1
0
Fork 0
alistair23-linux/drivers/crypto/caam/caamalg_qi.c

3210 lines
84 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale FSL CAAM support for crypto API over QI backend.
* Based on caamalg.c
*
* Copyright 2013-2016 Freescale Semiconductor, Inc.
* Copyright 2016-2019 NXP
*/
#include "compat.h"
#include "ctrl.h"
#include "regs.h"
#include "intern.h"
#include "desc_constr.h"
#include "error.h"
#include "sg_sw_qm.h"
#include "key_gen.h"
#include "qi.h"
#include "jr.h"
#include "caamalg_desc.h"
#include <asm/unaligned.h>
/*
* crypto alg
*/
#define CAAM_CRA_PRIORITY 2000
/* max key is sum of AES_MAX_KEY_SIZE, max split key size */
#define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
SHA512_DIGEST_SIZE * 2)
#define DESC_MAX_USED_BYTES (DESC_QI_AEAD_GIVENC_LEN + \
CAAM_MAX_KEY_SIZE)
#define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ)
struct caam_alg_entry {
int class1_alg_type;
int class2_alg_type;
bool rfc3686;
bool geniv;
bool nodkp;
};
struct caam_aead_alg {
struct aead_alg aead;
struct caam_alg_entry caam;
bool registered;
};
struct caam_skcipher_alg {
struct skcipher_alg skcipher;
struct caam_alg_entry caam;
bool registered;
};
/*
* per-session context
*/
struct caam_ctx {
struct device *jrdev;
u32 sh_desc_enc[DESC_MAX_USED_LEN];
u32 sh_desc_dec[DESC_MAX_USED_LEN];
u8 key[CAAM_MAX_KEY_SIZE];
dma_addr_t key_dma;
enum dma_data_direction dir;
struct alginfo adata;
struct alginfo cdata;
unsigned int authsize;
struct device *qidev;
spinlock_t lock; /* Protects multiple init of driver context */
struct caam_drv_ctx *drv_ctx[NUM_OP];
struct crypto_skcipher *fallback;
};
struct caam_skcipher_req_ctx {
struct skcipher_request fallback_req;
};
static int aead_set_sh_desc(struct crypto_aead *aead)
{
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
typeof(*alg), aead);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
u32 ctx1_iv_off = 0;
u32 *nonce = NULL;
unsigned int data_len[2];
u32 inl_mask;
const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = alg->caam.rfc3686;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent);
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ctx1_iv_off = 16;
/*
* RFC3686 specific:
* CONTEXT1[255:128] = {NONCE, IV, COUNTER}
*/
if (is_rfc3686) {
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad +
ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE);
}
/*
* In case |user key| > |derived key|, using DKP<imm,imm> would result
* in invalid opcodes (last bytes of user key) in the resulting
* descriptor. Use DKP<ptr,imm> instead => both virtual and dma key
* addresses are needed.
*/
ctx->adata.key_virt = ctx->key;
ctx->adata.key_dma = ctx->key_dma;
ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
data_len[0] = ctx->adata.keylen_pad;
data_len[1] = ctx->cdata.keylen;
if (alg->caam.geniv)
goto skip_enc;
/* aead_encrypt shared descriptor */
if (desc_inline_query(DESC_QI_AEAD_ENC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
cnstr_shdsc_aead_encap(ctx->sh_desc_enc, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, is_rfc3686, nonce,
ctx1_iv_off, true, ctrlpriv->era);
skip_enc:
/* aead_decrypt shared descriptor */
if (desc_inline_query(DESC_QI_AEAD_DEC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
cnstr_shdsc_aead_decap(ctx->sh_desc_dec, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, alg->caam.geniv,
is_rfc3686, nonce, ctx1_iv_off, true,
ctrlpriv->era);
if (!alg->caam.geniv)
goto skip_givenc;
/* aead_givencrypt shared descriptor */
if (desc_inline_query(DESC_QI_AEAD_GIVENC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
cnstr_shdsc_aead_givencap(ctx->sh_desc_enc, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, is_rfc3686, nonce,
ctx1_iv_off, true, ctrlpriv->era);
skip_givenc:
return 0;
}
static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
aead_set_sh_desc(authenc);
return 0;
}
static int aead_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent);
struct crypto_authenc_keys keys;
int ret = 0;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
dev_dbg(jrdev, "keylen %d enckeylen %d authkeylen %d\n",
keys.authkeylen + keys.enckeylen, keys.enckeylen,
keys.authkeylen);
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
/*
* If DKP is supported, use it in the shared descriptor to generate
* the split key.
*/
if (ctrlpriv->era >= 6) {
ctx->adata.keylen = keys.authkeylen;
ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
OP_ALG_ALGSEL_MASK);
if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE)
goto badkey;
memcpy(ctx->key, keys.authkey, keys.authkeylen);
memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey,
keys.enckeylen);
dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
ctx->adata.keylen_pad +
keys.enckeylen, ctx->dir);
goto skip_split_key;
}
ret = gen_split_key(jrdev, ctx->key, &ctx->adata, keys.authkey,
keys.authkeylen, CAAM_MAX_KEY_SIZE -
keys.enckeylen);
if (ret)
goto badkey;
/* postpend encryption key to auth split key */
memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen);
dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
ctx->adata.keylen_pad + keys.enckeylen,
ctx->dir);
print_hex_dump_debug("ctx.key@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->adata.keylen_pad + keys.enckeylen, 1);
skip_split_key:
ctx->cdata.keylen = keys.enckeylen;
ret = aead_set_sh_desc(aead);
if (ret)
goto badkey;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
goto badkey;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
goto badkey;
}
}
memzero_explicit(&keys, sizeof(keys));
return ret;
badkey:
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct crypto_authenc_keys keys;
int err;
err = crypto_authenc_extractkeys(&keys, key, keylen);
if (unlikely(err))
return err;
err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?:
aead_setkey(aead, key, keylen);
memzero_explicit(&keys, sizeof(keys));
return err;
}
static int tls_set_sh_desc(struct crypto_aead *tls)
{
struct caam_ctx *ctx = crypto_aead_ctx(tls);
unsigned int ivsize = crypto_aead_ivsize(tls);
unsigned int blocksize = crypto_aead_blocksize(tls);
unsigned int assoclen = 13; /* always 13 bytes for TLS */
unsigned int data_len[2];
u32 inl_mask;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent);
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* TLS 1.0 encrypt shared descriptor
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
data_len[0] = ctx->adata.keylen_pad;
data_len[1] = ctx->cdata.keylen;
if (desc_inline_query(DESC_TLS10_ENC_LEN, DESC_JOB_IO_LEN, data_len,
&inl_mask, ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
if (inl_mask & 1)
ctx->adata.key_virt = ctx->key;
else
ctx->adata.key_dma = ctx->key_dma;
if (inl_mask & 2)
ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
else
ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
cnstr_shdsc_tls_encap(ctx->sh_desc_enc, &ctx->cdata, &ctx->adata,
assoclen, ivsize, ctx->authsize, blocksize,
ctrlpriv->era);
/*
* TLS 1.0 decrypt shared descriptor
* Keys do not fit inline, regardless of algorithms used
*/
ctx->adata.key_inline = false;
ctx->adata.key_dma = ctx->key_dma;
ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
cnstr_shdsc_tls_decap(ctx->sh_desc_dec, &ctx->cdata, &ctx->adata,
assoclen, ivsize, ctx->authsize, blocksize,
ctrlpriv->era);
return 0;
}
static int tls_setauthsize(struct crypto_aead *tls, unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(tls);
ctx->authsize = authsize;
tls_set_sh_desc(tls);
return 0;
}
static int tls_setkey(struct crypto_aead *tls, const u8 *key,
unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(tls);
struct device *jrdev = ctx->jrdev;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent);
struct crypto_authenc_keys keys;
int ret = 0;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
#ifdef DEBUG
dev_err(jrdev, "keylen %d enckeylen %d authkeylen %d\n",
keys.authkeylen + keys.enckeylen, keys.enckeylen,
keys.authkeylen);
print_hex_dump(KERN_ERR, "key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
/*
* If DKP is supported, use it in the shared descriptor to generate
* the split key.
*/
if (ctrlpriv->era >= 6) {
ctx->adata.keylen = keys.authkeylen;
ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
OP_ALG_ALGSEL_MASK);
if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE)
goto badkey;
memcpy(ctx->key, keys.authkey, keys.authkeylen);
memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey,
keys.enckeylen);
dma_sync_single_for_device(jrdev, ctx->key_dma,
ctx->adata.keylen_pad +
keys.enckeylen, ctx->dir);
goto skip_split_key;
}
ret = gen_split_key(jrdev, ctx->key, &ctx->adata, keys.authkey,
keys.authkeylen, CAAM_MAX_KEY_SIZE -
keys.enckeylen);
if (ret)
goto badkey;
/* postpend encryption key to auth split key */
memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen);
dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->adata.keylen_pad +
keys.enckeylen, ctx->dir);
#ifdef DEBUG
dev_err(jrdev, "split keylen %d split keylen padded %d\n",
ctx->adata.keylen, ctx->adata.keylen_pad);
print_hex_dump(KERN_ERR, "ctx.key@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->adata.keylen_pad + keys.enckeylen, 1);
#endif
skip_split_key:
ctx->cdata.keylen = keys.enckeylen;
ret = tls_set_sh_desc(tls);
if (ret)
goto badkey;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
goto badkey;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
goto badkey;
}
}
memzero_explicit(&keys, sizeof(keys));
return ret;
badkey:
crypto_aead_set_flags(tls, CRYPTO_TFM_RES_BAD_KEY_LEN);
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int gcm_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_GCM_ENC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_gcm_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
ctx->authsize, true);
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_GCM_DEC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_gcm_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
ctx->authsize, true);
return 0;
}
static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
int err;
err = crypto_gcm_check_authsize(authsize);
if (err)
return err;
ctx->authsize = authsize;
gcm_set_sh_desc(authenc);
return 0;
}
static int gcm_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret;
ret = aes_check_keylen(keylen);
if (ret) {
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return ret;
}
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
memcpy(ctx->key, key, keylen);
dma_sync_single_for_device(jrdev->parent, ctx->key_dma, keylen,
ctx->dir);
ctx->cdata.keylen = keylen;
ret = gcm_set_sh_desc(aead);
if (ret)
return ret;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
return ret;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
return ret;
}
}
return 0;
}
static int rfc4106_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
ctx->cdata.key_virt = ctx->key;
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4106_ENC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4106_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
ctx->authsize, true);
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4106_DEC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4106_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
ctx->authsize, true);
return 0;
}
static int rfc4106_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
int err;
err = crypto_rfc4106_check_authsize(authsize);
if (err)
return err;
ctx->authsize = authsize;
rfc4106_set_sh_desc(authenc);
return 0;
}
static int rfc4106_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret;
ret = aes_check_keylen(keylen - 4);
if (ret) {
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return ret;
}
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->cdata.keylen = keylen - 4;
dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
ctx->cdata.keylen, ctx->dir);
ret = rfc4106_set_sh_desc(aead);
if (ret)
return ret;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
return ret;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
return ret;
}
}
return 0;
}
static int rfc4543_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
ctx->cdata.key_virt = ctx->key;
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4543_ENC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4543_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
ctx->authsize, true);
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4543_DEC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4543_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
ctx->authsize, true);
return 0;
}
static int rfc4543_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
if (authsize != 16)
return -EINVAL;
ctx->authsize = authsize;
rfc4543_set_sh_desc(authenc);
return 0;
}
static int rfc4543_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret;
ret = aes_check_keylen(keylen - 4);
if (ret) {
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return ret;
}
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->cdata.keylen = keylen - 4;
dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
ctx->cdata.keylen, ctx->dir);
ret = rfc4543_set_sh_desc(aead);
if (ret)
return ret;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
return ret;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
return ret;
}
}
return 0;
}
static int skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
unsigned int keylen, const u32 ctx1_iv_off)
{
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct caam_skcipher_alg *alg =
container_of(crypto_skcipher_alg(skcipher), typeof(*alg),
skcipher);
struct device *jrdev = ctx->jrdev;
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
const bool is_rfc3686 = alg->caam.rfc3686;
int ret = 0;
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* skcipher encrypt, decrypt shared descriptors */
cnstr_shdsc_skcipher_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
is_rfc3686, ctx1_iv_off);
cnstr_shdsc_skcipher_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
is_rfc3686, ctx1_iv_off);
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
goto badkey;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
goto badkey;
}
}
return ret;
badkey:
crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
static int aes_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
int err;
err = aes_check_keylen(keylen);
if (err) {
crypto_skcipher_set_flags(skcipher,
CRYPTO_TFM_RES_BAD_KEY_LEN);
return err;
}
return skcipher_setkey(skcipher, key, keylen, 0);
}
static int rfc3686_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
u32 ctx1_iv_off;
int err;
/*
* RFC3686 specific:
* | CONTEXT1[255:128] = {NONCE, IV, COUNTER}
* | *key = {KEY, NONCE}
*/
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
keylen -= CTR_RFC3686_NONCE_SIZE;
err = aes_check_keylen(keylen);
if (err) {
crypto_skcipher_set_flags(skcipher,
CRYPTO_TFM_RES_BAD_KEY_LEN);
return err;
}
return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off);
}
static int ctr_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
u32 ctx1_iv_off;
int err;
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
ctx1_iv_off = 16;
err = aes_check_keylen(keylen);
if (err) {
crypto_skcipher_set_flags(skcipher,
CRYPTO_TFM_RES_BAD_KEY_LEN);
return err;
}
return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off);
}
static int des3_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
return verify_skcipher_des3_key(skcipher, key) ?:
skcipher_setkey(skcipher, key, keylen, 0);
}
static int des_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
return verify_skcipher_des_key(skcipher, key) ?:
skcipher_setkey(skcipher, key, keylen, 0);
}
static int xts_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
unsigned int keylen)
{
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct device *jrdev = ctx->jrdev;
int ret = 0;
int err;
if (keylen != 2 * AES_MIN_KEY_SIZE && keylen != 2 * AES_MAX_KEY_SIZE) {
dev_err(jrdev, "key size mismatch\n");
goto badkey;
}
err = crypto_skcipher_setkey(ctx->fallback, key, keylen);
if (err)
return err;
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* xts skcipher encrypt, decrypt shared descriptors */
cnstr_shdsc_xts_skcipher_encap(ctx->sh_desc_enc, &ctx->cdata);
cnstr_shdsc_xts_skcipher_decap(ctx->sh_desc_dec, &ctx->cdata);
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
goto badkey;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
goto badkey;
}
}
return ret;
badkey:
crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
/*
* aead_edesc - s/w-extended aead descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @qm_sg_bytes: length of dma mapped h/w link table
* @qm_sg_dma: bus physical mapped address of h/w link table
* @assoclen: associated data length, in CAAM endianness
* @assoclen_dma: bus physical mapped address of req->assoclen
* @drv_req: driver-specific request structure
* @sgt: the h/w link table, followed by IV
*/
struct aead_edesc {
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
int qm_sg_bytes;
dma_addr_t qm_sg_dma;
unsigned int assoclen;
dma_addr_t assoclen_dma;
struct caam_drv_req drv_req;
struct qm_sg_entry sgt[0];
};
/*
* tls_edesc - s/w-extended tls descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @qm_sg_bytes: length of dma mapped h/w link table
* @tmp: array of scatterlists used by 'scatterwalk_ffwd'
* @qm_sg_dma: bus physical mapped address of h/w link table
* @drv_req: driver-specific request structure
* @sgt: the h/w link table, followed by IV
*/
struct tls_edesc {
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
int qm_sg_bytes;
dma_addr_t qm_sg_dma;
struct scatterlist tmp[2];
struct scatterlist *dst;
struct caam_drv_req drv_req;
struct qm_sg_entry sgt[0];
};
/*
* skcipher_edesc - s/w-extended skcipher descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @qm_sg_bytes: length of dma mapped h/w link table
* @qm_sg_dma: bus physical mapped address of h/w link table
* @drv_req: driver-specific request structure
* @sgt: the h/w link table, followed by IV
*/
struct skcipher_edesc {
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
int qm_sg_bytes;
dma_addr_t qm_sg_dma;
struct caam_drv_req drv_req;
struct qm_sg_entry sgt[0];
};
static struct caam_drv_ctx *get_drv_ctx(struct caam_ctx *ctx,
enum optype type)
{
/*
* This function is called on the fast path with values of 'type'
* known at compile time. Invalid arguments are not expected and
* thus no checks are made.
*/
struct caam_drv_ctx *drv_ctx = ctx->drv_ctx[type];
u32 *desc;
if (unlikely(!drv_ctx)) {
spin_lock(&ctx->lock);
/* Read again to check if some other core init drv_ctx */
drv_ctx = ctx->drv_ctx[type];
if (!drv_ctx) {
int cpu;
if (type == ENCRYPT)
desc = ctx->sh_desc_enc;
else /* (type == DECRYPT) */
desc = ctx->sh_desc_dec;
cpu = smp_processor_id();
drv_ctx = caam_drv_ctx_init(ctx->qidev, &cpu, desc);
if (!IS_ERR_OR_NULL(drv_ctx))
drv_ctx->op_type = type;
ctx->drv_ctx[type] = drv_ctx;
}
spin_unlock(&ctx->lock);
}
return drv_ctx;
}
static void caam_unmap(struct device *dev, struct scatterlist *src,
struct scatterlist *dst, int src_nents,
int dst_nents, dma_addr_t iv_dma, int ivsize,
enum dma_data_direction iv_dir, dma_addr_t qm_sg_dma,
int qm_sg_bytes)
{
if (dst != src) {
if (src_nents)
dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
if (dst_nents)
dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
} else {
dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
}
if (iv_dma)
dma_unmap_single(dev, iv_dma, ivsize, iv_dir);
if (qm_sg_bytes)
dma_unmap_single(dev, qm_sg_dma, qm_sg_bytes, DMA_TO_DEVICE);
}
static void aead_unmap(struct device *dev,
struct aead_edesc *edesc,
struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
int ivsize = crypto_aead_ivsize(aead);
caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, DMA_TO_DEVICE, edesc->qm_sg_dma,
edesc->qm_sg_bytes);
dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
}
static void tls_unmap(struct device *dev,
struct tls_edesc *edesc,
struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
int ivsize = crypto_aead_ivsize(aead);
caam_unmap(dev, req->src, edesc->dst, edesc->src_nents,
edesc->dst_nents, edesc->iv_dma, ivsize, DMA_TO_DEVICE,
edesc->qm_sg_dma, edesc->qm_sg_bytes);
}
static void skcipher_unmap(struct device *dev, struct skcipher_edesc *edesc,
struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
int ivsize = crypto_skcipher_ivsize(skcipher);
caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, DMA_BIDIRECTIONAL, edesc->qm_sg_dma,
edesc->qm_sg_bytes);
}
static void aead_done(struct caam_drv_req *drv_req, u32 status)
{
struct device *qidev;
struct aead_edesc *edesc;
struct aead_request *aead_req = drv_req->app_ctx;
struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
struct caam_ctx *caam_ctx = crypto_aead_ctx(aead);
int ecode = 0;
qidev = caam_ctx->qidev;
if (unlikely(status))
ecode = caam_jr_strstatus(qidev, status);
edesc = container_of(drv_req, typeof(*edesc), drv_req);
aead_unmap(qidev, edesc, aead_req);
aead_request_complete(aead_req, ecode);
qi_cache_free(edesc);
}
/*
* allocate and map the aead extended descriptor
*/
static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
typeof(*alg), aead);
struct device *qidev = ctx->qidev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
int src_len, dst_len = 0;
struct aead_edesc *edesc;
dma_addr_t qm_sg_dma, iv_dma = 0;
int ivsize = 0;
unsigned int authsize = ctx->authsize;
int qm_sg_index = 0, qm_sg_ents = 0, qm_sg_bytes;
int in_len, out_len;
struct qm_sg_entry *sg_table, *fd_sgt;
struct caam_drv_ctx *drv_ctx;
drv_ctx = get_drv_ctx(ctx, encrypt ? ENCRYPT : DECRYPT);
if (IS_ERR_OR_NULL(drv_ctx))
return (struct aead_edesc *)drv_ctx;
/* allocate space for base edesc and hw desc commands, link tables */
edesc = qi_cache_alloc(GFP_DMA | flags);
if (unlikely(!edesc)) {
dev_err(qidev, "could not allocate extended descriptor\n");
return ERR_PTR(-ENOMEM);
}
if (likely(req->src == req->dst)) {
src_len = req->assoclen + req->cryptlen +
(encrypt ? authsize : 0);
src_nents = sg_nents_for_len(req->src, src_len);
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
src_len);
qi_cache_free(edesc);
return ERR_PTR(src_nents);
}
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
src_len = req->assoclen + req->cryptlen;
dst_len = src_len + (encrypt ? authsize : (-authsize));
src_nents = sg_nents_for_len(req->src, src_len);
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
src_len);
qi_cache_free(edesc);
return ERR_PTR(src_nents);
}
dst_nents = sg_nents_for_len(req->dst, dst_len);
if (unlikely(dst_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n",
dst_len);
qi_cache_free(edesc);
return ERR_PTR(dst_nents);
}
if (src_nents) {
mapped_src_nents = dma_map_sg(qidev, req->src,
src_nents, DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = 0;
}
if (dst_nents) {
mapped_dst_nents = dma_map_sg(qidev, req->dst,
dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(qidev, "unable to map destination\n");
dma_unmap_sg(qidev, req->src, src_nents,
DMA_TO_DEVICE);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_dst_nents = 0;
}
}
if ((alg->caam.rfc3686 && encrypt) || !alg->caam.geniv)
ivsize = crypto_aead_ivsize(aead);
/*
* Create S/G table: req->assoclen, [IV,] req->src [, req->dst].
* Input is not contiguous.
* HW reads 4 S/G entries at a time; make sure the reads don't go beyond
* the end of the table by allocating more S/G entries. Logic:
* if (src != dst && output S/G)
* pad output S/G, if needed
* else if (src == dst && S/G)
* overlapping S/Gs; pad one of them
* else if (input S/G) ...
* pad input S/G, if needed
*/
qm_sg_ents = 1 + !!ivsize + mapped_src_nents;
if (mapped_dst_nents > 1)
qm_sg_ents += pad_sg_nents(mapped_dst_nents);
else if ((req->src == req->dst) && (mapped_src_nents > 1))
qm_sg_ents = max(pad_sg_nents(qm_sg_ents),
1 + !!ivsize + pad_sg_nents(mapped_src_nents));
else
qm_sg_ents = pad_sg_nents(qm_sg_ents);
sg_table = &edesc->sgt[0];
qm_sg_bytes = qm_sg_ents * sizeof(*sg_table);
if (unlikely(offsetof(struct aead_edesc, sgt) + qm_sg_bytes + ivsize >
CAAM_QI_MEMCACHE_SIZE)) {
dev_err(qidev, "No space for %d S/G entries and/or %dB IV\n",
qm_sg_ents, ivsize);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
crypto: caam/qi - handle large number of S/Gs case For more than 16 S/G entries, driver currently corrupts memory on ARMv8, see below KASAN log. Note: this does not reproduce on PowerPC due to different (smaller) cache line size - 64 bytes on PPC vs. 128 bytes on ARMv8. One such use case is one of the cbc(aes) test vectors - with 8 S/G entries and src != dst. Driver needs 1 (IV) + 2 x 8 = 17 entries, which goes over the 16 S/G entries limit: (CAAM_QI_MEMCACHE_SIZE - offsetof(struct ablkcipher_edesc, sgt)) / sizeof(struct qm_sg_entry) = 256 / 16 = 16 S/Gs Fix this by: -increasing object size in caamqicache pool from 512 to 768; this means the maximum number of S/G entries grows from (at least) 16 to 32 (again, for ARMv8 case of 128-byte cache line) -add checks in the driver to fail gracefully (ENOMEM) in case the 32 S/G entries limit is exceeded ================================================================== BUG: KASAN: slab-out-of-bounds in ablkcipher_edesc_alloc+0x4ec/0xf60 Write of size 1 at addr ffff800021cb6003 by task cryptomgr_test/1394 CPU: 3 PID: 1394 Comm: cryptomgr_test Not tainted 4.12.0-rc7-next-20170703-00023-g72badbcc1ea7-dirty #26 Hardware name: LS1046A RDB Board (DT) Call trace: [<ffff20000808ac6c>] dump_backtrace+0x0/0x290 [<ffff20000808b014>] show_stack+0x14/0x1c [<ffff200008d62c00>] dump_stack+0xa4/0xc8 [<ffff200008264e40>] print_address_description+0x110/0x26c [<ffff200008265224>] kasan_report+0x1d0/0x2fc [<ffff2000082637b8>] __asan_store1+0x4c/0x54 [<ffff200008b4884c>] ablkcipher_edesc_alloc+0x4ec/0xf60 [<ffff200008b49304>] ablkcipher_encrypt+0x44/0xcc [<ffff20000848a61c>] skcipher_encrypt_ablkcipher+0x120/0x138 [<ffff200008495014>] __test_skcipher+0xaec/0xe30 [<ffff200008497088>] test_skcipher+0x6c/0xd8 [<ffff200008497154>] alg_test_skcipher+0x60/0xe4 [<ffff2000084974c4>] alg_test.part.13+0x130/0x304 [<ffff2000084976d4>] alg_test+0x3c/0x68 [<ffff2000084938ac>] cryptomgr_test+0x54/0x5c [<ffff20000810276c>] kthread+0x188/0x1c8 [<ffff2000080836c0>] ret_from_fork+0x10/0x50 Allocated by task 1394: save_stack_trace_tsk+0x0/0x1ac save_stack_trace+0x18/0x20 kasan_kmalloc.part.5+0x48/0x110 kasan_kmalloc+0x84/0xa0 kasan_slab_alloc+0x14/0x1c kmem_cache_alloc+0x124/0x1e8 qi_cache_alloc+0x28/0x58 ablkcipher_edesc_alloc+0x244/0xf60 ablkcipher_encrypt+0x44/0xcc skcipher_encrypt_ablkcipher+0x120/0x138 __test_skcipher+0xaec/0xe30 test_skcipher+0x6c/0xd8 alg_test_skcipher+0x60/0xe4 alg_test.part.13+0x130/0x304 alg_test+0x3c/0x68 cryptomgr_test+0x54/0x5c kthread+0x188/0x1c8 ret_from_fork+0x10/0x50 Freed by task 0: (stack is not available) The buggy address belongs to the object at ffff800021cb5e00 which belongs to the cache caamqicache of size 512 The buggy address is located 3 bytes to the right of 512-byte region [ffff800021cb5e00, ffff800021cb6000) The buggy address belongs to the page: page:ffff7e0000872d00 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 flags: 0xfffc00000008100(slab|head) raw: 0fffc00000008100 0000000000000000 0000000000000000 0000000180190019 raw: dead000000000100 dead000000000200 ffff800931268200 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff800021cb5f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff800021cb5f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff800021cb6000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff800021cb6080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff800021cb6100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Fixes: b189817cf789 ("crypto: caam/qi - add ablkcipher and authenc algorithms") Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-07-09 23:40:31 -06:00
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
if (ivsize) {
u8 *iv = (u8 *)(sg_table + qm_sg_ents);
/* Make sure IV is located in a DMAable area */
memcpy(iv, req->iv, ivsize);
iv_dma = dma_map_single(qidev, iv, ivsize, DMA_TO_DEVICE);
if (dma_mapping_error(qidev, iv_dma)) {
dev_err(qidev, "unable to map IV\n");
caam_unmap(qidev, req->src, req->dst, src_nents,
dst_nents, 0, 0, DMA_NONE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->drv_req.app_ctx = req;
edesc->drv_req.cbk = aead_done;
edesc->drv_req.drv_ctx = drv_ctx;
edesc->assoclen = cpu_to_caam32(req->assoclen);
edesc->assoclen_dma = dma_map_single(qidev, &edesc->assoclen, 4,
DMA_TO_DEVICE);
if (dma_mapping_error(qidev, edesc->assoclen_dma)) {
dev_err(qidev, "unable to map assoclen\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
dma_to_qm_sg_one(sg_table, edesc->assoclen_dma, 4, 0);
qm_sg_index++;
if (ivsize) {
dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0);
qm_sg_index++;
}
sg_to_qm_sg_last(req->src, src_len, sg_table + qm_sg_index, 0);
qm_sg_index += mapped_src_nents;
if (mapped_dst_nents > 1)
sg_to_qm_sg_last(req->dst, dst_len, sg_table + qm_sg_index, 0);
qm_sg_dma = dma_map_single(qidev, sg_table, qm_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(qidev, qm_sg_dma)) {
dev_err(qidev, "unable to map S/G table\n");
dma_unmap_single(qidev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->qm_sg_dma = qm_sg_dma;
edesc->qm_sg_bytes = qm_sg_bytes;
out_len = req->assoclen + req->cryptlen +
(encrypt ? ctx->authsize : (-ctx->authsize));
in_len = 4 + ivsize + req->assoclen + req->cryptlen;
fd_sgt = &edesc->drv_req.fd_sgt[0];
dma_to_qm_sg_one_last_ext(&fd_sgt[1], qm_sg_dma, in_len, 0);
if (req->dst == req->src) {
if (mapped_src_nents == 1)
dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->src),
out_len, 0);
else
dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma +
(1 + !!ivsize) * sizeof(*sg_table),
out_len, 0);
crypto: caam - avoid S/G table fetching for AEAD zero-length output When enabling IOMMU support, the following issue becomes visible in the AEAD zero-length case. Even though the output sequence length is set to zero, the crypto engine tries to prefetch 4 S/G table entries (since SGF bit is set in SEQ OUT PTR command - which is either generated in SW in case of caam/jr or in HW in case of caam/qi, caam/qi2). The DMA read operation will trigger an IOMMU fault since the address in the SEQ OUT PTR is "dummy" (set to zero / not obtained via DMA API mapping). 1. In case of caam/jr, avoid the IOMMU fault by clearing the SGF bit in SEQ OUT PTR command. 2. In case of caam/qi - setting address, bpid, length to zero for output entry in the compound frame has a special meaning (cf. CAAM RM): "Output frame = Unspecified, Input address = Y. A unspecified frame is indicated by an unused SGT entry (an entry in which the Address, Length, and BPID fields are all zero). SEC obtains output buffers from BMan as prescribed by the preheader." Since no output buffers are needed, modify the preheader by setting (ABS = 1, ADDBUF = 0): -"ABS = 1 means obtain the number of buffers in ADDBUF (0 or 1) from the pool POOL ID" -ADDBUF: "If ABS is set, ADD BUF specifies whether to allocate a buffer or not" 3. In case of caam/qi2, since engine: -does not support FLE[FMT]=2'b11 ("unused" entry) mentioned in DPAA2 RM -requires output entry to be present, even if not used the solution chosen is to leave output frame list entry zeroized. Fixes: 763069ba49d3 ("crypto: caam - handle zero-length AEAD output") Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-05-03 08:17:37 -06:00
} else if (mapped_dst_nents <= 1) {
dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->dst), out_len,
0);
} else {
dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma + sizeof(*sg_table) *
qm_sg_index, out_len, 0);
}
return edesc;
}
static inline int aead_crypt(struct aead_request *req, bool encrypt)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int ret;
if (unlikely(caam_congested))
return -EAGAIN;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, encrypt);
if (IS_ERR_OR_NULL(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor */
ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(ctx->qidev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int aead_encrypt(struct aead_request *req)
{
return aead_crypt(req, true);
}
static int aead_decrypt(struct aead_request *req)
{
return aead_crypt(req, false);
}
static void tls_done(struct caam_drv_req *drv_req, u32 status)
{
struct device *qidev;
struct tls_edesc *edesc;
struct aead_request *aead_req = drv_req->app_ctx;
struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
struct caam_ctx *caam_ctx = crypto_aead_ctx(aead);
int ecode = 0;
qidev = caam_ctx->qidev;
if (unlikely(status)) {
caam_jr_strstatus(qidev, status);
ecode = -EIO;
}
edesc = container_of(drv_req, typeof(*edesc), drv_req);
tls_unmap(qidev, edesc, aead_req);
aead_request_complete(aead_req, ecode);
qi_cache_free(edesc);
}
/*
* allocate and map the tls extended descriptor
*/
static struct tls_edesc *tls_edesc_alloc(struct aead_request *req, bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int blocksize = crypto_aead_blocksize(aead);
unsigned int padsize, authsize;
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
typeof(*alg), aead);
struct device *qidev = ctx->qidev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
struct tls_edesc *edesc;
dma_addr_t qm_sg_dma, iv_dma = 0;
int ivsize = 0;
u8 *iv;
int qm_sg_index, qm_sg_ents = 0, qm_sg_bytes;
int in_len, out_len;
struct qm_sg_entry *sg_table, *fd_sgt;
struct caam_drv_ctx *drv_ctx;
struct scatterlist *dst;
if (encrypt) {
padsize = blocksize - ((req->cryptlen + ctx->authsize) %
blocksize);
authsize = ctx->authsize + padsize;
} else {
authsize = ctx->authsize;
}
drv_ctx = get_drv_ctx(ctx, encrypt ? ENCRYPT : DECRYPT);
if (unlikely(IS_ERR_OR_NULL(drv_ctx)))
return (struct tls_edesc *)drv_ctx;
/* allocate space for base edesc, link tables and IV */
edesc = qi_cache_alloc(GFP_DMA | flags);
if (unlikely(!edesc)) {
dev_err(qidev, "could not allocate extended descriptor\n");
return ERR_PTR(-ENOMEM);
}
if (likely(req->src == req->dst)) {
src_nents = sg_nents_for_len(req->src, req->assoclen +
req->cryptlen +
(encrypt ? authsize : 0));
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
req->assoclen + req->cryptlen +
(encrypt ? authsize : 0));
qi_cache_free(edesc);
return ERR_PTR(src_nents);
}
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
dst = req->dst;
} else {
src_nents = sg_nents_for_len(req->src, req->assoclen +
req->cryptlen);
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
req->assoclen + req->cryptlen);
qi_cache_free(edesc);
return ERR_PTR(src_nents);
}
dst = scatterwalk_ffwd(edesc->tmp, req->dst, req->assoclen);
dst_nents = sg_nents_for_len(dst, req->cryptlen +
(encrypt ? authsize : 0));
if (unlikely(dst_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n",
req->cryptlen +
(encrypt ? authsize : 0));
qi_cache_free(edesc);
return ERR_PTR(dst_nents);
}
if (src_nents) {
mapped_src_nents = dma_map_sg(qidev, req->src,
src_nents, DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = 0;
}
mapped_dst_nents = dma_map_sg(qidev, dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(qidev, "unable to map destination\n");
dma_unmap_sg(qidev, req->src, src_nents, DMA_TO_DEVICE);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
}
/*
* Create S/G table: IV, src, dst.
* Input is not contiguous.
*/
qm_sg_ents = 1 + mapped_src_nents +
(mapped_dst_nents > 1 ? mapped_dst_nents : 0);
sg_table = &edesc->sgt[0];
qm_sg_bytes = qm_sg_ents * sizeof(*sg_table);
ivsize = crypto_aead_ivsize(aead);
iv = (u8 *)(sg_table + qm_sg_ents);
/* Make sure IV is located in a DMAable area */
memcpy(iv, req->iv, ivsize);
iv_dma = dma_map_single(qidev, iv, ivsize, DMA_TO_DEVICE);
if (dma_mapping_error(qidev, iv_dma)) {
dev_err(qidev, "unable to map IV\n");
caam_unmap(qidev, req->src, dst, src_nents, dst_nents, 0, 0,
DMA_NONE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->dst = dst;
edesc->iv_dma = iv_dma;
edesc->drv_req.app_ctx = req;
edesc->drv_req.cbk = tls_done;
edesc->drv_req.drv_ctx = drv_ctx;
dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0);
qm_sg_index = 1;
sg_to_qm_sg_last(req->src, mapped_src_nents, sg_table + qm_sg_index, 0);
qm_sg_index += mapped_src_nents;
if (mapped_dst_nents > 1)
sg_to_qm_sg_last(dst, mapped_dst_nents, sg_table +
qm_sg_index, 0);
qm_sg_dma = dma_map_single(qidev, sg_table, qm_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(qidev, qm_sg_dma)) {
dev_err(qidev, "unable to map S/G table\n");
caam_unmap(qidev, req->src, dst, src_nents, dst_nents, iv_dma,
ivsize, DMA_TO_DEVICE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->qm_sg_dma = qm_sg_dma;
edesc->qm_sg_bytes = qm_sg_bytes;
out_len = req->cryptlen + (encrypt ? authsize : 0);
in_len = ivsize + req->assoclen + req->cryptlen;
fd_sgt = &edesc->drv_req.fd_sgt[0];
dma_to_qm_sg_one_last_ext(&fd_sgt[1], qm_sg_dma, in_len, 0);
if (req->dst == req->src)
dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma +
(sg_nents_for_len(req->src, req->assoclen) +
1) * sizeof(*sg_table), out_len, 0);
else if (mapped_dst_nents == 1)
dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(dst), out_len, 0);
else
dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma + sizeof(*sg_table) *
qm_sg_index, out_len, 0);
return edesc;
}
static int tls_crypt(struct aead_request *req, bool encrypt)
{
struct tls_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int ret;
if (unlikely(caam_congested))
return -EAGAIN;
edesc = tls_edesc_alloc(req, encrypt);
if (IS_ERR_OR_NULL(edesc))
return PTR_ERR(edesc);
ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req);
if (!ret) {
ret = -EINPROGRESS;
} else {
tls_unmap(ctx->qidev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int tls_encrypt(struct aead_request *req)
{
return tls_crypt(req, true);
}
static int tls_decrypt(struct aead_request *req)
{
return tls_crypt(req, false);
}
static int ipsec_gcm_encrypt(struct aead_request *req)
{
return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_crypt(req,
true);
}
static int ipsec_gcm_decrypt(struct aead_request *req)
{
return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_crypt(req,
false);
}
static void skcipher_done(struct caam_drv_req *drv_req, u32 status)
{
struct skcipher_edesc *edesc;
struct skcipher_request *req = drv_req->app_ctx;
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *caam_ctx = crypto_skcipher_ctx(skcipher);
struct device *qidev = caam_ctx->qidev;
int ivsize = crypto_skcipher_ivsize(skcipher);
int ecode = 0;
dev_dbg(qidev, "%s %d: status 0x%x\n", __func__, __LINE__, status);
edesc = container_of(drv_req, typeof(*edesc), drv_req);
if (status)
ecode = caam_jr_strstatus(qidev, status);
print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
edesc->src_nents > 1 ? 100 : ivsize, 1);
caam_dump_sg("dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
skcipher_unmap(qidev, edesc, req);
/*
* The crypto API expects us to set the IV (req->iv) to the last
* ciphertext block (CBC mode) or last counter (CTR mode).
* This is used e.g. by the CTS mode.
*/
if (!ecode)
memcpy(req->iv, (u8 *)&edesc->sgt[0] + edesc->qm_sg_bytes,
ivsize);
qi_cache_free(edesc);
skcipher_request_complete(req, ecode);
}
static struct skcipher_edesc *skcipher_edesc_alloc(struct skcipher_request *req,
bool encrypt)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct device *qidev = ctx->qidev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
struct skcipher_edesc *edesc;
dma_addr_t iv_dma;
u8 *iv;
int ivsize = crypto_skcipher_ivsize(skcipher);
int dst_sg_idx, qm_sg_ents, qm_sg_bytes;
struct qm_sg_entry *sg_table, *fd_sgt;
struct caam_drv_ctx *drv_ctx;
drv_ctx = get_drv_ctx(ctx, encrypt ? ENCRYPT : DECRYPT);
if (IS_ERR_OR_NULL(drv_ctx))
return (struct skcipher_edesc *)drv_ctx;
src_nents = sg_nents_for_len(req->src, req->cryptlen);
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
req->cryptlen);
return ERR_PTR(src_nents);
}
if (unlikely(req->src != req->dst)) {
dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
if (unlikely(dst_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n",
req->cryptlen);
return ERR_PTR(dst_nents);
}
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
mapped_dst_nents = dma_map_sg(qidev, req->dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(qidev, "unable to map destination\n");
dma_unmap_sg(qidev, req->src, src_nents, DMA_TO_DEVICE);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
}
qm_sg_ents = 1 + mapped_src_nents;
dst_sg_idx = qm_sg_ents;
/*
* Input, output HW S/G tables: [IV, src][dst, IV]
* IV entries point to the same buffer
* If src == dst, S/G entries are reused (S/G tables overlap)
*
* HW reads 4 S/G entries at a time; make sure the reads don't go beyond
* the end of the table by allocating more S/G entries.
*/
if (req->src != req->dst)
qm_sg_ents += pad_sg_nents(mapped_dst_nents + 1);
else
qm_sg_ents = 1 + pad_sg_nents(qm_sg_ents);
qm_sg_bytes = qm_sg_ents * sizeof(struct qm_sg_entry);
if (unlikely(offsetof(struct skcipher_edesc, sgt) + qm_sg_bytes +
ivsize > CAAM_QI_MEMCACHE_SIZE)) {
dev_err(qidev, "No space for %d S/G entries and/or %dB IV\n",
qm_sg_ents, ivsize);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
crypto: caam/qi - handle large number of S/Gs case For more than 16 S/G entries, driver currently corrupts memory on ARMv8, see below KASAN log. Note: this does not reproduce on PowerPC due to different (smaller) cache line size - 64 bytes on PPC vs. 128 bytes on ARMv8. One such use case is one of the cbc(aes) test vectors - with 8 S/G entries and src != dst. Driver needs 1 (IV) + 2 x 8 = 17 entries, which goes over the 16 S/G entries limit: (CAAM_QI_MEMCACHE_SIZE - offsetof(struct ablkcipher_edesc, sgt)) / sizeof(struct qm_sg_entry) = 256 / 16 = 16 S/Gs Fix this by: -increasing object size in caamqicache pool from 512 to 768; this means the maximum number of S/G entries grows from (at least) 16 to 32 (again, for ARMv8 case of 128-byte cache line) -add checks in the driver to fail gracefully (ENOMEM) in case the 32 S/G entries limit is exceeded ================================================================== BUG: KASAN: slab-out-of-bounds in ablkcipher_edesc_alloc+0x4ec/0xf60 Write of size 1 at addr ffff800021cb6003 by task cryptomgr_test/1394 CPU: 3 PID: 1394 Comm: cryptomgr_test Not tainted 4.12.0-rc7-next-20170703-00023-g72badbcc1ea7-dirty #26 Hardware name: LS1046A RDB Board (DT) Call trace: [<ffff20000808ac6c>] dump_backtrace+0x0/0x290 [<ffff20000808b014>] show_stack+0x14/0x1c [<ffff200008d62c00>] dump_stack+0xa4/0xc8 [<ffff200008264e40>] print_address_description+0x110/0x26c [<ffff200008265224>] kasan_report+0x1d0/0x2fc [<ffff2000082637b8>] __asan_store1+0x4c/0x54 [<ffff200008b4884c>] ablkcipher_edesc_alloc+0x4ec/0xf60 [<ffff200008b49304>] ablkcipher_encrypt+0x44/0xcc [<ffff20000848a61c>] skcipher_encrypt_ablkcipher+0x120/0x138 [<ffff200008495014>] __test_skcipher+0xaec/0xe30 [<ffff200008497088>] test_skcipher+0x6c/0xd8 [<ffff200008497154>] alg_test_skcipher+0x60/0xe4 [<ffff2000084974c4>] alg_test.part.13+0x130/0x304 [<ffff2000084976d4>] alg_test+0x3c/0x68 [<ffff2000084938ac>] cryptomgr_test+0x54/0x5c [<ffff20000810276c>] kthread+0x188/0x1c8 [<ffff2000080836c0>] ret_from_fork+0x10/0x50 Allocated by task 1394: save_stack_trace_tsk+0x0/0x1ac save_stack_trace+0x18/0x20 kasan_kmalloc.part.5+0x48/0x110 kasan_kmalloc+0x84/0xa0 kasan_slab_alloc+0x14/0x1c kmem_cache_alloc+0x124/0x1e8 qi_cache_alloc+0x28/0x58 ablkcipher_edesc_alloc+0x244/0xf60 ablkcipher_encrypt+0x44/0xcc skcipher_encrypt_ablkcipher+0x120/0x138 __test_skcipher+0xaec/0xe30 test_skcipher+0x6c/0xd8 alg_test_skcipher+0x60/0xe4 alg_test.part.13+0x130/0x304 alg_test+0x3c/0x68 cryptomgr_test+0x54/0x5c kthread+0x188/0x1c8 ret_from_fork+0x10/0x50 Freed by task 0: (stack is not available) The buggy address belongs to the object at ffff800021cb5e00 which belongs to the cache caamqicache of size 512 The buggy address is located 3 bytes to the right of 512-byte region [ffff800021cb5e00, ffff800021cb6000) The buggy address belongs to the page: page:ffff7e0000872d00 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 flags: 0xfffc00000008100(slab|head) raw: 0fffc00000008100 0000000000000000 0000000000000000 0000000180190019 raw: dead000000000100 dead000000000200 ffff800931268200 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff800021cb5f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff800021cb5f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff800021cb6000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff800021cb6080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff800021cb6100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Fixes: b189817cf789 ("crypto: caam/qi - add ablkcipher and authenc algorithms") Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-07-09 23:40:31 -06:00
return ERR_PTR(-ENOMEM);
}
/* allocate space for base edesc, link tables and IV */
edesc = qi_cache_alloc(GFP_DMA | flags);
if (unlikely(!edesc)) {
dev_err(qidev, "could not allocate extended descriptor\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
return ERR_PTR(-ENOMEM);
}
/* Make sure IV is located in a DMAable area */
sg_table = &edesc->sgt[0];
iv = (u8 *)(sg_table + qm_sg_ents);
memcpy(iv, req->iv, ivsize);
iv_dma = dma_map_single(qidev, iv, ivsize, DMA_BIDIRECTIONAL);
if (dma_mapping_error(qidev, iv_dma)) {
dev_err(qidev, "unable to map IV\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->qm_sg_bytes = qm_sg_bytes;
edesc->drv_req.app_ctx = req;
edesc->drv_req.cbk = skcipher_done;
edesc->drv_req.drv_ctx = drv_ctx;
dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0);
sg_to_qm_sg(req->src, req->cryptlen, sg_table + 1, 0);
if (req->src != req->dst)
sg_to_qm_sg(req->dst, req->cryptlen, sg_table + dst_sg_idx, 0);
dma_to_qm_sg_one(sg_table + dst_sg_idx + mapped_dst_nents, iv_dma,
ivsize, 0);
edesc->qm_sg_dma = dma_map_single(qidev, sg_table, edesc->qm_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(qidev, edesc->qm_sg_dma)) {
dev_err(qidev, "unable to map S/G table\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, DMA_BIDIRECTIONAL, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
fd_sgt = &edesc->drv_req.fd_sgt[0];
dma_to_qm_sg_one_last_ext(&fd_sgt[1], edesc->qm_sg_dma,
ivsize + req->cryptlen, 0);
if (req->src == req->dst)
dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma +
sizeof(*sg_table), req->cryptlen + ivsize,
0);
else
dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma + dst_sg_idx *
sizeof(*sg_table), req->cryptlen + ivsize,
0);
return edesc;
}
static inline bool xts_skcipher_ivsize(struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
return !!get_unaligned((u64 *)(req->iv + (ivsize / 2)));
}
static inline int skcipher_crypt(struct skcipher_request *req, bool encrypt)
{
struct skcipher_edesc *edesc;
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
int ret;
if (!req->cryptlen)
return 0;
if (ctx->fallback && xts_skcipher_ivsize(req)) {
struct caam_skcipher_req_ctx *rctx = skcipher_request_ctx(req);
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
skcipher_request_set_callback(&rctx->fallback_req,
req->base.flags,
req->base.complete,
req->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, req->src,
req->dst, req->cryptlen, req->iv);
return encrypt ? crypto_skcipher_encrypt(&rctx->fallback_req) :
crypto_skcipher_decrypt(&rctx->fallback_req);
}
if (unlikely(caam_congested))
return -EAGAIN;
/* allocate extended descriptor */
edesc = skcipher_edesc_alloc(req, encrypt);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req);
if (!ret) {
ret = -EINPROGRESS;
} else {
skcipher_unmap(ctx->qidev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int skcipher_encrypt(struct skcipher_request *req)
{
return skcipher_crypt(req, true);
}
static int skcipher_decrypt(struct skcipher_request *req)
{
return skcipher_crypt(req, false);
}
static struct caam_skcipher_alg driver_algs[] = {
{
.skcipher = {
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aes_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-3des-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "cbc(des)",
.cra_driver_name = "cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = des_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = ctr_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
},
{
.skcipher = {
.base = {
.cra_name = "rfc3686(ctr(aes))",
.cra_driver_name = "rfc3686-ctr-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = rfc3686_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
.chunksize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.rfc3686 = true,
},
},
{
.skcipher = {
.base = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-caam-qi",
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = xts_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS,
},
};
static struct caam_aead_alg driver_aeads[] = {
{
.aead = {
.base = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = rfc4106_setkey,
.setauthsize = rfc4106_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = 8,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
.nodkp = true,
},
},
{
.aead = {
.base = {
.cra_name = "rfc4543(gcm(aes))",
.cra_driver_name = "rfc4543-gcm-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = rfc4543_setkey,
.setauthsize = rfc4543_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = 8,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
.nodkp = true,
},
},
/* Galois Counter Mode */
{
.aead = {
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = gcm_setkey,
.setauthsize = gcm_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = 12,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
.nodkp = true,
}
},
/* single-pass ipsec_esp descriptor */
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-aes-"
"caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-aes-"
"caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-aes-"
"caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(des))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(des))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(des))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(des))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "tls10(hmac(sha1),cbc(aes))",
.cra_driver_name = "tls10-hmac-sha1-cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = tls_setkey,
.setauthsize = tls_setauthsize,
.encrypt = tls_encrypt,
.decrypt = tls_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
}
}
};
static int caam_init_common(struct caam_ctx *ctx, struct caam_alg_entry *caam,
bool uses_dkp)
{
struct caam_drv_private *priv;
struct device *dev;
/* Digest sizes for MD5, SHA1, SHA-224, SHA-256, SHA-384, SHA-512 */
static const u8 digest_size[] = {
MD5_DIGEST_SIZE,
SHA1_DIGEST_SIZE,
SHA224_DIGEST_SIZE,
SHA256_DIGEST_SIZE,
SHA384_DIGEST_SIZE,
SHA512_DIGEST_SIZE
};
u8 op_id;
/*
* distribute tfms across job rings to ensure in-order
* crypto request processing per tfm
*/
ctx->jrdev = caam_jr_alloc();
if (IS_ERR(ctx->jrdev)) {
pr_err("Job Ring Device allocation for transform failed\n");
return PTR_ERR(ctx->jrdev);
}
dev = ctx->jrdev->parent;
priv = dev_get_drvdata(dev);
if (priv->era >= 6 && uses_dkp)
ctx->dir = DMA_BIDIRECTIONAL;
else
ctx->dir = DMA_TO_DEVICE;
ctx->key_dma = dma_map_single(dev, ctx->key, sizeof(ctx->key),
ctx->dir);
if (dma_mapping_error(dev, ctx->key_dma)) {
dev_err(dev, "unable to map key\n");
caam_jr_free(ctx->jrdev);
return -ENOMEM;
}
/* copy descriptor header template value */
ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type;
ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type;
ctx->qidev = dev;
if (ctx->adata.algtype) {
op_id = (ctx->adata.algtype & OP_ALG_ALGSEL_SUBMASK)
>> OP_ALG_ALGSEL_SHIFT;
if (op_id < ARRAY_SIZE(digest_size)) {
ctx->authsize = digest_size[op_id];
} else {
dev_err(ctx->jrdev,
"incorrect op_id %d; must be less than %zu\n",
op_id, ARRAY_SIZE(digest_size));
caam_jr_free(ctx->jrdev);
return -EINVAL;
}
} else {
ctx->authsize = 0;
}
spin_lock_init(&ctx->lock);
ctx->drv_ctx[ENCRYPT] = NULL;
ctx->drv_ctx[DECRYPT] = NULL;
return 0;
}
static int caam_cra_init(struct crypto_skcipher *tfm)
{
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct caam_skcipher_alg *caam_alg =
container_of(alg, typeof(*caam_alg), skcipher);
struct caam_ctx *ctx = crypto_skcipher_ctx(tfm);
u32 alg_aai = caam_alg->caam.class1_alg_type & OP_ALG_AAI_MASK;
int ret = 0;
if (alg_aai == OP_ALG_AAI_XTS) {
const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
struct crypto_skcipher *fallback;
fallback = crypto_alloc_skcipher(tfm_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback)) {
dev_err(ctx->jrdev, "Failed to allocate %s fallback: %ld\n",
tfm_name, PTR_ERR(fallback));
return PTR_ERR(fallback);
}
ctx->fallback = fallback;
crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_skcipher_req_ctx) +
crypto_skcipher_reqsize(fallback));
}
ret = caam_init_common(ctx, &caam_alg->caam, false);
if (ret && ctx->fallback)
crypto_free_skcipher(ctx->fallback);
return ret;
}
static int caam_aead_init(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct caam_aead_alg *caam_alg = container_of(alg, typeof(*caam_alg),
aead);
struct caam_ctx *ctx = crypto_aead_ctx(tfm);
return caam_init_common(ctx, &caam_alg->caam, !caam_alg->caam.nodkp);
}
static void caam_exit_common(struct caam_ctx *ctx)
{
caam_drv_ctx_rel(ctx->drv_ctx[ENCRYPT]);
caam_drv_ctx_rel(ctx->drv_ctx[DECRYPT]);
dma_unmap_single(ctx->jrdev->parent, ctx->key_dma, sizeof(ctx->key),
ctx->dir);
caam_jr_free(ctx->jrdev);
}
static void caam_cra_exit(struct crypto_skcipher *tfm)
{
struct caam_ctx *ctx = crypto_skcipher_ctx(tfm);
if (ctx->fallback)
crypto_free_skcipher(ctx->fallback);
caam_exit_common(ctx);
}
static void caam_aead_exit(struct crypto_aead *tfm)
{
caam_exit_common(crypto_aead_ctx(tfm));
}
void caam_qi_algapi_exit(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
if (t_alg->registered)
crypto_unregister_aead(&t_alg->aead);
}
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
struct caam_skcipher_alg *t_alg = driver_algs + i;
if (t_alg->registered)
crypto_unregister_skcipher(&t_alg->skcipher);
}
}
static void caam_skcipher_alg_init(struct caam_skcipher_alg *t_alg)
{
struct skcipher_alg *alg = &t_alg->skcipher;
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CAAM_CRA_PRIORITY;
alg->base.cra_ctxsize = sizeof(struct caam_ctx);
alg->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->init = caam_cra_init;
alg->exit = caam_cra_exit;
}
static void caam_aead_alg_init(struct caam_aead_alg *t_alg)
{
struct aead_alg *alg = &t_alg->aead;
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CAAM_CRA_PRIORITY;
alg->base.cra_ctxsize = sizeof(struct caam_ctx);
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->init = caam_aead_init;
alg->exit = caam_aead_exit;
}
int caam_qi_algapi_init(struct device *ctrldev)
{
struct caam_drv_private *priv = dev_get_drvdata(ctrldev);
int i = 0, err = 0;
u32 aes_vid, aes_inst, des_inst, md_vid, md_inst;
unsigned int md_limit = SHA512_DIGEST_SIZE;
bool registered = false;
/* Make sure this runs only on (DPAA 1.x) QI */
if (!priv->qi_present || caam_dpaa2)
return 0;
/*
* Register crypto algorithms the device supports.
* First, detect presence and attributes of DES, AES, and MD blocks.
*/
if (priv->era < 10) {
u32 cha_vid, cha_inst;
cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
aes_vid = cha_vid & CHA_ID_LS_AES_MASK;
md_vid = (cha_vid & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT;
cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
des_inst = (cha_inst & CHA_ID_LS_DES_MASK) >>
CHA_ID_LS_DES_SHIFT;
aes_inst = cha_inst & CHA_ID_LS_AES_MASK;
md_inst = (cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT;
} else {
u32 aesa, mdha;
aesa = rd_reg32(&priv->ctrl->vreg.aesa);
mdha = rd_reg32(&priv->ctrl->vreg.mdha);
aes_vid = (aesa & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT;
md_vid = (mdha & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT;
des_inst = rd_reg32(&priv->ctrl->vreg.desa) & CHA_VER_NUM_MASK;
aes_inst = aesa & CHA_VER_NUM_MASK;
md_inst = mdha & CHA_VER_NUM_MASK;
}
/* If MD is present, limit digest size based on LP256 */
if (md_inst && md_vid == CHA_VER_VID_MD_LP256)
md_limit = SHA256_DIGEST_SIZE;
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
struct caam_skcipher_alg *t_alg = driver_algs + i;
u32 alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK;
/* Skip DES algorithms if not supported by device */
if (!des_inst &&
((alg_sel == OP_ALG_ALGSEL_3DES) ||
(alg_sel == OP_ALG_ALGSEL_DES)))
continue;
/* Skip AES algorithms if not supported by device */
if (!aes_inst && (alg_sel == OP_ALG_ALGSEL_AES))
continue;
caam_skcipher_alg_init(t_alg);
err = crypto_register_skcipher(&t_alg->skcipher);
if (err) {
dev_warn(ctrldev, "%s alg registration failed\n",
t_alg->skcipher.base.cra_driver_name);
continue;
}
t_alg->registered = true;
registered = true;
}
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
u32 c1_alg_sel = t_alg->caam.class1_alg_type &
OP_ALG_ALGSEL_MASK;
u32 c2_alg_sel = t_alg->caam.class2_alg_type &
OP_ALG_ALGSEL_MASK;
u32 alg_aai = t_alg->caam.class1_alg_type & OP_ALG_AAI_MASK;
/* Skip DES algorithms if not supported by device */
if (!des_inst &&
((c1_alg_sel == OP_ALG_ALGSEL_3DES) ||
(c1_alg_sel == OP_ALG_ALGSEL_DES)))
continue;
/* Skip AES algorithms if not supported by device */
if (!aes_inst && (c1_alg_sel == OP_ALG_ALGSEL_AES))
continue;
/*
* Check support for AES algorithms not available
* on LP devices.
*/
if (aes_vid == CHA_VER_VID_AES_LP && alg_aai == OP_ALG_AAI_GCM)
continue;
/*
* Skip algorithms requiring message digests
* if MD or MD size is not supported by device.
*/
if (c2_alg_sel &&
(!md_inst || (t_alg->aead.maxauthsize > md_limit)))
continue;
caam_aead_alg_init(t_alg);
err = crypto_register_aead(&t_alg->aead);
if (err) {
pr_warn("%s alg registration failed\n",
t_alg->aead.base.cra_driver_name);
continue;
}
t_alg->registered = true;
registered = true;
}
if (registered)
dev_info(ctrldev, "algorithms registered in /proc/crypto\n");
return err;
}