1
0
Fork 0
alistair23-linux/arch/avr32/kernel/setup.c

551 lines
14 KiB
C
Raw Normal View History

[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 00:32:13 -06:00
/*
* Copyright (C) 2004-2006 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/init.h>
#include <linux/initrd.h>
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 00:32:13 -06:00
#include <linux/sched.h>
#include <linux/console.h>
#include <linux/ioport.h>
#include <linux/bootmem.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/pfn.h>
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 00:32:13 -06:00
#include <linux/root_dev.h>
#include <linux/cpu.h>
#include <linux/kernel.h>
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 00:32:13 -06:00
#include <asm/sections.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/setup.h>
#include <asm/sysreg.h>
#include <asm/arch/board.h>
#include <asm/arch/init.h>
extern int root_mountflags;
/*
* Bootloader-provided information about physical memory
*/
struct tag_mem_range *mem_phys;
struct tag_mem_range *mem_reserved;
struct tag_mem_range *mem_ramdisk;
/*
* Initialize loops_per_jiffy as 5000000 (500MIPS).
* Better make it too large than too small...
*/
struct avr32_cpuinfo boot_cpu_data = {
.loops_per_jiffy = 5000000
};
EXPORT_SYMBOL(boot_cpu_data);
static char __initdata command_line[COMMAND_LINE_SIZE];
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 00:32:13 -06:00
/*
* Should be more than enough, but if you have a _really_ complex
* setup, you might need to increase the size of this...
*/
static struct tag_mem_range __initdata mem_range_cache[32];
static unsigned mem_range_next_free;
/*
* Standard memory resources
*/
static struct resource mem_res[] = {
{
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
},
{
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM,
},
};
#define kernel_code mem_res[0]
#define kernel_data mem_res[1]
/*
* Early framebuffer allocation. Works as follows:
* - If fbmem_size is zero, nothing will be allocated or reserved.
* - If fbmem_start is zero when setup_bootmem() is called,
* fbmem_size bytes will be allocated from the bootmem allocator.
* - If fbmem_start is nonzero, an area of size fbmem_size will be
* reserved at the physical address fbmem_start if necessary. If
* the area isn't in a memory region known to the kernel, it will
* be left alone.
*
* Board-specific code may use these variables to set up platform data
* for the framebuffer driver if fbmem_size is nonzero.
*/
static unsigned long __initdata fbmem_start;
static unsigned long __initdata fbmem_size;
/*
* "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
* use as framebuffer.
*
* "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
* starting at yyy to be reserved for use as framebuffer.
*
* The kernel won't verify that the memory region starting at yyy
* actually contains usable RAM.
*/
static int __init early_parse_fbmem(char *p)
{
fbmem_size = memparse(p, &p);
if (*p == '@')
fbmem_start = memparse(p, &p);
return 0;
}
early_param("fbmem", early_parse_fbmem);
static inline void __init resource_init(void)
{
struct tag_mem_range *region;
kernel_code.start = __pa(init_mm.start_code);
kernel_code.end = __pa(init_mm.end_code - 1);
kernel_data.start = __pa(init_mm.end_code);
kernel_data.end = __pa(init_mm.brk - 1);
for (region = mem_phys; region; region = region->next) {
struct resource *res;
unsigned long phys_start, phys_end;
if (region->size == 0)
continue;
phys_start = region->addr;
phys_end = phys_start + region->size - 1;
res = alloc_bootmem_low(sizeof(*res));
res->name = "System RAM";
res->start = phys_start;
res->end = phys_end;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource (&iomem_resource, res);
if (kernel_code.start >= res->start &&
kernel_code.end <= res->end)
request_resource (res, &kernel_code);
if (kernel_data.start >= res->start &&
kernel_data.end <= res->end)
request_resource (res, &kernel_data);
}
}
static int __init parse_tag_core(struct tag *tag)
{
if (tag->hdr.size > 2) {
if ((tag->u.core.flags & 1) == 0)
root_mountflags &= ~MS_RDONLY;
ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
}
return 0;
}
__tagtable(ATAG_CORE, parse_tag_core);
static int __init parse_tag_mem_range(struct tag *tag,
struct tag_mem_range **root)
{
struct tag_mem_range *cur, **pprev;
struct tag_mem_range *new;
/*
* Ignore zero-sized entries. If we're running standalone, the
* SDRAM code may emit such entries if something goes
* wrong...
*/
if (tag->u.mem_range.size == 0)
return 0;
/*
* Copy the data so the bootmem init code doesn't need to care
* about it.
*/
if (mem_range_next_free >= ARRAY_SIZE(mem_range_cache))
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 00:32:13 -06:00
panic("Physical memory map too complex!\n");
new = &mem_range_cache[mem_range_next_free++];
*new = tag->u.mem_range;
pprev = root;
cur = *root;
while (cur) {
pprev = &cur->next;
cur = cur->next;
}
*pprev = new;
new->next = NULL;
return 0;
}
static int __init parse_tag_mem(struct tag *tag)
{
return parse_tag_mem_range(tag, &mem_phys);
}
__tagtable(ATAG_MEM, parse_tag_mem);
static int __init parse_tag_cmdline(struct tag *tag)
{
strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 00:32:13 -06:00
return 0;
}
__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
static int __init parse_tag_rdimg(struct tag *tag)
{
return parse_tag_mem_range(tag, &mem_ramdisk);
}
__tagtable(ATAG_RDIMG, parse_tag_rdimg);
static int __init parse_tag_clock(struct tag *tag)
{
/*
* We'll figure out the clocks by peeking at the system
* manager regs directly.
*/
return 0;
}
__tagtable(ATAG_CLOCK, parse_tag_clock);
static int __init parse_tag_rsvd_mem(struct tag *tag)
{
return parse_tag_mem_range(tag, &mem_reserved);
}
__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
/*
* Scan the tag table for this tag, and call its parse function. The
* tag table is built by the linker from all the __tagtable
* declarations.
*/
static int __init parse_tag(struct tag *tag)
{
extern struct tagtable __tagtable_begin, __tagtable_end;
struct tagtable *t;
for (t = &__tagtable_begin; t < &__tagtable_end; t++)
if (tag->hdr.tag == t->tag) {
t->parse(tag);
break;
}
return t < &__tagtable_end;
}
/*
* Parse all tags in the list we got from the boot loader
*/
static void __init parse_tags(struct tag *t)
{
for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
if (!parse_tag(t))
printk(KERN_WARNING
"Ignoring unrecognised tag 0x%08x\n",
t->hdr.tag);
}
static void __init print_memory_map(const char *what,
struct tag_mem_range *mem)
{
printk ("%s:\n", what);
for (; mem; mem = mem->next) {
printk (" %08lx - %08lx\n",
(unsigned long)mem->addr,
(unsigned long)(mem->addr + mem->size));
}
}
#define MAX_LOWMEM HIGHMEM_START
#define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM)
/*
* Sort a list of memory regions in-place by ascending address.
*
* We're using bubble sort because we only have singly linked lists
* with few elements.
*/
static void __init sort_mem_list(struct tag_mem_range **pmem)
{
int done;
struct tag_mem_range **a, **b;
if (!*pmem)
return;
do {
done = 1;
a = pmem, b = &(*pmem)->next;
while (*b) {
if ((*a)->addr > (*b)->addr) {
struct tag_mem_range *tmp;
tmp = (*b)->next;
(*b)->next = *a;
*a = *b;
*b = tmp;
done = 0;
}
a = &(*a)->next;
b = &(*a)->next;
}
} while (!done);
}
/*
* Find a free memory region large enough for storing the
* bootmem bitmap.
*/
static unsigned long __init
find_bootmap_pfn(const struct tag_mem_range *mem)
{
unsigned long bootmap_pages, bootmap_len;
unsigned long node_pages = PFN_UP(mem->size);
unsigned long bootmap_addr = mem->addr;
struct tag_mem_range *reserved = mem_reserved;
struct tag_mem_range *ramdisk = mem_ramdisk;
unsigned long kern_start = __pa(_stext);
unsigned long kern_end = __pa(_end);
bootmap_pages = bootmem_bootmap_pages(node_pages);
bootmap_len = bootmap_pages << PAGE_SHIFT;
/*
* Find a large enough region without reserved pages for
* storing the bootmem bitmap. We can take advantage of the
* fact that all lists have been sorted.
*
* We have to check explicitly reserved regions as well as the
* kernel image and any RAMDISK images...
*
* Oh, and we have to make sure we don't overwrite the taglist
* since we're going to use it until the bootmem allocator is
* fully up and running.
*/
while (1) {
if ((bootmap_addr < kern_end) &&
((bootmap_addr + bootmap_len) > kern_start))
bootmap_addr = kern_end;
while (reserved &&
(bootmap_addr >= (reserved->addr + reserved->size)))
reserved = reserved->next;
if (reserved &&
((bootmap_addr + bootmap_len) >= reserved->addr)) {
bootmap_addr = reserved->addr + reserved->size;
continue;
}
while (ramdisk &&
(bootmap_addr >= (ramdisk->addr + ramdisk->size)))
ramdisk = ramdisk->next;
if (!ramdisk ||
((bootmap_addr + bootmap_len) < ramdisk->addr))
break;
bootmap_addr = ramdisk->addr + ramdisk->size;
}
if ((PFN_UP(bootmap_addr) + bootmap_len) >= (mem->addr + mem->size))
return ~0UL;
return PFN_UP(bootmap_addr);
}
static void __init setup_bootmem(void)
{
unsigned bootmap_size;
unsigned long first_pfn, bootmap_pfn, pages;
unsigned long max_pfn, max_low_pfn;
unsigned long kern_start = __pa(_stext);
unsigned long kern_end = __pa(_end);
unsigned node = 0;
struct tag_mem_range *bank, *res;
sort_mem_list(&mem_phys);
sort_mem_list(&mem_reserved);
print_memory_map("Physical memory", mem_phys);
print_memory_map("Reserved memory", mem_reserved);
nodes_clear(node_online_map);
if (mem_ramdisk) {
#ifdef CONFIG_BLK_DEV_INITRD
initrd_start = (unsigned long)__va(mem_ramdisk->addr);
initrd_end = initrd_start + mem_ramdisk->size;
print_memory_map("RAMDISK images", mem_ramdisk);
if (mem_ramdisk->next)
printk(KERN_WARNING
"Warning: Only the first RAMDISK image "
"will be used\n");
sort_mem_list(&mem_ramdisk);
#else
printk(KERN_WARNING "RAM disk image present, but "
"no initrd support in kernel!\n");
#endif
}
if (mem_phys->next)
printk(KERN_WARNING "Only using first memory bank\n");
for (bank = mem_phys; bank; bank = NULL) {
first_pfn = PFN_UP(bank->addr);
max_low_pfn = max_pfn = PFN_DOWN(bank->addr + bank->size);
bootmap_pfn = find_bootmap_pfn(bank);
if (bootmap_pfn > max_pfn)
panic("No space for bootmem bitmap!\n");
if (max_low_pfn > MAX_LOWMEM_PFN) {
max_low_pfn = MAX_LOWMEM_PFN;
#ifndef CONFIG_HIGHMEM
/*
* Lowmem is memory that can be addressed
* directly through P1/P2
*/
printk(KERN_WARNING
"Node %u: Only %ld MiB of memory will be used.\n",
node, MAX_LOWMEM >> 20);
printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
#else
#error HIGHMEM is not supported by AVR32 yet
#endif
}
/* Initialize the boot-time allocator with low memory only. */
bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
first_pfn, max_low_pfn);
printk("Node %u: bdata = %p, bdata->node_bootmem_map = %p\n",
node, NODE_DATA(node)->bdata,
NODE_DATA(node)->bdata->node_bootmem_map);
/*
* Register fully available RAM pages with the bootmem
* allocator.
*/
pages = max_low_pfn - first_pfn;
free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
PFN_PHYS(pages));
/*
* Reserve space for the kernel image (if present in
* this node)...
*/
if ((kern_start >= PFN_PHYS(first_pfn)) &&
(kern_start < PFN_PHYS(max_pfn))) {
printk("Node %u: Kernel image %08lx - %08lx\n",
node, kern_start, kern_end);
reserve_bootmem_node(NODE_DATA(node), kern_start,
kern_end - kern_start);
}
/* ...the bootmem bitmap... */
reserve_bootmem_node(NODE_DATA(node),
PFN_PHYS(bootmap_pfn),
bootmap_size);
/* ...any RAMDISK images... */
for (res = mem_ramdisk; res; res = res->next) {
if (res->addr > PFN_PHYS(max_pfn))
break;
if (res->addr >= PFN_PHYS(first_pfn)) {
printk("Node %u: RAMDISK %08lx - %08lx\n",
node,
(unsigned long)res->addr,
(unsigned long)(res->addr + res->size));
reserve_bootmem_node(NODE_DATA(node),
res->addr, res->size);
}
}
/* ...and any other reserved regions. */
for (res = mem_reserved; res; res = res->next) {
if (res->addr > PFN_PHYS(max_pfn))
break;
if (res->addr >= PFN_PHYS(first_pfn)) {
printk("Node %u: Reserved %08lx - %08lx\n",
node,
(unsigned long)res->addr,
(unsigned long)(res->addr + res->size));
reserve_bootmem_node(NODE_DATA(node),
res->addr, res->size);
}
}
node_set_online(node);
}
}
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 00:32:13 -06:00
void __init setup_arch (char **cmdline_p)
{
struct clk *cpu_clk;
parse_tags(bootloader_tags);
setup_processor();
setup_platform();
setup_board();
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 00:32:13 -06:00
cpu_clk = clk_get(NULL, "cpu");
if (IS_ERR(cpu_clk)) {
printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
} else {
unsigned long cpu_hz = clk_get_rate(cpu_clk);
/*
* Well, duh, but it's probably a good idea to
* increment the use count.
*/
clk_enable(cpu_clk);
boot_cpu_data.clk = cpu_clk;
boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
printk("CPU: Running at %lu.%03lu MHz\n",
((cpu_hz + 500) / 1000) / 1000,
((cpu_hz + 500) / 1000) % 1000);
}
init_mm.start_code = (unsigned long) &_text;
init_mm.end_code = (unsigned long) &_etext;
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_end;
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
[PATCH] avr32 architecture This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 00:32:13 -06:00
*cmdline_p = command_line;
parse_early_param();
setup_bootmem();
board_setup_fbmem(fbmem_start, fbmem_size);
#ifdef CONFIG_VT
conswitchp = &dummy_con;
#endif
paging_init();
resource_init();
}