1
0
Fork 0
alistair23-linux/drivers/mtd/nand/raw/omap2.c

2323 lines
63 KiB
C
Raw Normal View History

/*
* Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
* Copyright © 2004 Micron Technology Inc.
* Copyright © 2004 David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/sched.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/omap-dma.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/mtd/nand_bch.h>
#include <linux/platform_data/elm.h>
#include <linux/omap-gpmc.h>
#include <linux/platform_data/mtd-nand-omap2.h>
#define DRIVER_NAME "omap2-nand"
#define OMAP_NAND_TIMEOUT_MS 5000
#define NAND_Ecc_P1e (1 << 0)
#define NAND_Ecc_P2e (1 << 1)
#define NAND_Ecc_P4e (1 << 2)
#define NAND_Ecc_P8e (1 << 3)
#define NAND_Ecc_P16e (1 << 4)
#define NAND_Ecc_P32e (1 << 5)
#define NAND_Ecc_P64e (1 << 6)
#define NAND_Ecc_P128e (1 << 7)
#define NAND_Ecc_P256e (1 << 8)
#define NAND_Ecc_P512e (1 << 9)
#define NAND_Ecc_P1024e (1 << 10)
#define NAND_Ecc_P2048e (1 << 11)
#define NAND_Ecc_P1o (1 << 16)
#define NAND_Ecc_P2o (1 << 17)
#define NAND_Ecc_P4o (1 << 18)
#define NAND_Ecc_P8o (1 << 19)
#define NAND_Ecc_P16o (1 << 20)
#define NAND_Ecc_P32o (1 << 21)
#define NAND_Ecc_P64o (1 << 22)
#define NAND_Ecc_P128o (1 << 23)
#define NAND_Ecc_P256o (1 << 24)
#define NAND_Ecc_P512o (1 << 25)
#define NAND_Ecc_P1024o (1 << 26)
#define NAND_Ecc_P2048o (1 << 27)
#define TF(value) (value ? 1 : 0)
#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
#define PREFETCH_CONFIG1_CS_SHIFT 24
#define ECC_CONFIG_CS_SHIFT 1
#define CS_MASK 0x7
#define ENABLE_PREFETCH (0x1 << 7)
#define DMA_MPU_MODE_SHIFT 2
#define ECCSIZE0_SHIFT 12
#define ECCSIZE1_SHIFT 22
#define ECC1RESULTSIZE 0x1
#define ECCCLEAR 0x100
#define ECC1 0x1
#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
#define STATUS_BUFF_EMPTY 0x00000001
#define SECTOR_BYTES 512
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD 4
/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
#define BADBLOCK_MARKER_LENGTH 2
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
0x07, 0x0e};
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
struct omap_nand_info {
struct nand_chip nand;
struct platform_device *pdev;
int gpmc_cs;
bool dev_ready;
enum nand_io xfer_type;
int devsize;
enum omap_ecc ecc_opt;
struct device_node *elm_of_node;
unsigned long phys_base;
struct completion comp;
struct dma_chan *dma;
int gpmc_irq_fifo;
int gpmc_irq_count;
enum {
OMAP_NAND_IO_READ = 0, /* read */
OMAP_NAND_IO_WRITE, /* write */
} iomode;
u_char *buf;
int buf_len;
/* Interface to GPMC */
struct gpmc_nand_regs reg;
struct gpmc_nand_ops *ops;
bool flash_bbt;
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
/* fields specific for BCHx_HW ECC scheme */
struct device *elm_dev;
/* NAND ready gpio */
struct gpio_desc *ready_gpiod;
};
static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
{
return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
}
/**
* omap_prefetch_enable - configures and starts prefetch transfer
* @cs: cs (chip select) number
* @fifo_th: fifo threshold to be used for read/ write
* @dma_mode: dma mode enable (1) or disable (0)
* @u32_count: number of bytes to be transferred
* @is_write: prefetch read(0) or write post(1) mode
*/
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
unsigned int u32_count, int is_write, struct omap_nand_info *info)
{
u32 val;
if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
return -1;
if (readl(info->reg.gpmc_prefetch_control))
return -EBUSY;
/* Set the amount of bytes to be prefetched */
writel(u32_count, info->reg.gpmc_prefetch_config2);
/* Set dma/mpu mode, the prefetch read / post write and
* enable the engine. Set which cs is has requested for.
*/
val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
(dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
writel(val, info->reg.gpmc_prefetch_config1);
/* Start the prefetch engine */
writel(0x1, info->reg.gpmc_prefetch_control);
return 0;
}
/**
* omap_prefetch_reset - disables and stops the prefetch engine
*/
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
{
u32 config1;
/* check if the same module/cs is trying to reset */
config1 = readl(info->reg.gpmc_prefetch_config1);
if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
return -EINVAL;
/* Stop the PFPW engine */
writel(0x0, info->reg.gpmc_prefetch_control);
/* Reset/disable the PFPW engine */
writel(0x0, info->reg.gpmc_prefetch_config1);
return 0;
}
/**
* omap_hwcontrol - hardware specific access to control-lines
* @chip: NAND chip object
* @cmd: command to device
* @ctrl:
* NAND_NCE: bit 0 -> don't care
* NAND_CLE: bit 1 -> Command Latch
* NAND_ALE: bit 2 -> Address Latch
*
* NOTE: boards may use different bits for these!!
*/
static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
{
struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
if (cmd != NAND_CMD_NONE) {
if (ctrl & NAND_CLE)
writeb(cmd, info->reg.gpmc_nand_command);
else if (ctrl & NAND_ALE)
writeb(cmd, info->reg.gpmc_nand_address);
else /* NAND_NCE */
writeb(cmd, info->reg.gpmc_nand_data);
}
}
/**
* omap_read_buf8 - read data from NAND controller into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand = mtd_to_nand(mtd);
ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
}
/**
* omap_write_buf8 - write buffer to NAND controller
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
struct omap_nand_info *info = mtd_to_omap(mtd);
u_char *p = (u_char *)buf;
bool status;
while (len--) {
iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
/* wait until buffer is available for write */
do {
status = info->ops->nand_writebuffer_empty();
} while (!status);
}
}
/**
* omap_read_buf16 - read data from NAND controller into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand = mtd_to_nand(mtd);
ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
}
/**
* omap_write_buf16 - write buffer to NAND controller
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
struct omap_nand_info *info = mtd_to_omap(mtd);
u16 *p = (u16 *) buf;
bool status;
/* FIXME try bursts of writesw() or DMA ... */
len >>= 1;
while (len--) {
iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
/* wait until buffer is available for write */
do {
status = info->ops->nand_writebuffer_empty();
} while (!status);
}
}
/**
* omap_read_buf_pref - read data from NAND controller into buffer
* @chip: NAND chip object
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct omap_nand_info *info = mtd_to_omap(mtd);
uint32_t r_count = 0;
int ret = 0;
u32 *p = (u32 *)buf;
/* take care of subpage reads */
if (len % 4) {
if (info->nand.options & NAND_BUSWIDTH_16)
omap_read_buf16(mtd, buf, len % 4);
else
omap_read_buf8(mtd, buf, len % 4);
p = (u32 *) (buf + len % 4);
len -= len % 4;
}
/* configure and start prefetch transfer */
ret = omap_prefetch_enable(info->gpmc_cs,
PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
if (ret) {
/* PFPW engine is busy, use cpu copy method */
if (info->nand.options & NAND_BUSWIDTH_16)
omap_read_buf16(mtd, (u_char *)p, len);
else
omap_read_buf8(mtd, (u_char *)p, len);
} else {
do {
r_count = readl(info->reg.gpmc_prefetch_status);
r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
r_count = r_count >> 2;
ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
p += r_count;
len -= r_count << 2;
} while (len);
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
}
}
/**
* omap_write_buf_pref - write buffer to NAND controller
* @chip: NAND chip object
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct omap_nand_info *info = mtd_to_omap(mtd);
uint32_t w_count = 0;
int i = 0, ret = 0;
u16 *p = (u16 *)buf;
unsigned long tim, limit;
u32 val;
/* take care of subpage writes */
if (len % 2 != 0) {
writeb(*buf, info->nand.legacy.IO_ADDR_W);
p = (u16 *)(buf + 1);
len--;
}
/* configure and start prefetch transfer */
ret = omap_prefetch_enable(info->gpmc_cs,
PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
if (ret) {
/* PFPW engine is busy, use cpu copy method */
if (info->nand.options & NAND_BUSWIDTH_16)
omap_write_buf16(mtd, (u_char *)p, len);
else
omap_write_buf8(mtd, (u_char *)p, len);
} else {
while (len) {
w_count = readl(info->reg.gpmc_prefetch_status);
w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
w_count = w_count >> 1;
for (i = 0; (i < w_count) && len; i++, len -= 2)
iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
}
/* wait for data to flushed-out before reset the prefetch */
tim = 0;
limit = (loops_per_jiffy *
msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
do {
cpu_relax();
val = readl(info->reg.gpmc_prefetch_status);
val = PREFETCH_STATUS_COUNT(val);
} while (val && (tim++ < limit));
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
}
}
/*
* omap_nand_dma_callback: callback on the completion of dma transfer
* @data: pointer to completion data structure
*/
static void omap_nand_dma_callback(void *data)
{
complete((struct completion *) data);
}
/*
* omap_nand_dma_transfer: configure and start dma transfer
* @mtd: MTD device structure
* @addr: virtual address in RAM of source/destination
* @len: number of data bytes to be transferred
* @is_write: flag for read/write operation
*/
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
unsigned int len, int is_write)
{
struct omap_nand_info *info = mtd_to_omap(mtd);
struct dma_async_tx_descriptor *tx;
enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
DMA_FROM_DEVICE;
struct scatterlist sg;
unsigned long tim, limit;
unsigned n;
int ret;
u32 val;
if (!virt_addr_valid(addr))
goto out_copy;
sg_init_one(&sg, addr, len);
n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
if (n == 0) {
dev_err(&info->pdev->dev,
"Couldn't DMA map a %d byte buffer\n", len);
goto out_copy;
}
tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx)
goto out_copy_unmap;
tx->callback = omap_nand_dma_callback;
tx->callback_param = &info->comp;
dmaengine_submit(tx);
init_completion(&info->comp);
/* setup and start DMA using dma_addr */
dma_async_issue_pending(info->dma);
/* configure and start prefetch transfer */
ret = omap_prefetch_enable(info->gpmc_cs,
PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
if (ret)
/* PFPW engine is busy, use cpu copy method */
goto out_copy_unmap;
wait_for_completion(&info->comp);
tim = 0;
limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
do {
cpu_relax();
val = readl(info->reg.gpmc_prefetch_status);
val = PREFETCH_STATUS_COUNT(val);
} while (val && (tim++ < limit));
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
return 0;
out_copy_unmap:
dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
out_copy:
if (info->nand.options & NAND_BUSWIDTH_16)
is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
: omap_write_buf16(mtd, (u_char *) addr, len);
else
is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
: omap_write_buf8(mtd, (u_char *) addr, len);
return 0;
}
/**
* omap_read_buf_dma_pref - read data from NAND controller into buffer
* @chip: NAND chip object
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len <= mtd->oobsize)
omap_read_buf_pref(chip, buf, len);
else
/* start transfer in DMA mode */
omap_nand_dma_transfer(mtd, buf, len, 0x0);
}
/**
* omap_write_buf_dma_pref - write buffer to NAND controller
* @chip: NAND chip object
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len <= mtd->oobsize)
omap_write_buf_pref(chip, buf, len);
else
/* start transfer in DMA mode */
omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
}
/*
* omap_nand_irq - GPMC irq handler
* @this_irq: gpmc irq number
* @dev: omap_nand_info structure pointer is passed here
*/
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
struct omap_nand_info *info = (struct omap_nand_info *) dev;
u32 bytes;
bytes = readl(info->reg.gpmc_prefetch_status);
bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
if (this_irq == info->gpmc_irq_count)
goto done;
if (info->buf_len && (info->buf_len < bytes))
bytes = info->buf_len;
else if (!info->buf_len)
bytes = 0;
iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
bytes >> 2);
info->buf = info->buf + bytes;
info->buf_len -= bytes;
} else {
ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
bytes >> 2);
info->buf = info->buf + bytes;
if (this_irq == info->gpmc_irq_count)
goto done;
}
return IRQ_HANDLED;
done:
complete(&info->comp);
disable_irq_nosync(info->gpmc_irq_fifo);
disable_irq_nosync(info->gpmc_irq_count);
return IRQ_HANDLED;
}
/*
* omap_read_buf_irq_pref - read data from NAND controller into buffer
* @chip: NAND chip object
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct omap_nand_info *info = mtd_to_omap(mtd);
int ret = 0;
if (len <= mtd->oobsize) {
omap_read_buf_pref(chip, buf, len);
return;
}
info->iomode = OMAP_NAND_IO_READ;
info->buf = buf;
init_completion(&info->comp);
/* configure and start prefetch transfer */
ret = omap_prefetch_enable(info->gpmc_cs,
PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
if (ret)
/* PFPW engine is busy, use cpu copy method */
goto out_copy;
info->buf_len = len;
enable_irq(info->gpmc_irq_count);
enable_irq(info->gpmc_irq_fifo);
/* waiting for read to complete */
wait_for_completion(&info->comp);
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
return;
out_copy:
if (info->nand.options & NAND_BUSWIDTH_16)
omap_read_buf16(mtd, buf, len);
else
omap_read_buf8(mtd, buf, len);
}
/*
* omap_write_buf_irq_pref - write buffer to NAND controller
* @chip: NAND chip object
* @buf: data buffer
* @len: number of bytes to write
*/
static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct omap_nand_info *info = mtd_to_omap(mtd);
int ret = 0;
unsigned long tim, limit;
u32 val;
if (len <= mtd->oobsize) {
omap_write_buf_pref(chip, buf, len);
return;
}
info->iomode = OMAP_NAND_IO_WRITE;
info->buf = (u_char *) buf;
init_completion(&info->comp);
/* configure and start prefetch transfer : size=24 */
ret = omap_prefetch_enable(info->gpmc_cs,
(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
if (ret)
/* PFPW engine is busy, use cpu copy method */
goto out_copy;
info->buf_len = len;
enable_irq(info->gpmc_irq_count);
enable_irq(info->gpmc_irq_fifo);
/* waiting for write to complete */
wait_for_completion(&info->comp);
/* wait for data to flushed-out before reset the prefetch */
tim = 0;
limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
do {
val = readl(info->reg.gpmc_prefetch_status);
val = PREFETCH_STATUS_COUNT(val);
cpu_relax();
} while (val && (tim++ < limit));
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
return;
out_copy:
if (info->nand.options & NAND_BUSWIDTH_16)
omap_write_buf16(mtd, buf, len);
else
omap_write_buf8(mtd, buf, len);
}
/**
* gen_true_ecc - This function will generate true ECC value
* @ecc_buf: buffer to store ecc code
*
* This generated true ECC value can be used when correcting
* data read from NAND flash memory core
*/
static void gen_true_ecc(u8 *ecc_buf)
{
u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}
/**
* omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
* @ecc_data1: ecc code from nand spare area
* @ecc_data2: ecc code from hardware register obtained from hardware ecc
* @page_data: page data
*
* This function compares two ECC's and indicates if there is an error.
* If the error can be corrected it will be corrected to the buffer.
* If there is no error, %0 is returned. If there is an error but it
* was corrected, %1 is returned. Otherwise, %-1 is returned.
*/
static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
u8 *ecc_data2, /* read from register */
u8 *page_data)
{
uint i;
u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
u8 ecc_bit[24];
u8 ecc_sum = 0;
u8 find_bit = 0;
uint find_byte = 0;
int isEccFF;
isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
gen_true_ecc(ecc_data1);
gen_true_ecc(ecc_data2);
for (i = 0; i <= 2; i++) {
*(ecc_data1 + i) = ~(*(ecc_data1 + i));
*(ecc_data2 + i) = ~(*(ecc_data2 + i));
}
for (i = 0; i < 8; i++) {
tmp0_bit[i] = *ecc_data1 % 2;
*ecc_data1 = *ecc_data1 / 2;
}
for (i = 0; i < 8; i++) {
tmp1_bit[i] = *(ecc_data1 + 1) % 2;
*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
}
for (i = 0; i < 8; i++) {
tmp2_bit[i] = *(ecc_data1 + 2) % 2;
*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
}
for (i = 0; i < 8; i++) {
comp0_bit[i] = *ecc_data2 % 2;
*ecc_data2 = *ecc_data2 / 2;
}
for (i = 0; i < 8; i++) {
comp1_bit[i] = *(ecc_data2 + 1) % 2;
*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
}
for (i = 0; i < 8; i++) {
comp2_bit[i] = *(ecc_data2 + 2) % 2;
*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
}
for (i = 0; i < 6; i++)
ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
for (i = 0; i < 8; i++)
ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
for (i = 0; i < 8; i++)
ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
for (i = 0; i < 24; i++)
ecc_sum += ecc_bit[i];
switch (ecc_sum) {
case 0:
/* Not reached because this function is not called if
* ECC values are equal
*/
return 0;
case 1:
/* Uncorrectable error */
pr_debug("ECC UNCORRECTED_ERROR 1\n");
return -EBADMSG;
case 11:
/* UN-Correctable error */
pr_debug("ECC UNCORRECTED_ERROR B\n");
return -EBADMSG;
case 12:
/* Correctable error */
find_byte = (ecc_bit[23] << 8) +
(ecc_bit[21] << 7) +
(ecc_bit[19] << 6) +
(ecc_bit[17] << 5) +
(ecc_bit[15] << 4) +
(ecc_bit[13] << 3) +
(ecc_bit[11] << 2) +
(ecc_bit[9] << 1) +
ecc_bit[7];
find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
pr_debug("Correcting single bit ECC error at offset: "
"%d, bit: %d\n", find_byte, find_bit);
page_data[find_byte] ^= (1 << find_bit);
return 1;
default:
if (isEccFF) {
if (ecc_data2[0] == 0 &&
ecc_data2[1] == 0 &&
ecc_data2[2] == 0)
return 0;
}
pr_debug("UNCORRECTED_ERROR default\n");
return -EBADMSG;
}
}
/**
* omap_correct_data - Compares the ECC read with HW generated ECC
* @chip: NAND chip object
* @dat: page data
* @read_ecc: ecc read from nand flash
* @calc_ecc: ecc read from HW ECC registers
*
* Compares the ecc read from nand spare area with ECC registers values
* and if ECC's mismatched, it will call 'omap_compare_ecc' for error
* detection and correction. If there are no errors, %0 is returned. If
* there were errors and all of the errors were corrected, the number of
* corrected errors is returned. If uncorrectable errors exist, %-1 is
* returned.
*/
static int omap_correct_data(struct nand_chip *chip, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
int blockCnt = 0, i = 0, ret = 0;
int stat = 0;
/* Ex NAND_ECC_HW12_2048 */
if ((info->nand.ecc.mode == NAND_ECC_HW) &&
(info->nand.ecc.size == 2048))
blockCnt = 4;
else
blockCnt = 1;
for (i = 0; i < blockCnt; i++) {
if (memcmp(read_ecc, calc_ecc, 3) != 0) {
ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
if (ret < 0)
return ret;
/* keep track of the number of corrected errors */
stat += ret;
}
read_ecc += 3;
calc_ecc += 3;
dat += 512;
}
return stat;
}
/**
* omap_calcuate_ecc - Generate non-inverted ECC bytes.
* @chip: NAND chip object
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
*
* Using noninverted ECC can be considered ugly since writing a blank
* page ie. padding will clear the ECC bytes. This is no problem as long
* nobody is trying to write data on the seemingly unused page. Reading
* an erased page will produce an ECC mismatch between generated and read
* ECC bytes that has to be dealt with separately.
*/
static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
u_char *ecc_code)
{
struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
u32 val;
val = readl(info->reg.gpmc_ecc_config);
if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
return -EINVAL;
/* read ecc result */
val = readl(info->reg.gpmc_ecc1_result);
*ecc_code++ = val; /* P128e, ..., P1e */
*ecc_code++ = val >> 16; /* P128o, ..., P1o */
/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
return 0;
}
/**
* omap_enable_hwecc - This function enables the hardware ecc functionality
* @mtd: MTD device structure
* @mode: Read/Write mode
*/
static void omap_enable_hwecc(struct nand_chip *chip, int mode)
{
struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
u32 val;
/* clear ecc and enable bits */
val = ECCCLEAR | ECC1;
writel(val, info->reg.gpmc_ecc_control);
/* program ecc and result sizes */
val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
ECC1RESULTSIZE);
writel(val, info->reg.gpmc_ecc_size_config);
switch (mode) {
case NAND_ECC_READ:
case NAND_ECC_WRITE:
writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
break;
case NAND_ECC_READSYN:
writel(ECCCLEAR, info->reg.gpmc_ecc_control);
break;
default:
dev_info(&info->pdev->dev,
"error: unrecognized Mode[%d]!\n", mode);
break;
}
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
writel(val, info->reg.gpmc_ecc_config);
}
/**
* omap_wait - wait until the command is done
* @this: NAND Chip structure
*
* Wait function is called during Program and erase operations and
* the way it is called from MTD layer, we should wait till the NAND
* chip is ready after the programming/erase operation has completed.
*
* Erase can take up to 400ms and program up to 20ms according to
* general NAND and SmartMedia specs
*/
static int omap_wait(struct nand_chip *this)
{
struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
unsigned long timeo = jiffies;
int status, state = this->state;
if (state == FL_ERASING)
timeo += msecs_to_jiffies(400);
else
timeo += msecs_to_jiffies(20);
writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
while (time_before(jiffies, timeo)) {
status = readb(info->reg.gpmc_nand_data);
if (status & NAND_STATUS_READY)
break;
cond_resched();
}
status = readb(info->reg.gpmc_nand_data);
return status;
}
/**
* omap_dev_ready - checks the NAND Ready GPIO line
* @mtd: MTD device structure
*
* Returns true if ready and false if busy.
*/
static int omap_dev_ready(struct nand_chip *chip)
{
struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
return gpiod_get_value(info->ready_gpiod);
}
/**
* omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
* @mtd: MTD device structure
* @mode: Read/Write mode
*
* When using BCH with SW correction (i.e. no ELM), sector size is set
* to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
* for both reading and writing with:
* eccsize0 = 0 (no additional protected byte in spare area)
* eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
*/
static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
int mode)
{
unsigned int bch_type;
unsigned int dev_width, nsectors;
struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
enum omap_ecc ecc_opt = info->ecc_opt;
u32 val, wr_mode;
unsigned int ecc_size1, ecc_size0;
/* GPMC configurations for calculating ECC */
switch (ecc_opt) {
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
bch_type = 0;
nsectors = 1;
wr_mode = BCH_WRAPMODE_6;
ecc_size0 = BCH_ECC_SIZE0;
ecc_size1 = BCH_ECC_SIZE1;
break;
case OMAP_ECC_BCH4_CODE_HW:
bch_type = 0;
nsectors = chip->ecc.steps;
if (mode == NAND_ECC_READ) {
wr_mode = BCH_WRAPMODE_1;
ecc_size0 = BCH4R_ECC_SIZE0;
ecc_size1 = BCH4R_ECC_SIZE1;
} else {
wr_mode = BCH_WRAPMODE_6;
ecc_size0 = BCH_ECC_SIZE0;
ecc_size1 = BCH_ECC_SIZE1;
}
break;
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
bch_type = 1;
nsectors = 1;
wr_mode = BCH_WRAPMODE_6;
ecc_size0 = BCH_ECC_SIZE0;
ecc_size1 = BCH_ECC_SIZE1;
break;
case OMAP_ECC_BCH8_CODE_HW:
bch_type = 1;
nsectors = chip->ecc.steps;
if (mode == NAND_ECC_READ) {
wr_mode = BCH_WRAPMODE_1;
ecc_size0 = BCH8R_ECC_SIZE0;
ecc_size1 = BCH8R_ECC_SIZE1;
} else {
wr_mode = BCH_WRAPMODE_6;
ecc_size0 = BCH_ECC_SIZE0;
ecc_size1 = BCH_ECC_SIZE1;
}
break;
case OMAP_ECC_BCH16_CODE_HW:
bch_type = 0x2;
nsectors = chip->ecc.steps;
if (mode == NAND_ECC_READ) {
wr_mode = 0x01;
ecc_size0 = 52; /* ECC bits in nibbles per sector */
ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
} else {
wr_mode = 0x01;
ecc_size0 = 0; /* extra bits in nibbles per sector */
ecc_size1 = 52; /* OOB bits in nibbles per sector */
}
break;
default:
return;
}
writel(ECC1, info->reg.gpmc_ecc_control);
/* Configure ecc size for BCH */
val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
writel(val, info->reg.gpmc_ecc_size_config);
dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
/* BCH configuration */
val = ((1 << 16) | /* enable BCH */
(bch_type << 12) | /* BCH4/BCH8/BCH16 */
(wr_mode << 8) | /* wrap mode */
(dev_width << 7) | /* bus width */
(((nsectors-1) & 0x7) << 4) | /* number of sectors */
(info->gpmc_cs << 1) | /* ECC CS */
(0x1)); /* enable ECC */
writel(val, info->reg.gpmc_ecc_config);
/* Clear ecc and enable bits */
writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
}
static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
0x97, 0x79, 0xe5, 0x24, 0xb5};
/**
* _omap_calculate_ecc_bch - Generate ECC bytes for one sector
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
* @i: The sector number (for a multi sector page)
*
* Support calculating of BCH4/8/16 ECC vectors for one sector
* within a page. Sector number is in @i.
*/
static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
const u_char *dat, u_char *ecc_calc, int i)
{
struct omap_nand_info *info = mtd_to_omap(mtd);
int eccbytes = info->nand.ecc.bytes;
struct gpmc_nand_regs *gpmc_regs = &info->reg;
u8 *ecc_code;
unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
u32 val;
int j;
ecc_code = ecc_calc;
switch (info->ecc_opt) {
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
case OMAP_ECC_BCH8_CODE_HW:
bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
*ecc_code++ = (bch_val4 & 0xFF);
*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
*ecc_code++ = (bch_val3 & 0xFF);
*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
*ecc_code++ = (bch_val2 & 0xFF);
*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
*ecc_code++ = (bch_val1 & 0xFF);
break;
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
case OMAP_ECC_BCH4_CODE_HW:
bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
*ecc_code++ = ((bch_val2 & 0xF) << 4) |
((bch_val1 >> 28) & 0xF);
*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
*ecc_code++ = ((bch_val1 & 0xF) << 4);
break;
case OMAP_ECC_BCH16_CODE_HW:
val = readl(gpmc_regs->gpmc_bch_result6[i]);
ecc_code[0] = ((val >> 8) & 0xFF);
ecc_code[1] = ((val >> 0) & 0xFF);
val = readl(gpmc_regs->gpmc_bch_result5[i]);
ecc_code[2] = ((val >> 24) & 0xFF);
ecc_code[3] = ((val >> 16) & 0xFF);
ecc_code[4] = ((val >> 8) & 0xFF);
ecc_code[5] = ((val >> 0) & 0xFF);
val = readl(gpmc_regs->gpmc_bch_result4[i]);
ecc_code[6] = ((val >> 24) & 0xFF);
ecc_code[7] = ((val >> 16) & 0xFF);
ecc_code[8] = ((val >> 8) & 0xFF);
ecc_code[9] = ((val >> 0) & 0xFF);
val = readl(gpmc_regs->gpmc_bch_result3[i]);
ecc_code[10] = ((val >> 24) & 0xFF);
ecc_code[11] = ((val >> 16) & 0xFF);
ecc_code[12] = ((val >> 8) & 0xFF);
ecc_code[13] = ((val >> 0) & 0xFF);
val = readl(gpmc_regs->gpmc_bch_result2[i]);
ecc_code[14] = ((val >> 24) & 0xFF);
ecc_code[15] = ((val >> 16) & 0xFF);
ecc_code[16] = ((val >> 8) & 0xFF);
ecc_code[17] = ((val >> 0) & 0xFF);
val = readl(gpmc_regs->gpmc_bch_result1[i]);
ecc_code[18] = ((val >> 24) & 0xFF);
ecc_code[19] = ((val >> 16) & 0xFF);
ecc_code[20] = ((val >> 8) & 0xFF);
ecc_code[21] = ((val >> 0) & 0xFF);
val = readl(gpmc_regs->gpmc_bch_result0[i]);
ecc_code[22] = ((val >> 24) & 0xFF);
ecc_code[23] = ((val >> 16) & 0xFF);
ecc_code[24] = ((val >> 8) & 0xFF);
ecc_code[25] = ((val >> 0) & 0xFF);
break;
default:
return -EINVAL;
}
/* ECC scheme specific syndrome customizations */
switch (info->ecc_opt) {
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
/* Add constant polynomial to remainder, so that
* ECC of blank pages results in 0x0 on reading back
*/
for (j = 0; j < eccbytes; j++)
ecc_calc[j] ^= bch4_polynomial[j];
break;
case OMAP_ECC_BCH4_CODE_HW:
/* Set 8th ECC byte as 0x0 for ROM compatibility */
ecc_calc[eccbytes - 1] = 0x0;
break;
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
/* Add constant polynomial to remainder, so that
* ECC of blank pages results in 0x0 on reading back
*/
for (j = 0; j < eccbytes; j++)
ecc_calc[j] ^= bch8_polynomial[j];
break;
case OMAP_ECC_BCH8_CODE_HW:
/* Set 14th ECC byte as 0x0 for ROM compatibility */
ecc_calc[eccbytes - 1] = 0x0;
break;
case OMAP_ECC_BCH16_CODE_HW:
break;
default:
return -EINVAL;
}
return 0;
}
/**
* omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
* @chip: NAND chip object
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
*
* Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
* when SW based correction is required as ECC is required for one sector
* at a time.
*/
static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
const u_char *dat, u_char *ecc_calc)
{
return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
}
/**
* omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
*
* Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
*/
static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
const u_char *dat, u_char *ecc_calc)
{
struct omap_nand_info *info = mtd_to_omap(mtd);
int eccbytes = info->nand.ecc.bytes;
unsigned long nsectors;
int i, ret;
nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
for (i = 0; i < nsectors; i++) {
ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
if (ret)
return ret;
ecc_calc += eccbytes;
}
return 0;
}
/**
* erased_sector_bitflips - count bit flips
* @data: data sector buffer
* @oob: oob buffer
* @info: omap_nand_info
*
* Check the bit flips in erased page falls below correctable level.
* If falls below, report the page as erased with correctable bit
* flip, else report as uncorrectable page.
*/
static int erased_sector_bitflips(u_char *data, u_char *oob,
struct omap_nand_info *info)
{
int flip_bits = 0, i;
for (i = 0; i < info->nand.ecc.size; i++) {
flip_bits += hweight8(~data[i]);
if (flip_bits > info->nand.ecc.strength)
return 0;
}
for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
flip_bits += hweight8(~oob[i]);
if (flip_bits > info->nand.ecc.strength)
return 0;
}
/*
* Bit flips falls in correctable level.
* Fill data area with 0xFF
*/
if (flip_bits) {
memset(data, 0xFF, info->nand.ecc.size);
memset(oob, 0xFF, info->nand.ecc.bytes);
}
return flip_bits;
}
/**
* omap_elm_correct_data - corrects page data area in case error reported
* @chip: NAND chip object
* @data: page data
* @read_ecc: ecc read from nand flash
* @calc_ecc: ecc read from HW ECC registers
*
* Calculated ecc vector reported as zero in case of non-error pages.
* In case of non-zero ecc vector, first filter out erased-pages, and
* then process data via ELM to detect bit-flips.
*/
static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
u_char *read_ecc, u_char *calc_ecc)
{
struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
struct nand_ecc_ctrl *ecc = &info->nand.ecc;
int eccsteps = info->nand.ecc.steps;
int i , j, stat = 0;
int eccflag, actual_eccbytes;
struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
u_char *ecc_vec = calc_ecc;
u_char *spare_ecc = read_ecc;
u_char *erased_ecc_vec;
u_char *buf;
int bitflip_count;
bool is_error_reported = false;
u32 bit_pos, byte_pos, error_max, pos;
int err;
switch (info->ecc_opt) {
case OMAP_ECC_BCH4_CODE_HW:
/* omit 7th ECC byte reserved for ROM code compatibility */
actual_eccbytes = ecc->bytes - 1;
erased_ecc_vec = bch4_vector;
break;
case OMAP_ECC_BCH8_CODE_HW:
/* omit 14th ECC byte reserved for ROM code compatibility */
actual_eccbytes = ecc->bytes - 1;
erased_ecc_vec = bch8_vector;
break;
case OMAP_ECC_BCH16_CODE_HW:
actual_eccbytes = ecc->bytes;
erased_ecc_vec = bch16_vector;
break;
default:
dev_err(&info->pdev->dev, "invalid driver configuration\n");
return -EINVAL;
}
/* Initialize elm error vector to zero */
memset(err_vec, 0, sizeof(err_vec));
for (i = 0; i < eccsteps ; i++) {
eccflag = 0; /* initialize eccflag */
/*
* Check any error reported,
* In case of error, non zero ecc reported.
*/
for (j = 0; j < actual_eccbytes; j++) {
if (calc_ecc[j] != 0) {
eccflag = 1; /* non zero ecc, error present */
break;
}
}
if (eccflag == 1) {
if (memcmp(calc_ecc, erased_ecc_vec,
actual_eccbytes) == 0) {
/*
* calc_ecc[] matches pattern for ECC(all 0xff)
* so this is definitely an erased-page
*/
} else {
buf = &data[info->nand.ecc.size * i];
/*
* count number of 0-bits in read_buf.
* This check can be removed once a similar
* check is introduced in generic NAND driver
*/
bitflip_count = erased_sector_bitflips(
buf, read_ecc, info);
if (bitflip_count) {
/*
* number of 0-bits within ECC limits
* So this may be an erased-page
*/
stat += bitflip_count;
} else {
/*
* Too many 0-bits. It may be a
* - programmed-page, OR
* - erased-page with many bit-flips
* So this page requires check by ELM
*/
err_vec[i].error_reported = true;
is_error_reported = true;
}
}
}
/* Update the ecc vector */
calc_ecc += ecc->bytes;
read_ecc += ecc->bytes;
}
/* Check if any error reported */
if (!is_error_reported)
return stat;
/* Decode BCH error using ELM module */
elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
err = 0;
for (i = 0; i < eccsteps; i++) {
if (err_vec[i].error_uncorrectable) {
dev_err(&info->pdev->dev,
"uncorrectable bit-flips found\n");
err = -EBADMSG;
} else if (err_vec[i].error_reported) {
for (j = 0; j < err_vec[i].error_count; j++) {
switch (info->ecc_opt) {
case OMAP_ECC_BCH4_CODE_HW:
/* Add 4 bits to take care of padding */
pos = err_vec[i].error_loc[j] +
BCH4_BIT_PAD;
break;
case OMAP_ECC_BCH8_CODE_HW:
case OMAP_ECC_BCH16_CODE_HW:
pos = err_vec[i].error_loc[j];
break;
default:
return -EINVAL;
}
error_max = (ecc->size + actual_eccbytes) * 8;
/* Calculate bit position of error */
bit_pos = pos % 8;
/* Calculate byte position of error */
byte_pos = (error_max - pos - 1) / 8;
if (pos < error_max) {
if (byte_pos < 512) {
pr_debug("bitflip@dat[%d]=%x\n",
byte_pos, data[byte_pos]);
data[byte_pos] ^= 1 << bit_pos;
} else {
pr_debug("bitflip@oob[%d]=%x\n",
(byte_pos - 512),
spare_ecc[byte_pos - 512]);
spare_ecc[byte_pos - 512] ^=
1 << bit_pos;
}
} else {
dev_err(&info->pdev->dev,
"invalid bit-flip @ %d:%d\n",
byte_pos, bit_pos);
err = -EBADMSG;
}
}
}
/* Update number of correctable errors */
stat += err_vec[i].error_count;
/* Update page data with sector size */
data += ecc->size;
spare_ecc += ecc->bytes;
}
return (err) ? err : stat;
}
/**
* omap_write_page_bch - BCH ecc based write page function for entire page
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page
*
* Custom write page method evolved to support multi sector writing in one shot
*/
static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
uint8_t *ecc_calc = chip->ecc.calc_buf;
mtd: nand: force drivers to explicitly send READ/PROG commands The core currently send the READ0 and SEQIN+PAGEPROG commands in nand_do_read/write_ops(). This is inconsistent with ->read/write_oob[_raw]() hooks behavior which are expected to send these commands. There's already a flag (NAND_ECC_CUSTOM_PAGE_ACCESS) to inform the core that a specific controller wants to send the READ/SEQIN+PAGEPROG commands on its own, but it's an opt-in flag, and existing drivers are unlikely to be updated to pass it. Moreover, some controllers cannot dissociate the READ/PAGEPROG commands from the associated data transfer and ECC engine activation, and developers have to hack things in their ->cmdfunc() implementation to handle such complex cases, or have to accept the perf penalty of sending twice the same command. To address this problem we are planning on adding a new interface which is passed all information about a NAND operation (including the amount of data to transfer) and replacing all calls to ->cmdfunc() to calls to this new ->exec_op() hook. But, in order to do that, we need to have all ->cmdfunc() calls placed near their associated ->read/write_buf/byte() calls. Modify the core and relevant drivers to make NAND_ECC_CUSTOM_PAGE_ACCESS the default case, and remove this flag. Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com> [miquel.raynal@free-electrons.com: tested, fixed and rebased on nand/next] Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com> Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2017-11-30 10:01:30 -07:00
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
/* Enable GPMC ecc engine */
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
/* Write data */
chip->legacy.write_buf(chip, buf, mtd->writesize);
/* Update ecc vector from GPMC result registers */
omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
/* Write ecc vector to OOB area */
chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
mtd: nand: force drivers to explicitly send READ/PROG commands The core currently send the READ0 and SEQIN+PAGEPROG commands in nand_do_read/write_ops(). This is inconsistent with ->read/write_oob[_raw]() hooks behavior which are expected to send these commands. There's already a flag (NAND_ECC_CUSTOM_PAGE_ACCESS) to inform the core that a specific controller wants to send the READ/SEQIN+PAGEPROG commands on its own, but it's an opt-in flag, and existing drivers are unlikely to be updated to pass it. Moreover, some controllers cannot dissociate the READ/PAGEPROG commands from the associated data transfer and ECC engine activation, and developers have to hack things in their ->cmdfunc() implementation to handle such complex cases, or have to accept the perf penalty of sending twice the same command. To address this problem we are planning on adding a new interface which is passed all information about a NAND operation (including the amount of data to transfer) and replacing all calls to ->cmdfunc() to calls to this new ->exec_op() hook. But, in order to do that, we need to have all ->cmdfunc() calls placed near their associated ->read/write_buf/byte() calls. Modify the core and relevant drivers to make NAND_ECC_CUSTOM_PAGE_ACCESS the default case, and remove this flag. Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com> [miquel.raynal@free-electrons.com: tested, fixed and rebased on nand/next] Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com> Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2017-11-30 10:01:30 -07:00
return nand_prog_page_end_op(chip);
}
/**
* omap_write_subpage_bch - BCH hardware ECC based subpage write
* @chip: nand chip info structure
* @offset: column address of subpage within the page
* @data_len: data length
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* OMAP optimized subpage write method.
*/
static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
u32 data_len, const u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
u8 *ecc_calc = chip->ecc.calc_buf;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
int ecc_steps = chip->ecc.steps;
u32 start_step = offset / ecc_size;
u32 end_step = (offset + data_len - 1) / ecc_size;
int step, ret = 0;
/*
* Write entire page at one go as it would be optimal
* as ECC is calculated by hardware.
* ECC is calculated for all subpages but we choose
* only what we want.
*/
mtd: nand: force drivers to explicitly send READ/PROG commands The core currently send the READ0 and SEQIN+PAGEPROG commands in nand_do_read/write_ops(). This is inconsistent with ->read/write_oob[_raw]() hooks behavior which are expected to send these commands. There's already a flag (NAND_ECC_CUSTOM_PAGE_ACCESS) to inform the core that a specific controller wants to send the READ/SEQIN+PAGEPROG commands on its own, but it's an opt-in flag, and existing drivers are unlikely to be updated to pass it. Moreover, some controllers cannot dissociate the READ/PAGEPROG commands from the associated data transfer and ECC engine activation, and developers have to hack things in their ->cmdfunc() implementation to handle such complex cases, or have to accept the perf penalty of sending twice the same command. To address this problem we are planning on adding a new interface which is passed all information about a NAND operation (including the amount of data to transfer) and replacing all calls to ->cmdfunc() to calls to this new ->exec_op() hook. But, in order to do that, we need to have all ->cmdfunc() calls placed near their associated ->read/write_buf/byte() calls. Modify the core and relevant drivers to make NAND_ECC_CUSTOM_PAGE_ACCESS the default case, and remove this flag. Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com> [miquel.raynal@free-electrons.com: tested, fixed and rebased on nand/next] Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com> Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2017-11-30 10:01:30 -07:00
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
/* Enable GPMC ECC engine */
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
/* Write data */
chip->legacy.write_buf(chip, buf, mtd->writesize);
for (step = 0; step < ecc_steps; step++) {
/* mask ECC of un-touched subpages by padding 0xFF */
if (step < start_step || step > end_step)
memset(ecc_calc, 0xff, ecc_bytes);
else
ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
if (ret)
return ret;
buf += ecc_size;
ecc_calc += ecc_bytes;
}
/* copy calculated ECC for whole page to chip->buffer->oob */
/* this include masked-value(0xFF) for unwritten subpages */
ecc_calc = chip->ecc.calc_buf;
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
/* write OOB buffer to NAND device */
chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
mtd: nand: force drivers to explicitly send READ/PROG commands The core currently send the READ0 and SEQIN+PAGEPROG commands in nand_do_read/write_ops(). This is inconsistent with ->read/write_oob[_raw]() hooks behavior which are expected to send these commands. There's already a flag (NAND_ECC_CUSTOM_PAGE_ACCESS) to inform the core that a specific controller wants to send the READ/SEQIN+PAGEPROG commands on its own, but it's an opt-in flag, and existing drivers are unlikely to be updated to pass it. Moreover, some controllers cannot dissociate the READ/PAGEPROG commands from the associated data transfer and ECC engine activation, and developers have to hack things in their ->cmdfunc() implementation to handle such complex cases, or have to accept the perf penalty of sending twice the same command. To address this problem we are planning on adding a new interface which is passed all information about a NAND operation (including the amount of data to transfer) and replacing all calls to ->cmdfunc() to calls to this new ->exec_op() hook. But, in order to do that, we need to have all ->cmdfunc() calls placed near their associated ->read/write_buf/byte() calls. Modify the core and relevant drivers to make NAND_ECC_CUSTOM_PAGE_ACCESS the default case, and remove this flag. Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com> [miquel.raynal@free-electrons.com: tested, fixed and rebased on nand/next] Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com> Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2017-11-30 10:01:30 -07:00
return nand_prog_page_end_op(chip);
}
/**
* omap_read_page_bch - BCH ecc based page read function for entire page
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
* used for error correction.
* Custom method evolved to support ELM error correction & multi sector
* reading. On reading page data area is read along with OOB data with
* ecc engine enabled. ecc vector updated after read of OOB data.
* For non error pages ecc vector reported as zero.
*/
static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
uint8_t *ecc_calc = chip->ecc.calc_buf;
uint8_t *ecc_code = chip->ecc.code_buf;
int stat, ret;
unsigned int max_bitflips = 0;
mtd: nand: force drivers to explicitly send READ/PROG commands The core currently send the READ0 and SEQIN+PAGEPROG commands in nand_do_read/write_ops(). This is inconsistent with ->read/write_oob[_raw]() hooks behavior which are expected to send these commands. There's already a flag (NAND_ECC_CUSTOM_PAGE_ACCESS) to inform the core that a specific controller wants to send the READ/SEQIN+PAGEPROG commands on its own, but it's an opt-in flag, and existing drivers are unlikely to be updated to pass it. Moreover, some controllers cannot dissociate the READ/PAGEPROG commands from the associated data transfer and ECC engine activation, and developers have to hack things in their ->cmdfunc() implementation to handle such complex cases, or have to accept the perf penalty of sending twice the same command. To address this problem we are planning on adding a new interface which is passed all information about a NAND operation (including the amount of data to transfer) and replacing all calls to ->cmdfunc() to calls to this new ->exec_op() hook. But, in order to do that, we need to have all ->cmdfunc() calls placed near their associated ->read/write_buf/byte() calls. Modify the core and relevant drivers to make NAND_ECC_CUSTOM_PAGE_ACCESS the default case, and remove this flag. Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com> [miquel.raynal@free-electrons.com: tested, fixed and rebased on nand/next] Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com> Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2017-11-30 10:01:30 -07:00
nand_read_page_op(chip, page, 0, NULL, 0);
/* Enable GPMC ecc engine */
chip->ecc.hwctl(chip, NAND_ECC_READ);
/* Read data */
chip->legacy.read_buf(chip, buf, mtd->writesize);
/* Read oob bytes */
nand_change_read_column_op(chip,
mtd->writesize + BADBLOCK_MARKER_LENGTH,
chip->oob_poi + BADBLOCK_MARKER_LENGTH,
chip->ecc.total, false);
/* Calculate ecc bytes */
omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
stat = chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
return max_bitflips;
}
/**
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
* is_elm_present - checks for presence of ELM module by scanning DT nodes
* @omap_nand_info: NAND device structure containing platform data
*/
static bool is_elm_present(struct omap_nand_info *info,
struct device_node *elm_node)
{
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
struct platform_device *pdev;
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
/* check whether elm-id is passed via DT */
if (!elm_node) {
dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
return false;
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
}
pdev = of_find_device_by_node(elm_node);
/* check whether ELM device is registered */
if (!pdev) {
dev_err(&info->pdev->dev, "ELM device not found\n");
return false;
}
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
/* ELM module available, now configure it */
info->elm_dev = &pdev->dev;
return true;
}
static bool omap2_nand_ecc_check(struct omap_nand_info *info)
{
bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
switch (info->ecc_opt) {
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
ecc_needs_omap_bch = false;
ecc_needs_bch = true;
ecc_needs_elm = false;
break;
case OMAP_ECC_BCH4_CODE_HW:
case OMAP_ECC_BCH8_CODE_HW:
case OMAP_ECC_BCH16_CODE_HW:
ecc_needs_omap_bch = true;
ecc_needs_bch = false;
ecc_needs_elm = true;
break;
default:
ecc_needs_omap_bch = false;
ecc_needs_bch = false;
ecc_needs_elm = false;
break;
}
if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
dev_err(&info->pdev->dev,
"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
return false;
}
if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
dev_err(&info->pdev->dev,
"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
return false;
}
if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
dev_err(&info->pdev->dev, "ELM not available\n");
return false;
}
return true;
}
static const char * const nand_xfer_types[] = {
[NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
[NAND_OMAP_POLLED] = "polled",
[NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
[NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
};
static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
{
struct device_node *child = dev->of_node;
int i;
const char *s;
u32 cs;
if (of_property_read_u32(child, "reg", &cs) < 0) {
dev_err(dev, "reg not found in DT\n");
return -EINVAL;
}
info->gpmc_cs = cs;
/* detect availability of ELM module. Won't be present pre-OMAP4 */
info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
if (!info->elm_of_node) {
info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
if (!info->elm_of_node)
dev_dbg(dev, "ti,elm-id not in DT\n");
}
/* select ecc-scheme for NAND */
if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
dev_err(dev, "ti,nand-ecc-opt not found\n");
return -EINVAL;
}
if (!strcmp(s, "sw")) {
info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
} else if (!strcmp(s, "ham1") ||
!strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
} else if (!strcmp(s, "bch4")) {
if (info->elm_of_node)
info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
else
info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
} else if (!strcmp(s, "bch8")) {
if (info->elm_of_node)
info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
else
info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
} else if (!strcmp(s, "bch16")) {
info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
} else {
dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
return -EINVAL;
}
/* select data transfer mode */
if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
if (!strcasecmp(s, nand_xfer_types[i])) {
info->xfer_type = i;
return 0;
}
}
dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
return -EINVAL;
}
return 0;
}
static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct omap_nand_info *info = mtd_to_omap(mtd);
struct nand_chip *chip = &info->nand;
int off = BADBLOCK_MARKER_LENGTH;
if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
!(chip->options & NAND_BUSWIDTH_16))
off = 1;
if (section)
return -ERANGE;
oobregion->offset = off;
oobregion->length = chip->ecc.total;
return 0;
}
static int omap_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct omap_nand_info *info = mtd_to_omap(mtd);
struct nand_chip *chip = &info->nand;
int off = BADBLOCK_MARKER_LENGTH;
if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
!(chip->options & NAND_BUSWIDTH_16))
off = 1;
if (section)
return -ERANGE;
off += chip->ecc.total;
if (off >= mtd->oobsize)
return -ERANGE;
oobregion->offset = off;
oobregion->length = mtd->oobsize - off;
return 0;
}
static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
.ecc = omap_ooblayout_ecc,
.free = omap_ooblayout_free,
};
static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int off = BADBLOCK_MARKER_LENGTH;
if (section >= chip->ecc.steps)
return -ERANGE;
/*
* When SW correction is employed, one OMAP specific marker byte is
* reserved after each ECC step.
*/
oobregion->offset = off + (section * (chip->ecc.bytes + 1));
oobregion->length = chip->ecc.bytes;
return 0;
}
static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int off = BADBLOCK_MARKER_LENGTH;
if (section)
return -ERANGE;
/*
* When SW correction is employed, one OMAP specific marker byte is
* reserved after each ECC step.
*/
off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
if (off >= mtd->oobsize)
return -ERANGE;
oobregion->offset = off;
oobregion->length = mtd->oobsize - off;
return 0;
}
static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
.ecc = omap_sw_ooblayout_ecc,
.free = omap_sw_ooblayout_free,
};
static int omap_nand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct omap_nand_info *info = mtd_to_omap(mtd);
struct device *dev = &info->pdev->dev;
int min_oobbytes = BADBLOCK_MARKER_LENGTH;
int oobbytes_per_step;
dma_cap_mask_t mask;
int err;
if (chip->bbt_options & NAND_BBT_USE_FLASH)
chip->bbt_options |= NAND_BBT_NO_OOB;
else
chip->options |= NAND_SKIP_BBTSCAN;
/* Re-populate low-level callbacks based on xfer modes */
switch (info->xfer_type) {
case NAND_OMAP_PREFETCH_POLLED:
chip->legacy.read_buf = omap_read_buf_pref;
chip->legacy.write_buf = omap_write_buf_pref;
break;
case NAND_OMAP_POLLED:
/* Use nand_base defaults for {read,write}_buf */
break;
case NAND_OMAP_PREFETCH_DMA:
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
info->dma = dma_request_chan(dev, "rxtx");
if (IS_ERR(info->dma)) {
dev_err(dev, "DMA engine request failed\n");
return PTR_ERR(info->dma);
} else {
struct dma_slave_config cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.src_addr = info->phys_base;
cfg.dst_addr = info->phys_base;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = 16;
cfg.dst_maxburst = 16;
err = dmaengine_slave_config(info->dma, &cfg);
if (err) {
dev_err(dev,
"DMA engine slave config failed: %d\n",
err);
return err;
}
chip->legacy.read_buf = omap_read_buf_dma_pref;
chip->legacy.write_buf = omap_write_buf_dma_pref;
}
break;
case NAND_OMAP_PREFETCH_IRQ:
info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
if (info->gpmc_irq_fifo <= 0) {
dev_err(dev, "Error getting fifo IRQ\n");
return -ENODEV;
}
err = devm_request_irq(dev, info->gpmc_irq_fifo,
omap_nand_irq, IRQF_SHARED,
"gpmc-nand-fifo", info);
if (err) {
dev_err(dev, "Requesting IRQ %d, error %d\n",
info->gpmc_irq_fifo, err);
info->gpmc_irq_fifo = 0;
return err;
}
info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
if (info->gpmc_irq_count <= 0) {
dev_err(dev, "Error getting IRQ count\n");
return -ENODEV;
}
err = devm_request_irq(dev, info->gpmc_irq_count,
omap_nand_irq, IRQF_SHARED,
"gpmc-nand-count", info);
if (err) {
dev_err(dev, "Requesting IRQ %d, error %d\n",
info->gpmc_irq_count, err);
info->gpmc_irq_count = 0;
return err;
}
chip->legacy.read_buf = omap_read_buf_irq_pref;
chip->legacy.write_buf = omap_write_buf_irq_pref;
break;
default:
dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
return -EINVAL;
}
if (!omap2_nand_ecc_check(info))
return -EINVAL;
/*
* Bail out earlier to let NAND_ECC_SOFT code create its own
* ooblayout instead of using ours.
*/
if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
chip->ecc.mode = NAND_ECC_SOFT;
chip->ecc.algo = NAND_ECC_HAMMING;
return 0;
}
/* Populate MTD interface based on ECC scheme */
switch (info->ecc_opt) {
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
case OMAP_ECC_HAM1_CODE_HW:
dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.bytes = 3;
chip->ecc.size = 512;
chip->ecc.strength = 1;
chip->ecc.calculate = omap_calculate_ecc;
chip->ecc.hwctl = omap_enable_hwecc;
chip->ecc.correct = omap_correct_data;
mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
oobbytes_per_step = chip->ecc.bytes;
if (!(chip->options & NAND_BUSWIDTH_16))
min_oobbytes = 1;
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
break;
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = 512;
chip->ecc.bytes = 7;
chip->ecc.strength = 4;
chip->ecc.hwctl = omap_enable_hwecc_bch;
chip->ecc.correct = nand_bch_correct_data;
chip->ecc.calculate = omap_calculate_ecc_bch_sw;
mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
/* Reserve one byte for the OMAP marker */
oobbytes_per_step = chip->ecc.bytes + 1;
/* Software BCH library is used for locating errors */
chip->ecc.priv = nand_bch_init(mtd);
if (!chip->ecc.priv) {
dev_err(dev, "Unable to use BCH library\n");
return -EINVAL;
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
}
break;
case OMAP_ECC_BCH4_CODE_HW:
pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = 512;
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
/* 14th bit is kept reserved for ROM-code compatibility */
chip->ecc.bytes = 7 + 1;
chip->ecc.strength = 4;
chip->ecc.hwctl = omap_enable_hwecc_bch;
chip->ecc.correct = omap_elm_correct_data;
chip->ecc.read_page = omap_read_page_bch;
chip->ecc.write_page = omap_write_page_bch;
chip->ecc.write_subpage = omap_write_subpage_bch;
mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
oobbytes_per_step = chip->ecc.bytes;
err = elm_config(info->elm_dev, BCH4_ECC,
mtd->writesize / chip->ecc.size,
chip->ecc.size, chip->ecc.bytes);
if (err < 0)
return err;
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
break;
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = 512;
chip->ecc.bytes = 13;
chip->ecc.strength = 8;
chip->ecc.hwctl = omap_enable_hwecc_bch;
chip->ecc.correct = nand_bch_correct_data;
chip->ecc.calculate = omap_calculate_ecc_bch_sw;
mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
/* Reserve one byte for the OMAP marker */
oobbytes_per_step = chip->ecc.bytes + 1;
/* Software BCH library is used for locating errors */
chip->ecc.priv = nand_bch_init(mtd);
if (!chip->ecc.priv) {
dev_err(dev, "unable to use BCH library\n");
return -EINVAL;
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
}
break;
case OMAP_ECC_BCH8_CODE_HW:
pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = 512;
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
/* 14th bit is kept reserved for ROM-code compatibility */
chip->ecc.bytes = 13 + 1;
chip->ecc.strength = 8;
chip->ecc.hwctl = omap_enable_hwecc_bch;
chip->ecc.correct = omap_elm_correct_data;
chip->ecc.read_page = omap_read_page_bch;
chip->ecc.write_page = omap_write_page_bch;
chip->ecc.write_subpage = omap_write_subpage_bch;
mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
oobbytes_per_step = chip->ecc.bytes;
err = elm_config(info->elm_dev, BCH8_ECC,
mtd->writesize / chip->ecc.size,
chip->ecc.size, chip->ecc.bytes);
if (err < 0)
return err;
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
break;
case OMAP_ECC_BCH16_CODE_HW:
pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = 512;
chip->ecc.bytes = 26;
chip->ecc.strength = 16;
chip->ecc.hwctl = omap_enable_hwecc_bch;
chip->ecc.correct = omap_elm_correct_data;
chip->ecc.read_page = omap_read_page_bch;
chip->ecc.write_page = omap_write_page_bch;
chip->ecc.write_subpage = omap_write_subpage_bch;
mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
oobbytes_per_step = chip->ecc.bytes;
err = elm_config(info->elm_dev, BCH16_ECC,
mtd->writesize / chip->ecc.size,
chip->ecc.size, chip->ecc.bytes);
if (err < 0)
return err;
break;
mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe current implementation in omap3_init_bch() has some redundant code like: (1) omap3_init_bch() re-probes the DT-binding to detect presence of ELM h/w engine on SoC. And based on that it selects implemetation of ecc-scheme. However, this is already done as part of GPMC DT parsing. (2) As omap3_init_bch() serves as common function for configuring all types of BCHx ecc-schemes, so there are multiple levels of redudant if..then..else checks while populating nand_chip->ecc. This patch make following changes to OMAP NAND driver: (1) removes omap3_init_bch(): each ecc-scheme is individually configured in omap_nand_probe() there by removing redundant if..then..else checks. (2) adds is_elm_present(): re-probing of ELM device via DT is not required as it's done in GPMC driver probe. Thus is_elm_present() just initializes ELM driver with NAND probe data, when ecc-scheme with h/w based error-detection is used. (3) separates out configuration of different flavours of "BCH4" and "BCH8" ecc-schemes as given in below table (4) conditionally compiles callbacks implementations of ecc.hwctl(), ecc.calculate(), ecc.correct() to avoid warning of un-used functions. +---------------------------------------+---------------+---------------+ | ECC scheme |ECC calculation|Error detection| +---------------------------------------+---------------+---------------+ |OMAP_ECC_HAM1_CODE_HW |H/W (GPMC) |S/W | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH4_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH4_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |H/W (GPMC) |S/W (lib/bch.c)| | (needs CONFIG_MTD_NAND_ECC_BCH) | | | | | | | |OMAP_ECC_BCH8_CODE_HW |H/W (GPMC) |H/W (ELM) | | (needs CONFIG_MTD_NAND_OMAP_BCH && | | | | ti,elm-id) | | | +---------------------------------------+---------------+---------------+ - 'CONFIG_MTD_NAND_ECC_BCH' is generic KConfig required to build lib/bch.c which is required for ECC error detection done in software. (mainly used for legacy platforms which do not have on-chip ELM engine) - 'CONFIG_MTD_NAND_OMAP_BCH' is OMAP specific Kconfig to detemine presence on ELM h/w engine on SoC. Signed-off-by: Pekon Gupta <pekon@ti.com> Tested-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2013-10-24 06:50:21 -06:00
default:
dev_err(dev, "Invalid or unsupported ECC scheme\n");
return -EINVAL;
}
/* Check if NAND device's OOB is enough to store ECC signatures */
min_oobbytes += (oobbytes_per_step *
(mtd->writesize / chip->ecc.size));
if (mtd->oobsize < min_oobbytes) {
dev_err(dev,
"Not enough OOB bytes: required = %d, available=%d\n",
min_oobbytes, mtd->oobsize);
return -EINVAL;
}
return 0;
}
static const struct nand_controller_ops omap_nand_controller_ops = {
.attach_chip = omap_nand_attach_chip,
};
/* Shared among all NAND instances to synchronize access to the ECC Engine */
static struct nand_controller omap_gpmc_controller = {
.lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
.wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
.ops = &omap_nand_controller_ops,
};
static int omap_nand_probe(struct platform_device *pdev)
{
struct omap_nand_info *info;
struct mtd_info *mtd;
struct nand_chip *nand_chip;
int err;
struct resource *res;
struct device *dev = &pdev->dev;
info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
GFP_KERNEL);
if (!info)
return -ENOMEM;
info->pdev = pdev;
err = omap_get_dt_info(dev, info);
if (err)
return err;
info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
if (!info->ops) {
dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
return -ENODEV;
}
nand_chip = &info->nand;
mtd = nand_to_mtd(nand_chip);
mtd->dev.parent = &pdev->dev;
nand_chip->ecc.priv = NULL;
nand_set_flash_node(nand_chip, dev->of_node);
if (!mtd->name) {
mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
"omap2-nand.%d", info->gpmc_cs);
if (!mtd->name) {
dev_err(&pdev->dev, "Failed to set MTD name\n");
return -ENOMEM;
}
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
info->phys_base = res->start;
nand_chip->controller = &omap_gpmc_controller;
nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
nand_chip->legacy.cmd_ctrl = omap_hwcontrol;
info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
GPIOD_IN);
if (IS_ERR(info->ready_gpiod)) {
dev_err(dev, "failed to get ready gpio\n");
return PTR_ERR(info->ready_gpiod);
}
/*
* If RDY/BSY line is connected to OMAP then use the omap ready
* function and the generic nand_wait function which reads the status
* register after monitoring the RDY/BSY line. Otherwise use a standard
* chip delay which is slightly more than tR (AC Timing) of the NAND
* device and read status register until you get a failure or success
*/
if (info->ready_gpiod) {
nand_chip->legacy.dev_ready = omap_dev_ready;
nand_chip->legacy.chip_delay = 0;
} else {
nand_chip->legacy.waitfunc = omap_wait;
nand_chip->legacy.chip_delay = 50;
}
if (info->flash_bbt)
nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
/* scan NAND device connected to chip controller */
nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
err = nand_scan(nand_chip, 1);
if (err)
goto return_error;
err = mtd_device_register(mtd, NULL, 0);
if (err)
goto cleanup_nand;
platform_set_drvdata(pdev, mtd);
return 0;
cleanup_nand:
nand_cleanup(nand_chip);
return_error:
if (!IS_ERR_OR_NULL(info->dma))
dma_release_channel(info->dma);
if (nand_chip->ecc.priv) {
nand_bch_free(nand_chip->ecc.priv);
nand_chip->ecc.priv = NULL;
}
return err;
}
static int omap_nand_remove(struct platform_device *pdev)
{
struct mtd_info *mtd = platform_get_drvdata(pdev);
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct omap_nand_info *info = mtd_to_omap(mtd);
if (nand_chip->ecc.priv) {
nand_bch_free(nand_chip->ecc.priv);
nand_chip->ecc.priv = NULL;
}
if (info->dma)
dma_release_channel(info->dma);
nand_release(nand_chip);
return 0;
}
static const struct of_device_id omap_nand_ids[] = {
{ .compatible = "ti,omap2-nand", },
{},
};
MODULE_DEVICE_TABLE(of, omap_nand_ids);
static struct platform_driver omap_nand_driver = {
.probe = omap_nand_probe,
.remove = omap_nand_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(omap_nand_ids),
},
};
module_platform_driver(omap_nand_driver);
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");