1
0
Fork 0
alistair23-linux/arch/ia64/pci/pci.c

731 lines
18 KiB
C
Raw Normal View History

/*
* pci.c - Low-Level PCI Access in IA-64
*
* Derived from bios32.c of i386 tree.
*
* (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Bjorn Helgaas <bjorn.helgaas@hp.com>
* Copyright (C) 2004 Silicon Graphics, Inc.
*
* Note: Above list of copyright holders is incomplete...
*/
#include <linux/acpi.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <linux/export.h>
#include <asm/machvec.h>
#include <asm/page.h>
#include <asm/io.h>
#include <asm/sal.h>
#include <asm/smp.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
/*
* Low-level SAL-based PCI configuration access functions. Note that SAL
* calls are already serialized (via sal_lock), so we don't need another
* synchronization mechanism here.
*/
#define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
/* SAL 3.2 adds support for extended config space. */
#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
int reg, int len, u32 *value)
{
u64 addr, data = 0;
int mode, result;
if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
return -EINVAL;
if ((seg | reg) <= 255) {
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
mode = 0;
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
mode = 1;
} else {
return -EINVAL;
}
result = ia64_sal_pci_config_read(addr, mode, len, &data);
if (result != 0)
return -EINVAL;
*value = (u32) data;
return 0;
}
int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
int reg, int len, u32 value)
{
u64 addr;
int mode, result;
if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
return -EINVAL;
if ((seg | reg) <= 255) {
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
mode = 0;
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
mode = 1;
} else {
return -EINVAL;
}
result = ia64_sal_pci_config_write(addr, mode, len, value);
if (result != 0)
return -EINVAL;
return 0;
}
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 *value)
{
return raw_pci_read(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 value)
{
return raw_pci_write(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
struct pci_ops pci_root_ops = {
.read = pci_read,
.write = pci_write,
};
/* Called by ACPI when it finds a new root bus. */
static struct pci_controller *alloc_pci_controller(int seg)
{
struct pci_controller *controller;
controller = kzalloc(sizeof(*controller), GFP_KERNEL);
if (!controller)
return NULL;
controller->segment = seg;
controller->node = -1;
return controller;
}
struct pci_root_info {
struct acpi_device *bridge;
struct pci_controller *controller;
struct list_head resources;
char *name;
};
static unsigned int
new_space (u64 phys_base, int sparse)
{
u64 mmio_base;
int i;
if (phys_base == 0)
return 0; /* legacy I/O port space */
mmio_base = (u64) ioremap(phys_base, 0);
for (i = 0; i < num_io_spaces; i++)
if (io_space[i].mmio_base == mmio_base &&
io_space[i].sparse == sparse)
return i;
if (num_io_spaces == MAX_IO_SPACES) {
printk(KERN_ERR "PCI: Too many IO port spaces "
"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
return ~0;
}
i = num_io_spaces++;
io_space[i].mmio_base = mmio_base;
io_space[i].sparse = sparse;
return i;
}
static u64 add_io_space(struct pci_root_info *info,
struct acpi_resource_address64 *addr)
{
struct resource *resource;
char *name;
unsigned long base, min, max, base_port;
unsigned int sparse = 0, space_nr, len;
resource = kzalloc(sizeof(*resource), GFP_KERNEL);
if (!resource) {
printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
info->name);
goto out;
}
len = strlen(info->name) + 32;
name = kzalloc(len, GFP_KERNEL);
if (!name) {
printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
info->name);
goto free_resource;
}
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-09-30 17:03:00 -06:00
min = addr->minimum;
max = min + addr->address_length - 1;
if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
sparse = 1;
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-09-30 17:03:00 -06:00
space_nr = new_space(addr->translation_offset, sparse);
if (space_nr == ~0)
goto free_name;
base = __pa(io_space[space_nr].mmio_base);
base_port = IO_SPACE_BASE(space_nr);
snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
base_port + min, base_port + max);
/*
* The SDM guarantees the legacy 0-64K space is sparse, but if the
* mapping is done by the processor (not the bridge), ACPI may not
* mark it as sparse.
*/
if (space_nr == 0)
sparse = 1;
resource->name = name;
resource->flags = IORESOURCE_MEM;
resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
insert_resource(&iomem_resource, resource);
return base_port;
free_name:
kfree(name);
free_resource:
kfree(resource);
out:
return ~0;
}
static acpi_status resource_to_window(struct acpi_resource *resource,
struct acpi_resource_address64 *addr)
{
acpi_status status;
/*
* We're only interested in _CRS descriptors that are
* - address space descriptors for memory or I/O space
* - non-zero size
* - producers, i.e., the address space is routed downstream,
* not consumed by the bridge itself
*/
status = acpi_resource_to_address64(resource, addr);
if (ACPI_SUCCESS(status) &&
(addr->resource_type == ACPI_MEMORY_RANGE ||
addr->resource_type == ACPI_IO_RANGE) &&
addr->address_length &&
addr->producer_consumer == ACPI_PRODUCER)
return AE_OK;
return AE_ERROR;
}
static acpi_status count_window(struct acpi_resource *resource, void *data)
{
unsigned int *windows = (unsigned int *) data;
struct acpi_resource_address64 addr;
acpi_status status;
status = resource_to_window(resource, &addr);
if (ACPI_SUCCESS(status))
(*windows)++;
return AE_OK;
}
static acpi_status add_window(struct acpi_resource *res, void *data)
{
struct pci_root_info *info = data;
struct pci_window *window;
struct acpi_resource_address64 addr;
acpi_status status;
unsigned long flags, offset = 0;
struct resource *root;
/* Return AE_OK for non-window resources to keep scanning for more */
status = resource_to_window(res, &addr);
if (!ACPI_SUCCESS(status))
return AE_OK;
if (addr.resource_type == ACPI_MEMORY_RANGE) {
flags = IORESOURCE_MEM;
root = &iomem_resource;
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-09-30 17:03:00 -06:00
offset = addr.translation_offset;
} else if (addr.resource_type == ACPI_IO_RANGE) {
flags = IORESOURCE_IO;
root = &ioport_resource;
offset = add_io_space(info, &addr);
if (offset == ~0)
return AE_OK;
} else
return AE_OK;
window = &info->controller->window[info->controller->windows++];
window->resource.name = info->name;
window->resource.flags = flags;
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-09-30 17:03:00 -06:00
window->resource.start = addr.minimum + offset;
window->resource.end = window->resource.start + addr.address_length - 1;
window->offset = offset;
if (insert_resource(root, &window->resource)) {
dev_err(&info->bridge->dev,
"can't allocate host bridge window %pR\n",
&window->resource);
} else {
if (offset)
dev_info(&info->bridge->dev, "host bridge window %pR "
"(PCI address [%#llx-%#llx])\n",
&window->resource,
window->resource.start - offset,
window->resource.end - offset);
else
dev_info(&info->bridge->dev,
"host bridge window %pR\n",
&window->resource);
}
/* HP's firmware has a hack to work around a Windows bug.
* Ignore these tiny memory ranges */
if (!((window->resource.flags & IORESOURCE_MEM) &&
(window->resource.end - window->resource.start < 16)))
pci_add_resource_offset(&info->resources, &window->resource,
window->offset);
return AE_OK;
}
struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
{
struct acpi_device *device = root->device;
int domain = root->segment;
int bus = root->secondary.start;
struct pci_controller *controller;
unsigned int windows = 0;
struct pci_root_info info;
struct pci_bus *pbus;
char *name;
int pxm;
controller = alloc_pci_controller(domain);
if (!controller)
goto out1;
controller->acpi_handle = device->handle;
pxm = acpi_get_pxm(controller->acpi_handle);
#ifdef CONFIG_NUMA
if (pxm >= 0)
controller->node = pxm_to_node(pxm);
#endif
INIT_LIST_HEAD(&info.resources);
/* insert busn resource at first */
pci_add_resource(&info.resources, &root->secondary);
acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
&windows);
if (windows) {
controller->window =
kzalloc_node(sizeof(*controller->window) * windows,
GFP_KERNEL, controller->node);
if (!controller->window)
goto out2;
name = kmalloc(16, GFP_KERNEL);
if (!name)
goto out3;
sprintf(name, "PCI Bus %04x:%02x", domain, bus);
info.bridge = device;
info.controller = controller;
info.name = name;
acpi_walk_resources(device->handle, METHOD_NAME__CRS,
add_window, &info);
}
/*
* See arch/x86/pci/acpi.c.
* The desired pci bus might already be scanned in a quirk. We
* should handle the case here, but it appears that IA64 hasn't
* such quirk. So we just ignore the case now.
*/
pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
&info.resources);
if (!pbus) {
pci_free_resource_list(&info.resources);
return NULL;
}
pci_scan_child_bus(pbus);
return pbus;
out3:
kfree(controller->window);
out2:
kfree(controller);
out1:
return NULL;
}
ACPI / PCI: Set root bridge ACPI handle in advance The ACPI handles of PCI root bridges need to be known to acpi_bind_one(), so that it can create the appropriate "firmware_node" and "physical_node" files for them, but currently the way it gets to know those handles is not exactly straightforward (to put it lightly). This is how it works, roughly: 1. acpi_bus_scan() finds the handle of a PCI root bridge, creates a struct acpi_device object for it and passes that object to acpi_pci_root_add(). 2. acpi_pci_root_add() creates a struct acpi_pci_root object, populates its "device" field with its argument's address (device->handle is the ACPI handle found in step 1). 3. The struct acpi_pci_root object created in step 2 is passed to pci_acpi_scan_root() and used to get resources that are passed to pci_create_root_bus(). 4. pci_create_root_bus() creates a struct pci_host_bridge object and passes its "dev" member to device_register(). 5. platform_notify(), which for systems with ACPI is set to acpi_platform_notify(), is called. So far, so good. Now it starts to be "interesting". 6. acpi_find_bridge_device() is used to find the ACPI handle of the given device (which is the PCI root bridge) and executes acpi_pci_find_root_bridge(), among other things, for the given device object. 7. acpi_pci_find_root_bridge() uses the name (sic!) of the given device object to extract the segment and bus numbers of the PCI root bridge and passes them to acpi_get_pci_rootbridge_handle(). 8. acpi_get_pci_rootbridge_handle() browses the list of ACPI PCI root bridges and finds the one that matches the given segment and bus numbers. Its handle is then used to initialize the ACPI handle of the PCI root bridge's device object by acpi_bind_one(). However, this is *exactly* the ACPI handle we started with in step 1. Needless to say, this is quite embarassing, but it may be avoided thanks to commit f3fd0c8 (ACPI: Allow ACPI handles of devices to be initialized in advance), which makes it possible to initialize the ACPI handle of a device before passing it to device_register(). Accordingly, add a new __weak routine, pcibios_root_bridge_prepare(), defaulting to an empty implementation that can be replaced by the interested architecutres (x86 and ia64 at the moment) with functions that will set the root bridge's ACPI handle before its dev member is passed to device_register(). Make both x86 and ia64 provide such implementations of pcibios_root_bridge_prepare() and remove acpi_pci_find_root_bridge() and acpi_get_pci_rootbridge_handle() that aren't necessary any more. Included is a fix for breakage on systems with non-ACPI PCI host bridges from Bjorn Helgaas. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2013-01-09 14:33:37 -07:00
int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
{
struct pci_controller *controller = bridge->bus->sysdata;
ACPI_HANDLE_SET(&bridge->dev, controller->acpi_handle);
return 0;
}
static int is_valid_resource(struct pci_dev *dev, int idx)
{
unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
struct resource *devr = &dev->resource[idx], *busr;
if (!dev->bus)
return 0;
pci_bus_for_each_resource(dev->bus, busr, i) {
if (!busr || ((busr->flags ^ devr->flags) & type_mask))
continue;
if ((devr->start) && (devr->start >= busr->start) &&
(devr->end <= busr->end))
return 1;
}
return 0;
}
static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
{
int i;
for (i = start; i < limit; i++) {
if (!dev->resource[i].flags)
continue;
if ((is_valid_resource(dev, i)))
pci_claim_resource(dev, i);
}
}
void pcibios_fixup_device_resources(struct pci_dev *dev)
{
pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
}
EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
{
pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
}
/*
* Called after each bus is probed, but before its children are examined.
*/
void pcibios_fixup_bus(struct pci_bus *b)
{
struct pci_dev *dev;
if (b->self) {
pci_read_bridge_bases(b);
pcibios_fixup_bridge_resources(b->self);
}
list_for_each_entry(dev, &b->devices, bus_list)
pcibios_fixup_device_resources(dev);
platform_pci_fixup_bus(b);
}
void pcibios_set_master (struct pci_dev *dev)
{
/* No special bus mastering setup handling */
}
int
pcibios_enable_device (struct pci_dev *dev, int mask)
{
int ret;
ret = pci_enable_resources(dev, mask);
if (ret < 0)
return ret;
if (!dev->msi_enabled)
return acpi_pci_irq_enable(dev);
return 0;
}
void
pcibios_disable_device (struct pci_dev *dev)
{
BUG_ON(atomic_read(&dev->enable_cnt));
if (!dev->msi_enabled)
acpi_pci_irq_disable(dev);
}
resource_size_t
pcibios_align_resource (void *data, const struct resource *res,
resource_size_t size, resource_size_t align)
{
return res->start;
}
int
pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state, int write_combine)
{
unsigned long size = vma->vm_end - vma->vm_start;
pgprot_t prot;
/*
* I/O space cannot be accessed via normal processor loads and
* stores on this platform.
*/
if (mmap_state == pci_mmap_io)
/*
* XXX we could relax this for I/O spaces for which ACPI
* indicates that the space is 1-to-1 mapped. But at the
* moment, we don't support multiple PCI address spaces and
* the legacy I/O space is not 1-to-1 mapped, so this is moot.
*/
return -EINVAL;
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
return -EINVAL;
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
vma->vm_page_prot);
/*
* If the user requested WC, the kernel uses UC or WC for this region,
* and the chipset supports WC, we can use WC. Otherwise, we have to
* use the same attribute the kernel uses.
*/
if (write_combine &&
((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
(pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
else
vma->vm_page_prot = prot;
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vma->vm_end - vma->vm_start, vma->vm_page_prot))
return -EAGAIN;
return 0;
}
/**
* ia64_pci_get_legacy_mem - generic legacy mem routine
* @bus: bus to get legacy memory base address for
*
* Find the base of legacy memory for @bus. This is typically the first
* megabyte of bus address space for @bus or is simply 0 on platforms whose
* chipsets support legacy I/O and memory routing. Returns the base address
* or an error pointer if an error occurred.
*
* This is the ia64 generic version of this routine. Other platforms
* are free to override it with a machine vector.
*/
char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
{
return (char *)__IA64_UNCACHED_OFFSET;
}
/**
* pci_mmap_legacy_page_range - map legacy memory space to userland
* @bus: bus whose legacy space we're mapping
* @vma: vma passed in by mmap
*
* Map legacy memory space for this device back to userspace using a machine
* vector to get the base address.
*/
int
pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
unsigned long size = vma->vm_end - vma->vm_start;
pgprot_t prot;
char *addr;
/* We only support mmap'ing of legacy memory space */
if (mmap_state != pci_mmap_mem)
return -ENOSYS;
/*
* Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
* for more details.
*/
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
return -EINVAL;
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
vma->vm_page_prot);
addr = pci_get_legacy_mem(bus);
if (IS_ERR(addr))
return PTR_ERR(addr);
vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
vma->vm_page_prot = prot;
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
size, vma->vm_page_prot))
return -EAGAIN;
return 0;
}
/**
* ia64_pci_legacy_read - read from legacy I/O space
* @bus: bus to read
* @port: legacy port value
* @val: caller allocated storage for returned value
* @size: number of bytes to read
*
* Simply reads @size bytes from @port and puts the result in @val.
*
* Again, this (and the write routine) are generic versions that can be
* overridden by the platform. This is necessary on platforms that don't
* support legacy I/O routing or that hard fail on legacy I/O timeouts.
*/
int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
{
int ret = size;
switch (size) {
case 1:
*val = inb(port);
break;
case 2:
*val = inw(port);
break;
case 4:
*val = inl(port);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* ia64_pci_legacy_write - perform a legacy I/O write
* @bus: bus pointer
* @port: port to write
* @val: value to write
* @size: number of bytes to write from @val
*
* Simply writes @size bytes of @val to @port.
*/
int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
{
int ret = size;
switch (size) {
case 1:
outb(val, port);
break;
case 2:
outw(val, port);
break;
case 4:
outl(val, port);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* set_pci_cacheline_size - determine cacheline size for PCI devices
*
* We want to use the line-size of the outer-most cache. We assume
* that this line-size is the same for all CPUs.
*
* Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
*/
static void __init set_pci_dfl_cacheline_size(void)
{
unsigned long levels, unique_caches;
long status;
pal_cache_config_info_t cci;
status = ia64_pal_cache_summary(&levels, &unique_caches);
if (status != 0) {
printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
"(status=%ld)\n", __func__, status);
return;
}
status = ia64_pal_cache_config_info(levels - 1,
/* cache_type (data_or_unified)= */ 2, &cci);
if (status != 0) {
printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
"(status=%ld)\n", __func__, status);
return;
}
pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
}
u64 ia64_dma_get_required_mask(struct device *dev)
{
u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
u64 mask;
if (!high_totalram) {
/* convert to mask just covering totalram */
low_totalram = (1 << (fls(low_totalram) - 1));
low_totalram += low_totalram - 1;
mask = low_totalram;
} else {
high_totalram = (1 << (fls(high_totalram) - 1));
high_totalram += high_totalram - 1;
mask = (((u64)high_totalram) << 32) + 0xffffffff;
}
return mask;
}
EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
u64 dma_get_required_mask(struct device *dev)
{
return platform_dma_get_required_mask(dev);
}
EXPORT_SYMBOL_GPL(dma_get_required_mask);
static int __init pcibios_init(void)
{
set_pci_dfl_cacheline_size();
return 0;
}
subsys_initcall(pcibios_init);