1
0
Fork 0
alistair23-linux/arch/arm/common/Makefile

22 lines
716 B
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 08:07:57 -06:00
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for the linux kernel.
#
obj-y += firmware.o
obj-$(CONFIG_SA1111) += sa1111.o
obj-$(CONFIG_DMABOUNCE) += dmabounce.o
obj-$(CONFIG_KRAIT_L2_ACCESSORS) += krait-l2-accessors.o
obj-$(CONFIG_SHARP_LOCOMO) += locomo.o
obj-$(CONFIG_SHARP_PARAM) += sharpsl_param.o
obj-$(CONFIG_SHARP_SCOOP) += scoop.o
obj-$(CONFIG_CPU_V7) += secure_cntvoff.o
obj-$(CONFIG_PCI_HOST_ITE8152) += it8152.o
obj-$(CONFIG_MCPM) += mcpm_head.o mcpm_entry.o mcpm_platsmp.o vlock.o
CFLAGS_REMOVE_mcpm_entry.o = -pg
AFLAGS_mcpm_head.o := -march=armv7-a
AFLAGS_vlock.o := -march=armv7-a
ARM: b.L: core switcher code This is the core code implementing big.LITTLE switcher functionality. Rationale for this code is available here: http://lwn.net/Articles/481055/ The main entry point for a switch request is: void bL_switch_request(unsigned int cpu, unsigned int new_cluster_id) If the calling CPU is not the wanted one, this wrapper takes care of sending the request to the appropriate CPU with schedule_work_on(). At the moment the core switch operation is handled by bL_switch_to() which must be called on the CPU for which a switch is requested. What this code does: * Return early if the current cluster is the wanted one. * Close the gate in the kernel entry vector for both the inbound and outbound CPUs. * Wake up the inbound CPU so it can perform its reset sequence in parallel up to the kernel entry vector gate. * Migrate all interrupts in the GIC targeting the outbound CPU interface to the inbound CPU interface, including SGIs. This is performed by gic_migrate_target() in drivers/irqchip/irq-gic.c. * Call cpu_pm_enter() which takes care of flushing the VFP state to RAM and save the CPU interface config from the GIC to RAM. * Modify the cpu_logical_map to refer to the inbound physical CPU. * Call cpu_suspend() which saves the CPU state (general purpose registers, page table address) onto the stack and store the resulting stack pointer in an array indexed by the updated cpu_logical_map, then call the provided shutdown function. This happens in arch/arm/kernel/sleep.S. At this point, the provided shutdown function executed by the outbound CPU ungates the inbound CPU. Therefore the inbound CPU: * Picks up the saved stack pointer in the array indexed by its MPIDR in arch/arm/kernel/sleep.S. * The MMU and caches are re-enabled using the saved state on the provided stack, just like if this was a resume operation from a suspended state. * Then cpu_suspend() returns, although this is on the inbound CPU rather than the outbound CPU which called it initially. * The function cpu_pm_exit() is called which effect is to restore the CPU interface state in the GIC using the state previously saved by the outbound CPU. * Exit of bL_switch_to() to resume normal kernel execution on the new CPU. However, the outbound CPU is potentially still running in parallel while the inbound CPU is resuming normal kernel execution, hence we need per CPU stack isolation to execute bL_do_switch(). After the outbound CPU has ungated the inbound CPU, it calls mcpm_cpu_power_down() to: * Clean its L1 cache. * If it is the last CPU still alive in its cluster (last man standing), it also cleans its L2 cache and disables cache snooping from the other cluster. * Power down the CPU (or whole cluster). Code called from bL_do_switch() might end up referencing 'current' for some reasons. However, 'current' is derived from the stack pointer. With any arbitrary stack, the returned value for 'current' and any dereferenced values through it are just random garbage which may lead to segmentation faults. The active page table during the execution of bL_do_switch() is also a problem. There is no guarantee that the inbound CPU won't destroy the corresponding task which would free the attached page table while the outbound CPU is still running and relying on it. To solve both issues, we borrow some of the task space belonging to the init/idle task which, by its nature, is lightly used and therefore is unlikely to clash with our usage. The init task is also never going away. Right now the logical CPU number is assumed to be equivalent to the physical CPU number within each cluster. The kernel should also be booted with only one cluster active. These limitations will be lifted eventually. Signed-off-by: Nicolas Pitre <nico@linaro.org>
2012-04-12 00:56:10 -06:00
obj-$(CONFIG_BL_SWITCHER) += bL_switcher.o
obj-$(CONFIG_BL_SWITCHER_DUMMY_IF) += bL_switcher_dummy_if.o