1
0
Fork 0
alistair23-linux/arch/x86/kernel/fpu/core.c

684 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (C) 1994 Linus Torvalds
*
* Pentium III FXSR, SSE support
* General FPU state handling cleanups
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
#include <asm/fpu-internal.h>
static DEFINE_PER_CPU(bool, in_kernel_fpu);
static void kernel_fpu_disable(void)
{
WARN_ON(this_cpu_read(in_kernel_fpu));
this_cpu_write(in_kernel_fpu, true);
}
static void kernel_fpu_enable(void)
{
this_cpu_write(in_kernel_fpu, false);
}
/*
* Were we in an interrupt that interrupted kernel mode?
*
x86, fpu: use non-lazy fpu restore for processors supporting xsave Fundamental model of the current Linux kernel is to lazily init and restore FPU instead of restoring the task state during context switch. This changes that fundamental lazy model to the non-lazy model for the processors supporting xsave feature. Reasons driving this model change are: i. Newer processors support optimized state save/restore using xsaveopt and xrstor by tracking the INIT state and MODIFIED state during context-switch. This is faster than modifying the cr0.TS bit which has serializing semantics. ii. Newer glibc versions use SSE for some of the optimized copy/clear routines. With certain workloads (like boot, kernel-compilation etc), application completes its work with in the first 5 task switches, thus taking upto 5 #DNA traps with the kernel not getting a chance to apply the above mentioned pre-load heuristic. iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit and thus will not work correctly in the presence of lazy restore. Non-lazy state restore is needed for enabling such features. Some data on a two socket SNB system: * Saved 20K DNA exceptions during boot on a two socket SNB system. * Saved 50K DNA exceptions during kernel-compilation workload. * Improved throughput of the AVX based checksumming function inside the kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts pair. Also now kernel_fpu_begin/end() relies on the patched alternative instructions. So move check_fpu() which uses the kernel_fpu_begin/end() after alternative_instructions(). Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com Merge 32-bit boot fix from, Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com Cc: Jim Kukunas <james.t.kukunas@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-08-24 15:13:02 -06:00
* On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
* pair does nothing at all: the thread must not have fpu (so
* that we don't try to save the FPU state), and TS must
* be set (so that the clts/stts pair does nothing that is
* visible in the interrupted kernel thread).
x86: Allow FPU to be used at interrupt time even with eagerfpu With the addition of eagerfpu the irq_fpu_usable() now returns false negatives especially in the case of ksoftirqd and interrupted idle task, two common cases for FPU use for example in networking/crypto. With eagerfpu=off FPU use is possible in those contexts. This is because of the eagerfpu check in interrupted_kernel_fpu_idle(): ... * For now, with eagerfpu we will return interrupted kernel FPU * state as not-idle. TBD: Ideally we can change the return value * to something like __thread_has_fpu(current). But we need to * be careful of doing __thread_clear_has_fpu() before saving * the FPU etc for supporting nested uses etc. For now, take * the simple route! ... if (use_eager_fpu()) return 0; As eagerfpu is automatically "on" on those CPUs that also have the features like AES-NI this patch changes the eagerfpu check to return 1 in case the kernel_fpu_begin() has not been said yet. Once it has been the __thread_has_fpu() will start returning 0. Notice that with eagerfpu the __thread_has_fpu is always true initially. FPU use is thus always possible no matter what task is under us, unless the state has already been saved with kernel_fpu_begin(). [ hpa: this is a performance regression, not a correctness regression, but since it can be quite serious on CPUs which need encryption at interrupt time I am marking this for urgent/stable. ] Signed-off-by: Pekka Riikonen <priikone@iki.fi> Link: http://lkml.kernel.org/r/alpine.GSO.2.00.1305131356320.18@git.silcnet.org Cc: <stable@vger.kernel.org> v3.7+ Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-05-13 06:32:07 -06:00
*
* Except for the eagerfpu case when we return true; in the likely case
* the thread has FPU but we are not going to set/clear TS.
*/
static bool interrupted_kernel_fpu_idle(void)
{
if (this_cpu_read(in_kernel_fpu))
return false;
if (use_eager_fpu())
return true;
x86, fpu: use non-lazy fpu restore for processors supporting xsave Fundamental model of the current Linux kernel is to lazily init and restore FPU instead of restoring the task state during context switch. This changes that fundamental lazy model to the non-lazy model for the processors supporting xsave feature. Reasons driving this model change are: i. Newer processors support optimized state save/restore using xsaveopt and xrstor by tracking the INIT state and MODIFIED state during context-switch. This is faster than modifying the cr0.TS bit which has serializing semantics. ii. Newer glibc versions use SSE for some of the optimized copy/clear routines. With certain workloads (like boot, kernel-compilation etc), application completes its work with in the first 5 task switches, thus taking upto 5 #DNA traps with the kernel not getting a chance to apply the above mentioned pre-load heuristic. iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit and thus will not work correctly in the presence of lazy restore. Non-lazy state restore is needed for enabling such features. Some data on a two socket SNB system: * Saved 20K DNA exceptions during boot on a two socket SNB system. * Saved 50K DNA exceptions during kernel-compilation workload. * Improved throughput of the AVX based checksumming function inside the kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts pair. Also now kernel_fpu_begin/end() relies on the patched alternative instructions. So move check_fpu() which uses the kernel_fpu_begin/end() after alternative_instructions(). Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com Merge 32-bit boot fix from, Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com Cc: Jim Kukunas <james.t.kukunas@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-08-24 15:13:02 -06:00
return !__thread_has_fpu(current) &&
(read_cr0() & X86_CR0_TS);
}
/*
* Were we in user mode (or vm86 mode) when we were
* interrupted?
*
* Doing kernel_fpu_begin/end() is ok if we are running
* in an interrupt context from user mode - we'll just
* save the FPU state as required.
*/
static bool interrupted_user_mode(void)
{
struct pt_regs *regs = get_irq_regs();
return regs && user_mode(regs);
}
/*
* Can we use the FPU in kernel mode with the
* whole "kernel_fpu_begin/end()" sequence?
*
* It's always ok in process context (ie "not interrupt")
* but it is sometimes ok even from an irq.
*/
bool irq_fpu_usable(void)
{
return !in_interrupt() ||
interrupted_user_mode() ||
interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);
void __kernel_fpu_begin(void)
{
struct task_struct *me = current;
this_cpu_write(in_kernel_fpu, true);
if (__thread_has_fpu(me)) {
x86: Allow FPU to be used at interrupt time even with eagerfpu With the addition of eagerfpu the irq_fpu_usable() now returns false negatives especially in the case of ksoftirqd and interrupted idle task, two common cases for FPU use for example in networking/crypto. With eagerfpu=off FPU use is possible in those contexts. This is because of the eagerfpu check in interrupted_kernel_fpu_idle(): ... * For now, with eagerfpu we will return interrupted kernel FPU * state as not-idle. TBD: Ideally we can change the return value * to something like __thread_has_fpu(current). But we need to * be careful of doing __thread_clear_has_fpu() before saving * the FPU etc for supporting nested uses etc. For now, take * the simple route! ... if (use_eager_fpu()) return 0; As eagerfpu is automatically "on" on those CPUs that also have the features like AES-NI this patch changes the eagerfpu check to return 1 in case the kernel_fpu_begin() has not been said yet. Once it has been the __thread_has_fpu() will start returning 0. Notice that with eagerfpu the __thread_has_fpu is always true initially. FPU use is thus always possible no matter what task is under us, unless the state has already been saved with kernel_fpu_begin(). [ hpa: this is a performance regression, not a correctness regression, but since it can be quite serious on CPUs which need encryption at interrupt time I am marking this for urgent/stable. ] Signed-off-by: Pekka Riikonen <priikone@iki.fi> Link: http://lkml.kernel.org/r/alpine.GSO.2.00.1305131356320.18@git.silcnet.org Cc: <stable@vger.kernel.org> v3.7+ Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-05-13 06:32:07 -06:00
__save_init_fpu(me);
} else {
this_cpu_write(fpu_owner_task, NULL);
if (!use_eager_fpu())
clts();
}
}
EXPORT_SYMBOL(__kernel_fpu_begin);
void __kernel_fpu_end(void)
{
struct task_struct *me = current;
if (__thread_has_fpu(me)) {
if (WARN_ON(restore_fpu_checking(me)))
fpu_reset_state(me);
} else if (!use_eager_fpu()) {
x86, fpu: use non-lazy fpu restore for processors supporting xsave Fundamental model of the current Linux kernel is to lazily init and restore FPU instead of restoring the task state during context switch. This changes that fundamental lazy model to the non-lazy model for the processors supporting xsave feature. Reasons driving this model change are: i. Newer processors support optimized state save/restore using xsaveopt and xrstor by tracking the INIT state and MODIFIED state during context-switch. This is faster than modifying the cr0.TS bit which has serializing semantics. ii. Newer glibc versions use SSE for some of the optimized copy/clear routines. With certain workloads (like boot, kernel-compilation etc), application completes its work with in the first 5 task switches, thus taking upto 5 #DNA traps with the kernel not getting a chance to apply the above mentioned pre-load heuristic. iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit and thus will not work correctly in the presence of lazy restore. Non-lazy state restore is needed for enabling such features. Some data on a two socket SNB system: * Saved 20K DNA exceptions during boot on a two socket SNB system. * Saved 50K DNA exceptions during kernel-compilation workload. * Improved throughput of the AVX based checksumming function inside the kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts pair. Also now kernel_fpu_begin/end() relies on the patched alternative instructions. So move check_fpu() which uses the kernel_fpu_begin/end() after alternative_instructions(). Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com Merge 32-bit boot fix from, Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com Cc: Jim Kukunas <james.t.kukunas@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-08-24 15:13:02 -06:00
stts();
x86, fpu: Check tsk_used_math() in kernel_fpu_end() for eager FPU For non-eager fpu mode, thread's fpu state is allocated during the first fpu usage (in the context of device not available exception). This (math_state_restore()) can be a blocking call and hence we enable interrupts (which were originally disabled when the exception happened), allocate memory and disable interrupts etc. But the eager-fpu mode, call's the same math_state_restore() from kernel_fpu_end(). The assumption being that tsk_used_math() is always set for the eager-fpu mode and thus avoid the code path of enabling interrupts, allocating fpu state using blocking call and disable interrupts etc. But the below issue was noticed by Maarten Baert, Nate Eldredge and few others: If a user process dumps core on an ecrypt fs while aesni-intel is loaded, we get a BUG() in __find_get_block() complaining that it was called with interrupts disabled; then all further accesses to our ecrypt fs hang and we have to reboot. The aesni-intel code (encrypting the core file that we are writing) needs the FPU and quite properly wraps its code in kernel_fpu_{begin,end}(), the latter of which calls math_state_restore(). So after kernel_fpu_end(), interrupts may be disabled, which nobody seems to expect, and they stay that way until we eventually get to __find_get_block() which barfs. For eager fpu, most the time, tsk_used_math() is true. At few instances during thread exit, signal return handling etc, tsk_used_math() might be false. In kernel_fpu_end(), for eager-fpu, call math_state_restore() only if tsk_used_math() is set. Otherwise, don't bother. Kernel code path which cleared tsk_used_math() knows what needs to be done with the fpu state. Reported-by: Maarten Baert <maarten-baert@hotmail.com> Reported-by: Nate Eldredge <nate@thatsmathematics.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Suresh Siddha <sbsiddha@gmail.com> Link: http://lkml.kernel.org/r/1391410583.3801.6.camel@europa Cc: George Spelvin <linux@horizon.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-02-02 23:56:23 -07:00
}
this_cpu_write(in_kernel_fpu, false);
}
EXPORT_SYMBOL(__kernel_fpu_end);
/*
* Save the FPU state (initialize it if necessary):
*
* This only ever gets called for the current task.
*/
void fpu__save(struct task_struct *tsk)
{
WARN_ON(tsk != current);
preempt_disable();
if (__thread_has_fpu(tsk)) {
if (use_eager_fpu()) {
__save_fpu(tsk);
} else {
__save_init_fpu(tsk);
__thread_fpu_end(tsk);
}
}
preempt_enable();
}
EXPORT_SYMBOL_GPL(fpu__save);
void fpstate_init(struct fpu *fpu)
{
if (!cpu_has_fpu) {
finit_soft_fpu(&fpu->state->soft);
return;
}
memset(fpu->state, 0, xstate_size);
if (cpu_has_fxsr) {
fx_finit(&fpu->state->fxsave);
} else {
struct i387_fsave_struct *fp = &fpu->state->fsave;
fp->cwd = 0xffff037fu;
fp->swd = 0xffff0000u;
fp->twd = 0xffffffffu;
fp->fos = 0xffff0000u;
}
}
EXPORT_SYMBOL_GPL(fpstate_init);
/*
* FPU state allocation:
*/
static struct kmem_cache *task_xstate_cachep;
void fpstate_cache_init(void)
{
task_xstate_cachep =
kmem_cache_create("task_xstate", xstate_size,
__alignof__(union thread_xstate),
SLAB_PANIC | SLAB_NOTRACK, NULL);
setup_xstate_comp();
}
int fpstate_alloc(struct fpu *fpu)
{
if (fpu->state)
return 0;
fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
if (!fpu->state)
return -ENOMEM;
/* The CPU requires the FPU state to be aligned to 16 byte boundaries: */
WARN_ON((unsigned long)fpu->state & 15);
return 0;
}
EXPORT_SYMBOL_GPL(fpstate_alloc);
void fpstate_free(struct fpu *fpu)
{
if (fpu->state) {
kmem_cache_free(task_xstate_cachep, fpu->state);
fpu->state = NULL;
}
}
EXPORT_SYMBOL_GPL(fpstate_free);
int fpu__copy(struct task_struct *dst, struct task_struct *src)
{
dst->thread.fpu.counter = 0;
dst->thread.fpu.has_fpu = 0;
dst->thread.fpu.state = NULL;
task_disable_lazy_fpu_restore(dst);
if (tsk_used_math(src)) {
int err = fpstate_alloc(&dst->thread.fpu);
if (err)
return err;
fpu_copy(dst, src);
}
return 0;
}
/*
* Allocate the backing store for the current task's FPU registers
* and initialize the registers themselves as well.
*
* Can fail.
*/
int fpstate_alloc_init(struct task_struct *curr)
{
int ret;
if (WARN_ON_ONCE(curr != current))
return -EINVAL;
if (WARN_ON_ONCE(curr->flags & PF_USED_MATH))
return -EINVAL;
/*
* Memory allocation at the first usage of the FPU and other state.
*/
ret = fpstate_alloc(&curr->thread.fpu);
if (ret)
return ret;
fpstate_init(&curr->thread.fpu);
/* Safe to do for the current task: */
curr->flags |= PF_USED_MATH;
return 0;
}
EXPORT_SYMBOL_GPL(fpstate_alloc_init);
/*
* The _current_ task is using the FPU for the first time
* so initialize it and set the mxcsr to its default
* value at reset if we support XMM instructions and then
* remember the current task has used the FPU.
*/
static int fpu__unlazy_stopped(struct task_struct *child)
{
int ret;
if (WARN_ON_ONCE(child == current))
return -EINVAL;
if (child->flags & PF_USED_MATH) {
task_disable_lazy_fpu_restore(child);
return 0;
}
/*
* Memory allocation at the first usage of the FPU and other state.
*/
ret = fpstate_alloc(&child->thread.fpu);
if (ret)
return ret;
fpstate_init(&child->thread.fpu);
/* Safe to do for stopped child tasks: */
child->flags |= PF_USED_MATH;
return 0;
}
/*
* 'fpu__restore()' saves the current math information in the
* old math state array, and gets the new ones from the current task
*
* Careful.. There are problems with IBM-designed IRQ13 behaviour.
* Don't touch unless you *really* know how it works.
*
* Must be called with kernel preemption disabled (eg with local
* local interrupts as in the case of do_device_not_available).
*/
void fpu__restore(void)
{
struct task_struct *tsk = current;
if (!tsk_used_math(tsk)) {
local_irq_enable();
/*
* does a slab alloc which can sleep
*/
if (fpstate_alloc_init(tsk)) {
/*
* ran out of memory!
*/
do_group_exit(SIGKILL);
return;
}
local_irq_disable();
}
/* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
kernel_fpu_disable();
__thread_fpu_begin(tsk);
if (unlikely(restore_fpu_checking(tsk))) {
fpu_reset_state(tsk);
force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
} else {
tsk->thread.fpu.counter++;
}
kernel_fpu_enable();
}
EXPORT_SYMBOL_GPL(fpu__restore);
void fpu__flush_thread(struct task_struct *tsk)
{
if (!use_eager_fpu()) {
/* FPU state will be reallocated lazily at the first use. */
drop_fpu(tsk);
fpstate_free(&tsk->thread.fpu);
} else {
if (!tsk_used_math(tsk)) {
/* kthread execs. TODO: cleanup this horror. */
if (WARN_ON(fpstate_alloc_init(tsk)))
force_sig(SIGKILL, tsk);
user_fpu_begin();
}
restore_init_xstate();
}
}
/*
* The xstateregs_active() routine is the same as the fpregs_active() routine,
* as the "regset->n" for the xstate regset will be updated based on the feature
* capabilites supported by the xsave.
*/
int fpregs_active(struct task_struct *target, const struct user_regset *regset)
{
return tsk_used_math(target) ? regset->n : 0;
}
int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
{
return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
}
int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
int ret;
if (!cpu_has_fxsr)
return -ENODEV;
ret = fpu__unlazy_stopped(target);
if (ret)
return ret;
sanitize_i387_state(target);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.state->fxsave, 0, -1);
}
int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int ret;
if (!cpu_has_fxsr)
return -ENODEV;
ret = fpu__unlazy_stopped(target);
if (ret)
return ret;
sanitize_i387_state(target);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.state->fxsave, 0, -1);
/*
* mxcsr reserved bits must be masked to zero for security reasons.
*/
target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
/*
* update the header bits in the xsave header, indicating the
* presence of FP and SSE state.
*/
if (cpu_has_xsave)
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
return ret;
}
int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct xsave_struct *xsave;
int ret;
if (!cpu_has_xsave)
return -ENODEV;
ret = fpu__unlazy_stopped(target);
if (ret)
return ret;
xsave = &target->thread.fpu.state->xsave;
/*
* Copy the 48bytes defined by the software first into the xstate
* memory layout in the thread struct, so that we can copy the entire
* xstateregs to the user using one user_regset_copyout().
*/
memcpy(&xsave->i387.sw_reserved,
xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
/*
* Copy the xstate memory layout.
*/
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
return ret;
}
int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct xsave_struct *xsave;
int ret;
if (!cpu_has_xsave)
return -ENODEV;
ret = fpu__unlazy_stopped(target);
if (ret)
return ret;
xsave = &target->thread.fpu.state->xsave;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
/*
* mxcsr reserved bits must be masked to zero for security reasons.
*/
xsave->i387.mxcsr &= mxcsr_feature_mask;
xsave->xsave_hdr.xstate_bv &= pcntxt_mask;
/*
* These bits must be zero.
*/
memset(&xsave->xsave_hdr.reserved, 0, 48);
return ret;
}
#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
/*
* FPU tag word conversions.
*/
static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
{
unsigned int tmp; /* to avoid 16 bit prefixes in the code */
/* Transform each pair of bits into 01 (valid) or 00 (empty) */
tmp = ~twd;
tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
/* and move the valid bits to the lower byte. */
tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
return tmp;
}
#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
#define FP_EXP_TAG_VALID 0
#define FP_EXP_TAG_ZERO 1
#define FP_EXP_TAG_SPECIAL 2
#define FP_EXP_TAG_EMPTY 3
static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
{
struct _fpxreg *st;
u32 tos = (fxsave->swd >> 11) & 7;
u32 twd = (unsigned long) fxsave->twd;
u32 tag;
u32 ret = 0xffff0000u;
int i;
for (i = 0; i < 8; i++, twd >>= 1) {
if (twd & 0x1) {
st = FPREG_ADDR(fxsave, (i - tos) & 7);
switch (st->exponent & 0x7fff) {
case 0x7fff:
tag = FP_EXP_TAG_SPECIAL;
break;
case 0x0000:
if (!st->significand[0] &&
!st->significand[1] &&
!st->significand[2] &&
!st->significand[3])
tag = FP_EXP_TAG_ZERO;
else
tag = FP_EXP_TAG_SPECIAL;
break;
default:
if (st->significand[3] & 0x8000)
tag = FP_EXP_TAG_VALID;
else
tag = FP_EXP_TAG_SPECIAL;
break;
}
} else {
tag = FP_EXP_TAG_EMPTY;
}
ret |= tag << (2 * i);
}
return ret;
}
/*
* FXSR floating point environment conversions.
*/
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 17:05:29 -06:00
void
convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
{
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
int i;
env->cwd = fxsave->cwd | 0xffff0000u;
env->swd = fxsave->swd | 0xffff0000u;
env->twd = twd_fxsr_to_i387(fxsave);
#ifdef CONFIG_X86_64
env->fip = fxsave->rip;
env->foo = fxsave->rdp;
/*
* should be actually ds/cs at fpu exception time, but
* that information is not available in 64bit mode.
*/
env->fcs = task_pt_regs(tsk)->cs;
if (tsk == current) {
savesegment(ds, env->fos);
} else {
env->fos = tsk->thread.ds;
}
env->fos |= 0xffff0000;
#else
env->fip = fxsave->fip;
env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
env->foo = fxsave->foo;
env->fos = fxsave->fos;
#endif
for (i = 0; i < 8; ++i)
memcpy(&to[i], &from[i], sizeof(to[0]));
}
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 17:05:29 -06:00
void convert_to_fxsr(struct task_struct *tsk,
const struct user_i387_ia32_struct *env)
{
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
int i;
fxsave->cwd = env->cwd;
fxsave->swd = env->swd;
fxsave->twd = twd_i387_to_fxsr(env->twd);
fxsave->fop = (u16) ((u32) env->fcs >> 16);
#ifdef CONFIG_X86_64
fxsave->rip = env->fip;
fxsave->rdp = env->foo;
/* cs and ds ignored */
#else
fxsave->fip = env->fip;
fxsave->fcs = (env->fcs & 0xffff);
fxsave->foo = env->foo;
fxsave->fos = env->fos;
#endif
for (i = 0; i < 8; ++i)
memcpy(&to[i], &from[i], sizeof(from[0]));
}
int fpregs_get(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct user_i387_ia32_struct env;
int ret;
ret = fpu__unlazy_stopped(target);
if (ret)
return ret;
if (!static_cpu_has(X86_FEATURE_FPU))
return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
if (!cpu_has_fxsr)
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.state->fsave, 0,
-1);
sanitize_i387_state(target);
if (kbuf && pos == 0 && count == sizeof(env)) {
convert_from_fxsr(kbuf, target);
return 0;
}
convert_from_fxsr(&env, target);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
}
int fpregs_set(struct task_struct *target, const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct user_i387_ia32_struct env;
int ret;
ret = fpu__unlazy_stopped(target);
if (ret)
return ret;
sanitize_i387_state(target);
if (!static_cpu_has(X86_FEATURE_FPU))
return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
if (!cpu_has_fxsr)
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.state->fsave, 0,
-1);
if (pos > 0 || count < sizeof(env))
convert_from_fxsr(&env, target);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
if (!ret)
convert_to_fxsr(target, &env);
/*
* update the header bit in the xsave header, indicating the
* presence of FP.
*/
if (cpu_has_xsave)
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
return ret;
}
/*
* FPU state for core dumps.
* This is only used for a.out dumps now.
* It is declared generically using elf_fpregset_t (which is
* struct user_i387_struct) but is in fact only used for 32-bit
* dumps, so on 64-bit it is really struct user_i387_ia32_struct.
*/
int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
{
struct task_struct *tsk = current;
int fpvalid;
fpvalid = !!used_math();
if (fpvalid)
fpvalid = !fpregs_get(tsk, NULL,
0, sizeof(struct user_i387_ia32_struct),
fpu, NULL);
return fpvalid;
}
EXPORT_SYMBOL(dump_fpu);
#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */