem */
ep = iface->endpoint;
vcf = validconf[small_match];
for (i = 0; i < iface->desc.bNumEndpoints; i++) {
ep_addr = ep->desc.bEndpointAddress;
/* get endpoint base */
idx = ((ep_addr & 0x7f) - 1) * 2;
if (ep_addr & 0x80)
idx++;
cidx = idx & 7;
attr = ep->desc.bmAttributes;
/* init Endpoints */
if (vcf[idx] != EP_NOP
&& vcf[idx] != EP_NUL) {
switch (attr) {
case USB_ENDPOINT_XFER_INT:
context->
fifos[cidx].
pipe =
usb_rcvintpipe
(dev,
ep->desc.
bEndpointAddress);
context->
fifos[cidx].
usb_transfer_mode
= USB_INT;
packet_size =
le16_to_cpu(ep->desc.wMaxPacketSize);
break;
case USB_ENDPOINT_XFER_BULK:
if (ep_addr & 0x80)
context->
fifos
[cidx].
pipe =
usb_rcvbulkpipe
(dev,
ep->
desc.
bEndpointAddress);
else
context->
fifos
[cidx].
pipe =
usb_sndbulkpipe
(dev,
ep->
desc.
bEndpointAddress);
context->
fifos[cidx].
usb_transfer_mode
= USB_BULK;
packet_size =
le16_to_cpu(ep->desc.wMaxPacketSize);
break;
case USB_ENDPOINT_XFER_ISOC:
if (ep_addr & 0x80)
context->
fifos
[cidx].
pipe =
usb_rcvisocpipe
(dev,
ep->
desc.
bEndpointAddress);
else
context->
fifos
[cidx].
pipe =
usb_sndisocpipe
(dev,
ep->
desc.
bEndpointAddress);
context->
fifos[cidx].
usb_transfer_mode
= USB_ISOC;
iso_packet_size =
le16_to_cpu(ep->desc.wMaxPacketSize);
break;
default:
context->
fifos[cidx].
pipe = 0;
} /* switch attribute */
if (context->fifos[cidx].pipe) {
context->fifos[cidx].
fifonum = cidx;
context->fifos[cidx].hfc =
context;
context->fifos[cidx].usb_packet_maxlen =
le16_to_cpu(ep->desc.wMaxPacketSize);
context->fifos[cidx].
intervall =
ep->desc.bInterval;
context->fifos[cidx].
skbuff = NULL;
}
}
ep++;
}
context->dev = dev; /* save device */
context->if_used = ifnum; /* save used interface */
context->alt_used = alt_used; /* and alternate config */
context->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
context->cfg_used = vcf[16]; /* store used config */
context->vend_idx = vend_idx; /* store found vendor */
context->packet_size = packet_size;
context->iso_packet_size = iso_packet_size;
/* create the control pipes needed for register access */
context->ctrl_in_pipe =
usb_rcvctrlpipe(context->dev, 0);
context->ctrl_out_pipe =
usb_sndctrlpipe(context->dev, 0);
context->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
driver_info =
(hfcsusb_vdata *) hfcusb_idtab[vend_idx].
driver_info;
printk(KERN_INFO "HFC-S USB: detected \"%s\"\n",
driver_info->vend_name);
#ifdef CONFIG_HISAX_DEBUG
DBG(USB_DBG,
"HFC-S USB: Endpoint-Config: %s (if=%d alt=%d)\n",
conf_str[small_match], context->if_used,
context->alt_used);
printk(KERN_INFO
"HFC-S USB: E-channel (\"ECHO:\") logging ");
if (validconf[small_match][18])
printk(" possible\n");
else
printk("NOT possible\n");
#endif
/* init the chip and register the driver */
if (usb_init(context)) {
usb_kill_urb(context->ctrl_urb);
usb_free_urb(context->ctrl_urb);
context->ctrl_urb = NULL;
kfree(context);
return (-EIO);
}
usb_set_intfdata(intf, context);
return (0);
}
} else {
printk(KERN_INFO
"HFC-S USB: no valid vendor found in USB descriptor\n");
}
return (-EIO);
}
/****************************************************/
/* function called when an active device is removed */
/****************************************************/
static void
hfc_usb_disconnect(struct usb_interface
*intf)
{
hfcusb_data *context = usb_get_intfdata(intf);
int i;
printk(KERN_INFO "HFC-S USB: device disconnect\n");
context->disc_flag = true;
usb_set_intfdata(intf, NULL);
if (!context)
return;
if (timer_pending(&context->t3_timer))
del_timer(&context->t3_timer);
if (timer_pending(&context->t4_timer))
del_timer(&context->t4_timer);
/* tell all fifos to terminate */
for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
if (context->fifos[i].usb_transfer_mode == USB_ISOC) {
if (context->fifos[i].active > 0) {
stop_isoc_chain(&context->fifos[i]);
#ifdef CONFIG_HISAX_DEBUG
DBG(USB_DBG,
"HFC-S USB: hfc_usb_disconnect: stopping ISOC chain Fifo no %i",
i);
#endif
}
} else {
if (context->fifos[i].active > 0) {
context->fifos[i].active = 0;
#ifdef CONFIG_HISAX_DEBUG
DBG(USB_DBG,
"HFC-S USB: hfc_usb_disconnect: unlinking URB for Fifo no %i",
i);
#endif
}
usb_kill_urb(context->fifos[i].urb);
usb_free_urb(context->fifos[i].urb);
context->fifos[i].urb = NULL;
}
context->fifos[i].active = 0;
}
usb_kill_urb(context->ctrl_urb);
usb_free_urb(context->ctrl_urb);
context->ctrl_urb = NULL;
hisax_unregister(&context->d_if);
kfree(context); /* free our structure again */
} /* hfc_usb_disconnect */
/************************************/
/* our driver information structure */
/************************************/
static struct usb_driver hfc_drv = {
.name = "hfc_usb",
.id_table = hfcusb_idtab,
.probe = hfc_usb_probe,
.disconnect = hfc_usb_disconnect,
};
static void __exit
hfc_usb_exit(void)
{
#ifdef CONFIG_HISAX_DEBUG
DBG(USB_DBG, "HFC-S USB: calling \"hfc_usb_exit\" ...");
#endif
usb_deregister(&hfc_drv); /* release our driver */
printk(KERN_INFO "HFC-S USB: module removed\n");
}
static int __init
hfc_usb_init(void)
{
#ifndef CONFIG_HISAX_DEBUG
unsigned int debug = -1;
#endif
char revstr[30], datestr[30], dummy[30];
sscanf(hfcusb_revision,
"%s %s $ %s %s %s $ ", dummy, revstr,
dummy, datestr, dummy);
printk(KERN_INFO
"HFC-S USB: driver module revision %s date %s loaded, (debug=%i)\n",
revstr, datestr, debug);
if (usb_register(&hfc_drv)) {
printk(KERN_INFO
"HFC-S USB: Unable to register HFC-S USB module at usb stack\n");
return (-1); /* unable to register */
}
return (0);
}
module_init(hfc_usb_init);
module_exit(hfc_usb_exit);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(usb, hfcusb_idtab);